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Introduction: Machine learning courses usually focus on getting students

prepared to apply various models in real-world settings, but much less attention

is given to teaching students the various techniques to explain a model’s

decision-making process. This gap is particularly concerning given the increasing

deployment of AI systems in high-stakes domains where interpretability is

crucial for trust, regulatory compliance, and ethical decision-making. Despite the

growing importance of explainable AI (XAI) in professional practice, systematic

pedagogical approaches for teaching these techniques remain underdeveloped.

Method: In an attempt to fill this gap, we provide a pedagogical perspective

on how to structure a course to better impart knowledge to students and

researchers in machine learning about when and how to implement various

explainability techniques. We developed a comprehensive XAI course, focused

on the conceptual characteristics of the di�erent explanation types. Moreover,

the course featured four structured workbooks focused on implementation,

culminating in a final project requiring students to apply multiple XAI techniques

to convince stakeholders about model decisions.

Results: Course evaluation using a modified Course Experience Questionnaire

(CEQ) from 16 MSc students revealed high perceived quality (CEQ score of

12,050) and strong subjective ratings regarding students’ ability to analyze,

design, apply, and evaluate XAI outcomes. All students successfully completed

the course, with 89% of them demonstrating confidence in multi-perspective

model analysis.

Discussion: The survey results demonstrated that interactive tutorials and

practical workbooks were crucial for translating XAI theory into practical skills.

Students particularly valued the balance between theoretical concepts and

hands-on implementation, though evaluation of XAI outputs remained the most

challenging aspect, suggesting future courses should include more structured

interpretation exercises and analysis templates.
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1 Introduction

As technological advancements have increased computational hardware, modern

research has resulted in high performing ML models that have found numerous

applications. However, in many of these applications models are treated as black boxes,

where the output in no way indicates the decision-making process behind it. Consequently,

model understanding poses a notable challenge that is imperative to overcome if it is to

meet the objective of responsible and beneficial use of ML systems.

Frontiers in Education 01 frontiersin.org

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://doi.org/10.3389/feduc.2025.1595209
http://crossmark.crossref.org/dialog/?doi=10.3389/feduc.2025.1595209&domain=pdf&date_stamp=2025-07-21
mailto:i.papantonis@ed.ac.uk
https://doi.org/10.3389/feduc.2025.1595209
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feduc.2025.1595209/full
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Bue� et al. 10.3389/feduc.2025.1595209

To this end, the field of explainable AI (XAI) has emerged,

aiming at designing tools and methodologies that allow the

extraction of meaningful information out of black-box models

(Arrieta et al., 2019). Although XAI is a relatively young field,

it has already generated an impressive amount of scientific

literature. Furthermore, there are a number of high-performance,

open-source implementations of some of the most popular

XAI techniques, which has facilitated their rapid adoption in

commercial settings. This can also be seen in the spike of scientific

publications discussing the deployment of XAI in healthcare,

banking, e-commerce, cybersecurity, etc.

However, when it comes to actually employing XAI in practical

applications, there is alarming evidence that professionals/data

scientists use these tools in the wrong way (Kaur et al., 2020),

where misuse most often arises due to misunderstandings around

the scope and kind of insights that can be gained when using

certain XAI techniques. Consequently, this leads to sub-optimal use

of XAI, and to a misinterpretation of the resulting explanations.

This finding is related to a broader issue regarding the proper

use of AI/ML, which is commonly referred to as user competence.

Despite the need for developing the technical skills required to

competently use the tools provided by an AI-driven society, XAI

related academic resources are extremely limited. Although there

are a number of tutorial and introductory articles that can be

found online, there is only a single formal academic course on XAI

(Lakkaraju and Lage, 2019).

In this work we will attempt to alleviate this situation, providing

a pedagogical perspective on how to structure a course on XAI,

in a way that introduces students and professionals to various

explainability techniques, while also keeping an eye on the big

picture of the field. This proposal takes a distinct stance from

the course in (Lakkaraju and Lage, 2019), since the latter focuses

on introducing several technical approaches, while the presented

course emphasizes the conceptual aspects of explanations, and

the discussed techniques are introduced as specific realizations

of broader conceptual categories. This decouples individual XAI

techniques from the overall objectives, advantages, and challenges

of XAI, allowing for updating the material in accordance with the

new developments in the field. In particular:

• We provide a pedagogical perspective on how to structure a

course in XAI.

• We pair each lecture with a series of open-ended questions

to promote an exchange of ideas between lecturers and/or

participants.

• We develop a series of technical tutorials that discuss practical

implementations of XAI techniques.

• We evaluate the course based on the feedback and assignments

provided by the MSc students that attended the course, as it

was offered by the University of Edinburgh.

2 Materials and methods

2.1 Learning objectives

Probably the most common way to introduce XAI to

individuals interested in applying related techniques is through

tutorials, for example Bennetot et al. (2021); Rothman (2020).

However, most of them are targeted toward a technical research

audience, where the purpose is research discovery among peers

and not the teaching of fundamentals. Keeping in mind that

tutorials usually serve as short, technical introductions to a subject,

providing detailed insights regarding the nuances of different

techniques or explanations styles is beyond their scope.

One of the main goals of the course is to fill this need by
imparting a number of key concepts. The first one is that the various

explainability approaches can be taxonomised such that a technique

can be selected by considering explanation types, explanation
properties, advantages and disadvantages, as well as the specific

model under consideration. Another important concept is that XAI

can be used to structure a narrative in order to successfully answer

potential questions raised by stakeholders, in line with evidence that
explainability techniques are best linked to stakeholder questions

(Arya et al., 2019). Along with imparting theory, an equally

important goal is to provide students with experience in applying
these explainability techniques using commonly available APIs, so

they can gain an understanding of the implementation pipeline

(e.g., data cleaning, parameter tuning, etc.).

In broader terms, this course enables inclusivity,
empowerment, and responsibility with respect to XAI. In

regards to inclusivity, the course suggests strategies that can help

make XAI more easily understood/accessible, especially since

current developments can be very technical and difficult to grasp

for those not keeping up with the state of the art. Focusing on

a representative subset of techniques and showing that they can

be tightly coupled with certain types of questions, provides an

accessible strategy for introducing students/practitioners into the

field. With respect to empowerment, the course is designed for

students with some experience with data; however, it also includes

preparatory lectures on machine learning. It gives students the

opportunity to engage with machine learning models, debug them,

and inspect whether the resulting models fit their purpose. In

terms of enabling responsibility, it is widely acknowledged that

responsible design in artificial intelligence includes many facets,

from bias detection to value alignment. In this broad picture of

ensuring that machine learning models perform as they should,

explainability is an essential ingredient, so it is important that

practitioners can use such tools competently.

To the best of our knowledge, this is the first work on this topic,

so it is not possible to make empirical comparisons. However, the

course was evaluated based on students’ final assignment, as well as

their feedback, achieving very positive results. Hopefully, this will

be the start of a discussion on how to effectively teach this very

important topic.

Based on our experience developing and delivering this XAI

course, we propose a three-pillar pedagogical framework that can

be adapted for similar courses. The framework allocates course

content as follows: Conceptual Foundation (30% of course time)

establishes the theoretical groundwork by distinguishing between

transparent and opaque models, introducing XAI taxonomy, and

explaining different transparency levels before examining specific

techniques; Technique-Specific Modules (50% of course time)

provide in-depth coverage of 3–4 core XAI techniques (such

as SHAP, Counterfactuals, and InTrees) complemented by 2–3

additional techniques (such as Anchors, PDP/ICE, and Deletion
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Diagnostics) that demonstrate different explanatory perspectives;

and Practical Integration (20% of course time) through hands-on

tutorials and a comprehensive final project requiring students to

apply multiple techniques to justify model acceptance or rejection.

Upon completion of this course, students are expected to

have learnt to apply XAI techniques to examine a given model,

as well as to have gained an overview understanding of the

conceptual distinctions of explanations. More specifically, the

expected learning outcomes are as follows:

• Analyse: Describe the context of the machine learning

application and why explainability would help, but also

scrutinize which kind of explainability technique is necessary.

• Design: Define the implementation pipeline for an

application; provide a means to clean the data, install

and set up one or more posthoc explainability techniques.

• Apply: Competently apply a wide range of techniques and

tools, also knowing their particular features and drawbacks.

Have the foundations to understand new and upcoming

methods and techniques.

• Evaluate: Critically reflect on the results of XAI techniques

and investigate their utility in the given context.

In particular, since both the theoretical and practical aspects

are covered, students should be able to understand the context in

which these techniques are deployed but also understand the theory

in justifying these techniques. The final project in particular is an

opportunity for students to create a narrative and an application

and motivate and argue for or against a model by using a sequence

of techniques.

2.2 Course structure and content

The course consists of 9 lectures paired with 4 practical

tutorial sessions, delivered over one semester. The lectures cover

the following topics: (i) ML preface, (ii) XAI preface, (iii) SHAP,

(iv) PDP/ICE, (v) Counterfactuals, (vi) Anchors, (vii) Deletion

diagnostics, (viii) InTrees, and (ix) Future research directions. Each

major XAI technique receives both theoretical treatment in lectures

and practical implementation through dedicated computational

notebooks, where students engage in coding exercises and raise

practical issues about the corresponding techniques. Students

are expected to submit 2 assignments and a final project. The

course culminates with an open-ended final project where students

must select their own dataset and model, then employ multiple

XAI techniques to construct arguments for stakeholder decision-

making. This structure ensures students develop both conceptual

understanding and practical competency while learning to integrate

multiple explanation approaches.

3 Course content

In what follows, we outline the structure of the course, which

is comprised of 9 lectures as well as 4 tutorials over the semester,

while the students are expected to submit 2 assignments and a

final project. Each lecture is focused on a specific topic, such as

detailing the characteristics, advantages, and disadvantages of a

certain XAI technique. Each lecture concludes with three carefully

designed open-ended questions that promote discussion and

critical thinking around the topic at hand. Our question framework

follows three categories: Comparative Questions that encourage

students to analyse trade-offs between different approaches (e.g.,

“What are the trade-offs between TreeSHAP and KernelSHAP?”);

Application Questions that challenge students to extend techniques

to new contexts (e.g., “How would counterfactuals work with

image data?”); and Critical Thinking Questions that probe

assumptions and potential failure modes (e.g., “How could a biased

trained model ‘trick’ SHAP by hiding its bias?”). These questions

are designed without definitive “correct” answers, encouraging

students to engage in meaningful discussion and develop nuanced

understanding. Questions consistently connect specific techniques

to broader issues in AI ethics, fairness, and responsible deployment.

3.1 Preliminaries

3.1.1 ML preface
We begin by briefly introducing ML objectives, focusing on

the various stages of the general process (i.e., acquiring a dataset,

selecting and training a model, and evaluating its performance).

Following that, we discuss the properties of certain MLmodels that

are going to be used as a reference in the next lectures, in order

to demonstrate XAI concepts. Specifically, we make a distinction

between transparent models, such as Linear/Logistic regression,

and opaque models, such as Neural networks.

The goal of this lecture is to highlight which properties make

a model more understandable to a human, emphasizing intuition.

This serves as a first step toward understanding the necessity of

developing XAI techniques in order to enhance opaque models

with interpretable features, so they resemble their transparent

counterparts.

Open ended questions, such as those below, are presented to

students for debate and discussion; such questions are discussed

in each lecture: (a) Can you think of a reason why opaque models,

often, have better performance than transparent models? (b) Can you

think of cases when opaque models are outperformed by transparent

models? (Hint: consider relational data.) (c) Can you argue about

why we may want to solve an ML challenge using both transparent

and opaque modeling?

3.1.2 XAI preface
In this lecture, we begin with discussing cases that highlight

the need for XAI, such as adversarial examples that drastically

alter the model’s original outcome, while being indistinguishable

from humans. Following that, we talk about the various

transparency levels that a model can satisfy (Arrieta et al.,

2019): Simulatability: A model’s ability to be simulated by a

human. Decomposability: The ability to break down a model

into parts (input, parameters, and computations) and then explain

these parts. Algorithmic transparency: The ability to understand

the procedure the model goes through in order to generate

its output.
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We emphasize the different requirements of each level, as

well as cases where a model could satisfy all of them (such as

simple linear models), or none of them (such as multi-layer neural

networks). This leads to the observation that, in the latter case,

post − hoc methods for inspecting the internal mechanisms of

a model are essential to employ them in critical applications.

In general, XAI is important in identifying issues such as: User

acceptance: By providing explanations, users are more likely to be

satisfied and accept an ML decision. Improving human insight:

Beyond just using ML to perform automation tasks, scientists

can use ML for research purposes with respect to big data. An

intelligible model can provide information to scientists based on

the data being modeled. Legal imperatives: Using ML to assess

legal liability is a growing issue, as auditing situations to determine

liability requires clear explanations from a model’s decision. The

European Union’s GDPR legislation decrees citizens’ right to

an explanation further strengthening the need for intelligible

models.

After the importance of XAI is established, the next step is

to provide an overview of the ways that have been considered

for producing explanations. The first distinction is between global

explanations, that explain the model as a whole, and local ones, that

attempt to explain the model’s prediction for the specific datapoint

of interest. In addition, another distinction comes based on the

applicability of each technique, where model-agnostic ones are

generally applicable to any model, while model-specific techniques

are designed to be applied in certain classes of models. Finally,

we give examples of how feature relevance scores, visualizations,

examples, and text can be used to form explanations (Arrieta et al.,

2019).

Open ended questions to present at the end of the lecture

include: (a) Can you argue how the XAI evaluation criteria differ or

not from the criteria for a “good” ML model? (b) If a medical system

offers 98% accuracy over a transparent model that only offers 88%

accuracy, what might you prefer, and why? (c) Would an ensemble of

different transparent models be considered transparent?

3.2 XAI techniques

Here we propose an indicative set of XAI techniques that

could be taught in the course. We begin with three techniques we

consider to be essential (SHAP, counterfactuals, and InTrees), each

of them for its own reasons. SHAP is arguably the most popular

XAI approach, having well founded theoretical properties, so we

believe it is important for students to be familiar with it. On the

other hand, counterfactuals bring together philosophy and XAI,

approaching the problem from a completely different angle, while

also serving as a stepping stone to more advanced causal inference

concepts. Finally, InTrees is a model-specific technique that clearly

demonstrates the advantages of utilizing them over model-agnostic

ones, while it is also simple and relatively straightforward.

In addition to the above, we briefly discuss other techniques

that could be taught along the three main ones. Their selection was

determined by our narrative and how we believe an introduction

to XAI should be approached, based on Belle and Papantonis

(2020). This is why we complement the aforementioned techniques

with Anchors, which produce simple propositional rules, and

visualizations, which are especially valuable when communicating

explanations to non-technical audiences, as well as deletion

diagnostics, which considers the model as a function of the training

dataset. Each of these techniques brings a different perspective on

XAI, which we think is necessary to form a complete picture of the

underlying model’s reasoning. A different narrative might motivate

more global techniques, deep learning techniques, or symbolic

approaches. Moreover, even with the same narrative, we could

replace certain techniques with similar ones, for example, anchors

with LIME. This means there is a lot of flexibility, depending on

the students, the goals of the course, and/or the preferences of the

instructor. Having said that, Anchors, visualizations, and deletion

diagnostics are the techniques we included when delivering the

course, so we will present some of the details of the context and

style of the lectures since they probably played a role in the students’

answers to the questionnaire they completed at the end of the

course.

3.2.1 SHAP
Shapley Additive exPlanations (SHAP) (Lundberg and Lee,

2017) is a model-agnostic method for explaining individual

predictions. SHAP learns local explanations by utilizing Shapley

Values (Shapley, 1952) from co-operative game theory, in order

to measure feature attributions. The objective is to build a linear

model around the instance to be explained and then interpret the

coefficients as feature importance scores.

Shapley values provide a means to attribute rewards to agents

conditioned on the agent’s total contribution to the final reward.

In a cooperative setting, agents collaborate in a coalition and

are rewarded with respect to their individual contributions. In

order to apply this technique to ML models, it is necessary to

make adjustments so the problem is expressed in a game theoretic

manner: Setting/Game: SHAP interprets the model prediction on a

single input, x, as a game. Agents/Players: The different features of

input x are interpreted as being individual players. Reward/Gain:

Measured by taking the model prediction on the input x and

subtracting the marginal predictions, i.e. predictions where some

of the features are absent.

Having made these adjustments, the Shapley value of feature i

equals:

φi =
∑

S⊂F\{i}

|S|!(|F| − |S| − 1)!

|F|!
[fS∪{i}(xS∪{i})− fS(xS)]

where F is the set of all features, fS∪{i}(xS∪{i}) is the model’s

decision when the features in S∪{i} are given as input, and fS(xS) is

the decision when only features in S are given.

From a pedagogical perspective, introducing SHAP comes with

a number of benefits, such as: (i) It exemplifies how well established

mathematical ideas can be adjusted to take on new problems,

demonstrating the multidisciplinary nature of ML related research.

(ii) Shapley values are known to satisfy some important properties,

allowing for a discussion focused on why these properties are

important when generating explanations, or why it is important to

have such theoretical guarantees. (iii) The current implementation

of the SHAP python module comes with an array of different
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visualizations, which the students can inspect in order to strengthen

their understanding of SHAP.

Open ended questions include: (a) What are the trade offs

and differences between TreeSHAP and KernelSHAP? (b) How

could a biased trained model “trick” SHAP by hiding its bias,

i.e. assign Shapley values to protected features that do not

match their actual importance in the model’s decision? (c) With

KernelSHAP, the sampling for missing values assumes feature

independence, is there a way to remedy this issue? Can you think of

possible solutions?

3.2.2 Counterfactual
A counterfactual explanation is a statement that identifies how

a given prediction would need to change for an alternate outcome

to occur. Key to counterfactuals is the idea of “the closest possible

world” which signifies the smallest possible change on a set of

variables that suffices to alter a model’s outcome (Lewis, 1973).

For example, if a loan application is rejected, then providing a

counterfactual (i.e., a successful application which is as similar

as possible to the original one), makes it easier for a person to

identify the important information that is relevant to their specific

application. In a sense, counterfactuals highlight why a decision was

not made, in contrast to other approaches that aim at explaining

why a decision was made.

One of the most popular frameworks for generating

counterfactuals for ML models is based on Wachter et al.

(2018), where the authors express the problem as:

min
x

d(x, xi) s.t.

f (x) = Y

where d is a distance function, xi is the factual datapoint, x is the

counterfactual one, f (·) is the ML model, and Y is the category

we would like the counterfactual point to be classified into. For

differentiable models, this problem can be solved using Lagrange

multipliers, along with an optimisation scheme, such as ADAM

(Kingma and Ba, 2015).

Introducing counterfactuals is beneficial from a pedagogical

perspective since (i) They provide an entry point for drawing

connections with concepts from causal inference (CI). CI is

expected to be one of themost promising future research directions,

but it is often challenging for students to grasp the underlying

concepts. However, the notion of counterfactuals used in XAI

is a simplified version of the ones in CI, so it is possible to

build on them in order to facilitate the understanding of more

advanced ideas. (ii) In addition, discussing the progression from

the initial work in Wachter et al. (2018) to more recent advances

demonstrates how XAI is a dynamic field, where a technique

can be refined by taking into account new requirements or

desiderata. This could help develop students’ critical thinking,

enabling them to identify the reasons why such progressions

happen. (iii) Finally, counterfactuals showcase the interplay

between XAI and other domains, such as fairness in AI, or

applications, like model debugging, all of which exemplify the

interdisciplinarity of XAI related research. For example, by probing

a model by generating multiple counterfactuals, we can examine

whether changes in sensitive attributes (such as gender) may

lead to the model producing a different outcome. If this is

the case, then this is a clear indication that the model exhibits

biased behavior.

Open ended questions include: (a) Can you get multiple

counterfactuals for a given instance? If yes, how should we interpret

them? (b) How can we handle discrete features? (c) How would

counterfactuals work with image data?

3.2.3 InTrees
InTrees (Deng, 2014) are a model-specific XAI method for

tree ensembles, which take advantage of the tree architecture to

produce interpretable “if-then” explanations. One of the advantages

of this technique is that it is based on intuitive and easy to explain

algorithms, although we are not going to get into the details in

this work. In turn, InTrees demonstrate how certain black-box

architectures may contain pieces of information that can facilitate

the model’s understanding. It is worth noting that at the core of

this technique lies the idea that although tree ensembles might be

opaque, each of its constituents is transparent, so they can be readily

inspected.

The previous observation perfectly captures the utility

of model-specific techniques; instead of relying on universal

approximations, develop alternatives that take advantage of the

specific characteristics of the model at hand. The majority of

model-agnostic approaches make significant assumptions about

the underlying model, which are often violated, compromising the

quality of the resulting explanations. Consequently, one of themain

drives of model-specific explanations is to reduce the number of

assumptions, leading to more accurate explanations. Introducing

InTrees has the benefit of clearly demonstrating the concept in

a simple way, as opposed to more mathematically challenging

alternatives, for example, neural network LRP explanations (Bach

et al., 2015). This should improve the student’s understanding of

why model-specific explanations are important, without getting

into overly complex technical details.

Open ended questions include: (a) What is the tradeoff between

frequency and error in practical scenarios? Which should we aim to

optimize? (b) Can you argue with examples about what happens if

pruning is not applied? (c) Can a similar idea be applied to non-tree

ensembles (e.g., SVM, neural networks)? If so, how do you think this

would be possible?

3.2.4 PDP/ICE
Another prominent means of explaining an ML model is

using visualizations, especially when communicating explanations

to a non-technical audience. A Partial Dependence Plot (PDP/PD)

(Friedman, 2001) plots the average prediction for a feature(s) of

interest as the feature’s value changes. These plots can reveal the

nature of the relationship between the feature and the output, for

example, whether it is linear or exponential. PDPs present global

explanations, as the method factors all instances and provides an

explanation regarding the (marginal) global relationship between

a feature and the model prediction. Assuming we are interested in

examining the partial dependence of the model f on a feature s, we
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have to compute:

f ∗(xs) =
N∑

i=1

f (xs,X
(i)
−s)

where N is the cardinality of the dataset, and X
(i)
−s is the i − th

datapoint, excluding feature s. We see that the partial dependence

function provides the average marginal output for a given value of

xs. Furthermore, it is not difficult to extend this method to account

for the partial dependence of a function on more than one feature,

however, this is usually done for one or two features, due to our

inability to perceive more than 3 spatial dimensions.

Individual Conditional Expectation (ICE) (Goldstein et al.,

2013) plots model predictions for multiple instances, where for

all instances, only the feature of interest changes value, while the

remaining feature values for a given instance are held constant. This

plot shows the feature-value and model prediction relationship,

for each instance as a separate line, as opposed to the single

average predictive line with PDP. Some of the advantages of

employing ICE are: (i) PDPs may hide some of the heterogeneous

relationships between feature value interactions by averaging them

out. Consider that two opposing, but equally valued, influences on

model prediction can be canceled out when averaged. (ii) PDPs

provide a view into the average predictive behavior of a model with

respect to a single feature, but the validity of this predictive behavior

is diminished by any possible interactions with the feature being

plotted and the remaining features in the data. (iii) ICE plots are

able to plot more accurate relationships even with the presence of

highly correlated features.

Finally, there is an interesting relationship between these two

plots, as averaging the ICE plots of each instance of a dataset, yields

the corresponding PD plot.

Open ended questions include: (a) What are the key limitations

of PDP/ICE? (b) Roughly sketch a 3-dimensional PDP and ICE

plot. Based on that, argue about whether this makes explaining the

model easier or not. (c) Instead of averaged out values, how can

you show the minimum and maximum for the features in PDP? Is

that useful?

3.2.5 Anchors
Rule-based classifiers have been traditionally utilized due to

their transparency since they are easy to inspect and understand.

Anchors (Ribeiro et al., 2018) is an XAI technique that builds

on this principle, aiming at generating simple rules to describe

a model’s reasoning. They explain individual predictions locally

by identifying a decision rule that “anchors” the prediction in

question, thus they operate on an instance level. A rule anchoring a

prediction implies that changes to the remaining feature values do

not impact the prediction. A rule’s coverage is defined as the fraction

on instances that satisfy the “if ” part of the rule. Moreover, a rule’s

precision is the fraction of instances that satisfy both the “if ” and

the “then” part.

Formally, an anchor, A, is defined as the solution to the

following problem:

max
A s.t. P(prec(A)≥τ )≥1−δ

cov(A)

where prec(A) = ED(z|A)(1f (x)=f (z)) is the precision, D(z|A) is

the data distribution given the anchor, f (z) is the ML model, 1 is

the indicator function, and cov(A) = ED(z)(A(z)) is the coverage. In

words, this optimization problem looks for if-then rules where the

preconditions (the “if ” part) contain conditions that are satisfied by

as many instances as possible, while requiring that these points also

satisfy the “then” part, with high probability. This way the resulting

rules are not based on niche characteristics of the specific datapoint

at hand but are as generally applicable as possible.

Open ended questions include: (a) What would you choose

between anchors with high precision and low coverage vs anchors

with low precision and high coverage? (b) Can you give examples

of rules that might apply to recent data you have encountered? Can

you argue about what precision/coverage you expect them to have?

(c) Compare anchors to other local explainability techniques, such as

SHAP. What are the advantages and disadvantages compared to it?

3.2.6 Deletion diagnostics
Deletion diagnostics is a technique which investigates the

model as a function of its training data. It considers the impact

of removing a particular training instance from the dataset on the

final model (Cook, 1977). By removing an instance with significant

influence from training, deletion diagnostics can help with model

understanding. In this context, an instance is considered to be

influential if its removal causes the parameters of the trained model

to change significantly or results in notably different predictions on

the remaining instances.

Identifying influential instances is important since they invert

the relationship between model and data where we now look at the

model as a function of the training set. Influential instances can

inform how specific feature values influence model behavior, they

can also be used to identify adversarial attacks, they can help in

debugging by identifying instances which result in model errors,

and they can help in fixing mislabelled data (Koh and Liang, 2017).

All of these are significant information when explaining a model,

which could also find additional applications, for example reducing

the size of the training dataset. This could be achieved by retaining

only the influential instances and then retraining the model using

them, since these instances can express model behavior where it

is most sensitive, contributing to a better understanding of model

behavior.

Influence functions (Koh and Liang, 2017) are a contemporary

alternative to standardmethods of deletion diagnostics, wherein the

removal of an instance i is approximated, and the model does not

need to be retrained with instance i removed. This makes it more

efficient to estimate the influence of a datapoint on the final model,

since, retraining a model every time an instance is removed is very

computationally intensive.

Open ended questions include: (a) Can you explain how deletion

diagnostics can be done efficiently without retraining? (b) Do you

think deletion diagnostics can be applied to random forests? (c)

What do you think is the relative usefulness of deletion diagnostics

compared to influence functions?

3.2.7 Future research directions
The final lecture of the course is about the future of XAI

related research. Its goal is to discuss the limitations of XAI and
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prepare students for the next generation of techniques, as well

as to provide an overview of which concepts are likely to play

a central role in the future. This way the interested students

have the chance to study these concepts in advance, so they

have the prior knowledge required to potentially grasp future

techniques. Of course, it is not possible to be exhaustive and cover

all directions, instead, we provide an indicative list of current

XAI limitations.

An important point of emphasis for students is to realize that

limitations arise both on a technical and a practical level. Most

of the existing techniques, especially model-agnostic ones, require

resorting to approximations. This means that there is always the

danger that the resulting explanations might not be accurate, or

even bemisleading. Furthermore, existing approaches are not really

able to identify spurious correlations and report them back. Due

to this, it is possible for features to look like they have a strong

influence on each other, when, in reality, they only correlate due

to a confounder. A possible resolution to these issues could be

introducing more concepts from causal analysis, which is already

a major drive in related areas, such as fairness in ML. For example,

if an explanation was accompanied by a causal model it would not

be difficult to check for any spurious correlations.

On a more practical level, developing XAI pipelines to explain

a model it is still an open research question. Currently, there

is no consensus regarding either the characteristics of a good

explanation or the way of combining existing techniques in order

to adequately explain a model. While there is some overlap between

the various explanation types, for the most part, they appear to be

segmented, each one addressing a different question. This hinders

the development of pipelines that aim at automating explanations

or even reaching an agreement on how a complete explanation

should look like. On top of that, it is not clear whether explanations

should be selective (focus on primary causes of the decision making

process), or contrastive (indicate why a model made decision X,

and provide justification for deciding X rather than Y), or both,

and how to extract such information from current techniques.

Audiences in XAI can include experts in the field, policy-makers,

or end users with little ML background, so intelligibility should be

varied in its explanations depending on the knowledge level and

objectives of the audience. Interdisciplinary research combining

psychology, sociology, and cognitive sciences can help XAI in

delivering appropriate explanations (Miller, 2019).

Open ended questions include: (a) What do you think are the

most important limitations of XAI? (b) Can you suggest ways to

automate XAI? (c) Can you suggest ways to address the potential

dangers of transparency?

3.3 Assignments

While the course content includes general information as well

as mathematical theory, students’ assessment is purely practical. As

the course is aimed at industry practitioners, a greater emphasis

is given to applying the XAI techniques in a real world setting.

Variants of the course focused on teaching MSc students might

emphasize the various algorithmic formula and mathematical

derivations for purposes of developing future XAI researchers.

Effective XAI pedagogy requires careful integration of

theoretical concepts with immediate practical application. We

recommend pairing each theoretical concept with hands-on

implementation exercises, for instance, following the mathematical

presentation of SHAP with TreeSHAP notebook exercises

using real datasets. The use of realistic, ethically-relevant

datasets naturally connects technical implementation to broader

discussions of responsible AI and algorithmic fairness. Our

assignment structure maintains a 60% technical implementation

and 40% interpretation balance, ensuring students not only learn

to execute XAI techniques but also develop the critical thinking

skills necessary to interpret and communicate results.

The assignment structure includes four jupyter notebooks

(Kluyver et al., 2016) namely SHAP, counterfactuals, Anchors,

and InTrees (PDP/ICE and deletion diagnostics omitted for

simplicity), each of which demonstrate a singular XAI technique,

which provides questions that students must analyse and

answer for assessment. Questions include technical code based

implementations of a specific XAI technique and short answer

questions asking for student interpretation of the outputs. A final

project is also assigned which asks students to select a dataset

and model of their choice and describe a problem requiring

explainability, and consequently implement a minimum of two

post−hoc explainability methods. The application of these methods

will be used as evidence by students in their discussion of the

model’s performance on the dataset. Here, the results and the

implications from the various XAI techniques will be used by the

students to convince a stakeholder to either accept or reject amodel.

3.3.1 Workbooks
At the beginning of each tutorial, students need to import

the relevant python libraries (pandas, numpy, etc.) as well as

the library associated with the corresponding XAI technique.

Following the initial setup, basic ML preprocessing practices such

as handling missing values, visualizations, and feature engineering,

are applied.

Our computational notebooks follow a consistent four-

section template: Setup Section covering library imports

and data preprocessing to build general ML pipeline skills;

Demonstration Section providing guided implementation with

detailed explanations; Assignment Questions mixing technical

implementation tasks (3–4 questions) with interpretation exercises

(2–3 questions); and Extension Challenges requiring students to

apply the technique to different models or datasets.

The next step is Modeling, which includes training the

model and assessing its performance. Each tutorial uses an

arbitrary model, the majority of which are black-box models, and

performance is measured by looking at the accuracy, precision,

recall, and f1 scores.

The third section of the tutorial is where the corresponding

XAI technique is applied. The SHAP and Counterfactual tutorials

end with a series of assignment questions which comprise a

portion of the submission work. Assignment questions include 2–

3 short answer questions regarding the technique and/or potential

concerns in applying a given model, followed by 3–4 technical

questions where the student will need to apply the XAI technique

either on another model or on an augmented dataset.
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FIGURE 1

Demonstration of applying TreeSHAP in the corresponding SHAP

workbook.

Assignment questions are carefully categorized by type:

Technical Questions require implementation skills (e.g., “Apply

XGBoost with SHAP to the Portuguese scores dataset and identify

the 5 most important features”); Interpretation Questions develop

communication abilities (e.g., “Write a paragraph for a non-

technical audience explaining how your model makes decisions

based on SHAP outputs”); and Comparative Questions build

analytical thinking (e.g., “Compare SHAP importance rankings

across different model types and discuss any discrepancies”). This

structure ensures students develop both technical competency and

the interpretive skills necessary for real-world XAI applications.

In the remainder of this section, aspects of the SHAP tutorial are

presented to give a representative example of the structure/content

of each tutorial.

SHAP: The first step is to import the relevant library (!pip

install shap) and, after preprocessing the data and training

a LGBM model, SHAP is invoked. As LGBM is a tree ensemble

method, the model-specific SHAP implementation is utilized (see

Figure 1).

Included throughout the tutorial are summary questions,

which are designed as general discussion points following the

introduction of an ML or XAI technique. Questions (1 − 2) are

specific to assessing the black-box model, while questions (3 − 10)

are specific to SHAP and its implementation. In general, these

questions are discussed with students during tutorial sessions.

1. How would you interpret 50% precision in the table above?

2. Which metric from the above do you think would be of the

most interest to a stakeholder interested in a model that aims

to predict students’ performance?

3. Generate the same plots for instances in class 0. What is the link

between these graphs and what has been generated for class 1?

4. What are the 5 most important features which are driving this

model’s decisions?

5. How would you interpret the horizontal axis of the first

summary plot above? What does a SHAP value of−1.5 mean?

6. Can we express SHAP values in terms of probability? Justify your

answer.

7. According to these plots, which student is most likely to fail

(assuming our model is appropriate)?

8. Are there any features which are important from the perspective

of predictions on the local level for these 3 students and which

could indicate some fairness issues?

9. Produce a local plot as above for another student (feel free to

select your own observation). How different is it from the global

picture?

10. What does the horizontal spectrum on the top of the graph

show? What do those values mean?

At the end of the SHAP workbook, we provide students

assignment questions which are to be submitted for assessment.

These questions will require the students to implement the

techniques previously demonstrated in the workbook as well as

require investigations online for methods not shown. Overall,

questions can be separated into technical (coding focused) and

short answer. For the SHAP workbook we classify questions (1–5)

as being primarily technical and questions (6–8) as short answer,

requiring student interpretation.

1. Use the public dataset introduced in this tutorial and apply

an XGBoost model. Your outcome variable will be Portuguese

language scores pooled into class 0 and 1 in the same way as

in this notebook (feel free to skip any hyperparameter tuning

operations). Make predictions on your test set and produce a set

of measures that describe the model’s performance.

2. Using SHAP summary plots, what are the 5 most important

features in the model?

3. Create a decision plot for all observations and all features in

your test set, highlight misclassified observations and create

decision plots for the set of misclassified observations and for 4

single misclassified observations. Then include force plots for all

observations as well as for the set of misclassified observations.

4. Make SHAP dependence plots of the 4 most important features.

Use sex as a feature possibly influencing SHAP outputs. This is

done by setting the interaction_index as “sex.”

5. In the light of the plots from 3 and 4, discuss whether

the interaction effect between sex and other features can

meaningfully impact decisions of your model.

6. Discuss how various SHAP-based graphs can be used in the

process of model validation.

7. Write a paragraph for a non-technical audience explaining how

your model makes decisions based on SHAP outputs. Ensure the

text is clear of jargon!

3.3.2 Final project
The final project requires students to consider an ML

application, and then carry out all the necessary steps to train a

model. After the training is completed, students need to utilize a

series of XAI techniques to evaluate the resulting model and argue

about whether it should be retained or dismissed. The minimum

time commitment expected from students is 14 hours. Essentially

all aspects of the problem specification are decided by the students,

i.e. dataset selection, model selection, and XAI techniques.

To improve stakeholder communication skills, we recommend

adding argument construction modules to each major technique

tutorial. These modules should include: (1) Stakeholder Persona

Templates that outline different audience needs (e.g., technical

teams want precision metrics, executives want business

impact, regulators want fairness evidence); (2) Translation

Examples showing how to convert technical XAI outputs into
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stakeholder-relevant insights (e.g., “SHAP analysis reveals that

credit history accounts for 40% of loan decisions, suggesting

our model aligns with traditional banking practices”); and

(3) Argument Structure Frameworks providing templates

like “Problem → XAI Evidence → Business Implication →

Recommendation.”

Furthermore, students need to come up with a narrative

describing the problem, for example, “Taking a credit scoring

dataset, and the XGBoost model, convince a banking institution

to reject the model using (at least) technique 1 and technique 2”.

The goal of the project is to prompt students to use various XAI

techniques in order to convince a (hypothetical) stakeholder to

approve/dismiss the underlying model. This situation resembles

what students might come across when applying XAI in a

professional setting, so it is important that they can form sound

arguments based on the explanations at hand.

To build application confidence, we recommend implementing

progressive scaffolding exercises that gradually transition from

guided tutorials to independent application. This includes: (1)

Bridge Assignments where students apply tutorial techniques to

slightly modified datasets or models, reducing the cognitive load

of simultaneous technique learning and independent application;

(2) Troubleshooting Workshops that explicitly address common

implementation challenges (e.g., handling categorical features

in SHAP, interpreting counterfactuals for imbalanced datasets)

with step-by-step debugging approaches; and (3) Technique

Selection Guides that provide decision trees helping students

choose appropriate XAI methods based on their model type,

data characteristics, and stakeholder questions. Additionally,

the course provides ongoing feedback through assignment

submissions and tutorial discussions, where students receive

guidance on technique selection and implementation strategies,

building confidence through collaborative problem-solving

during tutorials.

3.4 Evaluation methodology

To assess the effectiveness of the course, a modified version

of the Course Experience Questionnaire (CEQ) and a general

performance analysis based on the coding assignment were used.

3.4.1 Context and participants
Sixteen survey responses were collected from the students

who attended the presented course as part of their MSc studies

at the University of Edinburgh. Eight of the respondents were

postgraduate research students, five were doing non-academic

work, while three responded “Other.” Prior to taking this course,

87.5% of respondents were not familiar with the topic of XAI.

Most of the respondents had at least some practical experience

of working with ML (81.3%) and theoretical knowledge of ML

(81.3%). One respondent had no theoretical or practical knowledge

of ML, and two respondents had some theoretical, but no practical

ML experience. Four respondents rated their practical experiences

in ML as close to expert level, and six rated their theoretical ML

knowledge close to expert level.

3.4.2 Procedures and data collection
Conventionally the CEQ is employed as a measure of teaching

quality of university courses (Ramsden, 1991). The questionnaire

assumes a strong connection between the quality of student

learning and student perceptions of teaching (McInnis, 1997).

When combined with the additional course assessment items and

adapted to the course context it can reliably be applied as a domain-

neutral indicator of university course quality (Griffin et al., 2003).

For this study, 12 items were selected from the original version of

the CEQ based on their relevance to the XAI course context (see

the Supplementary material). These items were scored on a 5-point

Likert-type rating scale from “strongly disagree” to “strongly agree.”

In addition to the CEQ items, context-specific items were used

in order to gather information about (i) pre-existing skills and

theoretical knowledge of XAI; (ii) pre-existing skills and theoretical

knowledge of Machine Learning (ML); (iii) satisfaction of the

diversity of the taught techniques; (iv) course ability to build an

understanding of XAI techniques; (v) level of comprehension of the

conceptual distinctions, advantages, and disadvantages of the XAI

techniques covered in the course; (vi) success in meeting the four

pre-set learning objectives. These responses were also based on a

five-point Likert scale. Finally, in an open-ended manner, students

were asked to list their favorite aspect of the course and to suggest

anything that could help to improve the course in future. The

resulting questionnaire was given to the students after concluding

the final lecture, but before the results of the final assignment came

out, so they were not aware of whether they had passed the course.

4 Results

The results were divided into two parts. Overall CEQ scoring of

the responses, as well as quantitative and qualitative analysis of the

individual statement ratings. The CEQ raw scores were recorded

as follows: a raw score of 1 (“strongly disagree”) was recoded to

−100, 2 to −50, 3 to 0, 4 to 50, and 5 (“strongly agree”) to 100,

eliminating the need for decimal points. The scoring of negatively

worded items was reversed. In interpreting CEQ results, a negative

value corresponds to disagreement with the questionnaire item

and a positive value to agreement with the item. Positive high

scores indicate high course quality as perceived by graduates. The

responses revealed a high positive overall CEQ score of 12, 050,

which indicated high course quality as perceived by respondents.

The CEQ is widely accepted as a reliable, verifiable, and useful

measure of the perceived course quality (Griffin et al., 2003).

On top of that, in order to gain a more fine grained

picture of students’ responses, individual questions

4, 5, 6, 7, 16, 17, 19, 20, 21, 22, 23 were analyzed. Questions 20 − 23

correspond to the learning objectives (Analyse, Design, Evaluate,

Apply), while the remaining ones correspond to items indicating

the level of students’ satisfaction/confidence (see Table 1). The

analysis was performed by estimating a 95% confidence interval

for the average score of each of these questions. Each interval was

constructed using the non-parametric bootstrap method (Efron

and Tibshirani, 1986). Figures 2, 3 show the obtained results,

Starting from Figure 2, questions 16, 17 examined whether the

course was overly theoretical or practical (respectively), so the fact

that they have both received a score of about 3, indicated that
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TABLE 1 A description of the questions included in the analysis.

Questions 1 2 3 4 5 Figure
Ref.

Student confidence and understanding

6. Please rate how confident do
you feel in applying the XAI
techniques you learned in your
own models

Not at all – I do not feel I can
apply any of the techniques I
learned to my models

Somewhat – I feel I can apply
most of the techniques I learned
to my models

Very – I feel I can apply all the
techniques I learned to my
models

Figure 2

7. Please rate how satisfied are
you from the diversity of XAI
techniques covered in the
course

Not at all – The techniques
were overly similar

Somewhat – The techniques
were somewhat diverse, but
there was significant overlap

Very – The techniques were
very diverse, and hadminimal

overlap

Figure 2

8. Please rate how much do you
feel your understanding of XAI
was benefited by the course

Not at all – I do not feel the
course helped me understand
XAI at all

Somewhat – I feel I now
understand some aspects of
XAI better

Very – I feel I now understand
many aspects of XAI better

Figure 2

9. Please rate how much do you
feel you have comprehended the
conceptual distinctions,
advantages, and disadvantages
of the XAI techniques covered
in the course

Not at all – I do not feel I have
comprehended any of these, for
any technique

Somewhat – I feel I understand
some of these, for some of the
techniques

Very – I feel I understand all of
these, for all the techniques

Figure 2

Course structure assessment

16. The course was overly
theoretical and abstract

Strongly Disagree – The course
was not theoretical at all

Neutral – It had some
theoretical aspects, but it was
not excessive

Strongly Agree – The course
was overly theoretical

Figure 2

17. The course was overly
practical

Strongly Disagree – The course
was not practical at all

Neutral – It had some practical
aspects, but it was not excessive

Strongly Agree – The course
was overly practical

Figure 2

19. Overall, I am satisfied with
this course

Strongly Disagree – I am not

satisfied at all with this course
Neutral – I am somewhat

satisfied with this course
Strongly Agree – I am satisfied

with this course
Figure 2

Learning objectives achievement

20. Analyse: Describe the
context of the machine learning
application and why
explainability would help, but
also scrutinize which kind of
explainability technique is
necessary.

Unsuccessful – The course did
not improvemy abilities to
analyse a problem

Somewhat successful – The
coursemoderately improved

my abilities to analyse a problem

Successful – The course
significantly improvedmy
abilities to analyse a problem

Figures 3, 4a

21.Design: Define the
implementation pipeline for the
project: provide a means to
clean the data, install and set up
one or more posthoc
explainability techniques
through a self-chosen set of
programming platforms.

Unsuccessful – The course did
not improvemy abilities to
design a pipeline for a problem

Somewhat successful – The
coursemoderately improved

my abilities to design a pipeline
for a problem

Successful – The course
significantly improvedmy
abilities to design a pipeline for
a problem

Figures 3, 4b

22. Evaluate: Critically reflect
on the results from such
techniques and suggest how it
helps the problem context.

Unsuccessful – The course did
not improvemy abilities to
evaluate the obtained results

Somewhat successful – The
coursemoderately improved

my abilities to evaluate the
obtained results

Successful – The course
significantly improvedmy
abilities to evaluate the obtained
results

Figures 3, 4c

23. Apply: Competently apply a
wide range of techniques and
tools, also knowing their
particular features and
drawbacks. Have the
foundations to understand new
and upcoming methods and
techniques.

Unsuccessful – The course did
not improvemy abilities to
apply or understand new
techniques

Somewhat successful – The
coursemoderately improved

my abilities to apply or
understand new techniques

Successful – The course
significantly improvedmy
abilities to apply or understand
new techniques

Figures 3, 4d

the course exhibited a nice balance between the two, not favoring

one over the other. The observed difference of about 0.5 could be

attributed to the fact that while all the lectures were comprised

of both theoretical and technical parts, none of the assignments

had theoretical exercises, which could be perceived as giving a

greater emphasis on the technical side, by the students. Among the

remaining items, question 4 received the lowest score (which was

still significantly better than average), so future implementations
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FIGURE 2

Student confidence and course content quality assessment

(Questions 4–9, 16–17, 19 from Table 1). Response scale: 1 =

Strongly Disagree/Not at all, 3 = Neutral/Somewhat, 5 = Strongly

Agree/Very confident.

FIGURE 3

Learning objectives achievement assessment (questions 20–23

from Table 1). Response scale: 1 = Unsuccessful, 3 = Somewhat

successful, 5 = Successful. Shows student self-assessment of

course e�ectiveness in meeting the four core learning objectives:

Analyse, Design, Evaluate, and Apply.

of the course could include more practical aspects that would

support students’ ability to apply taught XAI techniques in their

own models. Apart from that, all other questions received a

score significantly higher than 4 (as indicated by the limits of

the confidence intervals). This suggested high perceived course

effectiveness in building an overall understanding of XAI, while

it also indicated that students were satisfied by the diversity of

the XAI techniques covered in the course. It is worth noting

that question 19, which concerned the overall course satisfaction,

received an average score of more than 4.5, with the upper bound

of the corresponding confidence interval being very close to 5.

Moving on to Figure 3, all of the objectives received a high

score (significantly higher than 3), with Analyse having the highest

point estimate, 4.4, providing evidence of the students’ confidence

in deciding the appropriate XAI techniques for the problem at

hand. Both Design and Evaluate achieved a score of 4, suggesting

that students felt comfortable designing pipelines for explaining

a model and interpreting the final results. Finally, Apply had a

slightly lower average score, as well as a wider confidence interval,

implying there was greater variation in the corresponding scores

given by the students. In fact, to get an even more detailed

picture of the underlying distributions of scores, Figure 4 shows

a collection of barplots representing the relative frequency of

each. For all objectives, 4 was the most common score given

by students, which indicated their agreement with the statement

that the corresponding objective was met by the course. For the

Evaluate and Apply, there was a single student who gave a rating

of 2, but otherwise, ratings were mostly on the high end of the

spectrum. Having said that, this could be seen as evidence that

future implementations of the course would benefit by including

additional intermediate assignments, puttingmore emphasis on the

practical aspects of XAI.

To further assess the effectiveness of the course, an analysis of

the students’ performance on the final project was performed. Each

submission was evaluated based on the students’ ability to carry out

the pipeline shown in the class (data preprocessing, model training,

model explanation), as well as the quality of their arguments. Since

the project was open-ended, the correction guidelines were that

the code should run correctly, the pipeline should be executed

reasonably well, and the arguments should be substantial, following

the insights gathered from the explanations. Based on that, all

students were able to pass the course, demonstrating a sufficient

level of competence in performing the aforementioned tasks.

In more detail, about 26% of the students considered both

a transparent and a black-box model to address the selected

application, although there were no related instructions. This was

an indication that (at least a portion of the) students took away

the message that black-box models should be used only when

achieving significantly better performance than transparent ones.

However, since the course was focused on XAI, it was reasonable

that most of the students opted for considering just black-box

models. Furthermore, about 89% of the students used at least

3 XAI techniques, although 2 was enough to meet the project’s

requirements. This was an indication that students felt confident

to inspect a model from multiple angles, using techniques that

bring different insights. Among them, about 87% carried out a

comparison between importance scores coming from SHAP and

those coming from LIME (Ribeiro et al., 2016), which is another

popular XAI technique. This was evidence that students took

proactive measures to make sure that a feature’s importance was

robust. This was in tune with the course material, where it was

emphasized that due to the underlying approximations, many XAI

techniques suffer from stability issues. Finally, 15% of the students

received a borderline pass, due to the fact that although they

performed the pipeline adequately, when forming their arguments

in favor or against retaining a model, they underutilized the

obtained insights. Despite that, their arguments were substantial,

so they were sufficient to pass the course, however, they could

have been strengthened by taking into account all the available

information.

With respect to the qualitative part of the analysis, the open-

ended questions revealed specific aspects of the course that
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FIGURE 4

Detailed distribution of learning objectives achievement ratings (questions 20–23 from Table 1). Bar charts show the frequency distribution of

student responses for each learning objective: (a) Analyze: describing ML application context and XAI technique selection, (b) Design: defining

implementation pipelines, (c) Evaluate: critically reflecting on XAI results, (d) Apply: competently using XAI techniques and understanding new

methods.

were recognized as respondents’ favorites. Eleven respondents

answered the question “what was your favorite aspect of the

course?” Tutorials were mentioned by five respondents. Students

appreciated being able to try out the theoretical course aspects

in a practical way using the provided workbooks. For example,

S-5 said: “trying out the techniques in the workbooks”. S-9 said:

“practical application in lab books”. S-7 said: “the workbooks

and assignment questions. They had the right mix of theory and

practical aspects”. Five respondents mentioned recorded lectures

and tutorials. Students appreciated being able to discuss the course

material in the online tutorials and lectures. S-1 put it: “the

discussion and Knowledge exchange during Lectures and Tutorial

classes”. S-2 said: “the meaningful discussions and open-ended

questions”. S-8 said: “the ambience of the teams’ sessions is done

with a “brainstorming” approach which gives us the opportunity to

discuss ideas, bring questions from the real world and hear different

opinions”. Respondents also mentioned open-ended questions,

sufficient examples, and assignment questions. Overall responses

were very positive, for example, S-2 said: “I was very impressed with

the structure and delivery of the material...It [the course] made me

not only appreciate the XAI fundamentals but the whole approach

toward applying ML algorithms...I consider myself very lucky for

selecting this course and I believe it has helped me tremendously in

my understanding of ML projects.” S-6 said: “I have understood why

the area of XAI techniques has gotten attention and is important

to make AI / ML available for general use in the Data Analytics

Project.” S-8 reflected: “The topic of XAI it’s very interesting! Thank

you for including it in the program and giving us exposure to these

approaches.”

5 Discussion and implications

Overall, the survey results supported the claim that the course

material and its delivery can be highly effective in teaching

XAI techniques. Analysis of individual ratings showed that this

course was especially useful in promoting understanding of a

diverse array of XAI techniques, and their conceptual distinctions,

advantages, and disadvantages. The respondents’ answers to open-

ended questions suggested that interactive and practical aspects of

the course were important in the successful process of translating

XAI theory into practical skills. The open questions and codebooks

were also important parts of the course, especially in combination

with the ensuing discussions. The survey results also suggested

that the course can be effective in teaching XAI techniques to

individuals having no or minimal experience and knowledge about

XAI.

Our experience suggests several key principles for successful

XAI education. First, adopt a narrative-driven approach that

organizes content around explanation types and stakeholder

questions rather than chronological technique development. This

helps students understand when and why to apply specific

techniques rather than simply learning isolated tools. Second,

emphasize multi-disciplinary connections throughout the course.

Link SHAP to game theory, counterfactuals to philosophy and

causal inference, and all techniques to ethical AI considerations.

This broader context helps students appreciate XAI as an

interdisciplinary field rather than a purely technical domain.

Third, maintain an application-focused assessment philosophy

that prioritizes interpretation and practical application over
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mathematical derivations. While theoretical understanding is

important, the primary goal should be developing competent

practitioners who can appropriately deploy XAI techniques in

real-world contexts.

Students’ performance and forum questions suggested that,

besides the technical aspects, such as consideration of Python

libraries updates, the course could be improved by providing more

support for the output analysis and evaluation aspect of the XAI.

Most of the students found this part most challenging. This was also

reflected in a slightly lower overall score of the evaluation learning

objective, i.e., the ability to critically reflect on the results from the

XAI techniques and suggest how it helps the given context. This

could be because the selected datasets were not relevant to students’

professional or research interests, however, it could also mean that

more practical exercises focused on the analysis part should be

included in the course. Potentially, more practice analyzing XAI

outputs could lead to a better understanding.

To strengthen XAI output interpretation skills, we recommend

implementing structured interpretation exercises within each

tutorial. These include: (1) Guided Analysis Templates that

provide step-by-step frameworks for interpreting SHAP plots,

counterfactual results, and anchor rules, with explicit questions like

“What does a negative SHAP value indicate about this feature’s

contribution?” and “How would you explain this counterfactual

change to a loan officer?” (2) Comparative Interpretation

Assignments, where students analyse the same dataset using

two different XAI techniques and explain discrepancies in their

insights; and (3) Error Analysis Exercises, where students are given

intentionally problematic XAI outputs (e.g., SHAP explanations

from biased models) and must identify potential issues and

limitations. Additionally, we suggest incorporating interpretation

checkpoints throughout tutorials where students must pause

and explain what specific visualizations or outputs mean before

proceeding to the next step.

Finally, build flexibility into the framework to accommodate

different instructor preferences and student backgrounds. The

modular structure allows technique substitution (e.g., replacing

Anchors with LIME) while maintaining the overall pedagogical

approach. Begin each course by establishing the transparent versus

opaque model distinction to motivate XAI necessity, use consistent

datasets across techniques to enable meaningful comparisons, and

require final projects that demonstrate integration of multiple

techniques for comprehensive model evaluation. This framework

emphasizes developing principled understanding that will transfer

to new XAI techniques as the field evolves, while ensuring students

gain practical experience with current state-of-the-art methods.

5.1 Limitations

The scores of the questionnaire were self-reported and reflected

the subjective evaluation of respondents’ own understanding of the

course material. The high evaluations of the course effectiveness

were reflected in the objective assignment performances. Although

this course has been delivered to data science experts working

within the banking sector, in this chapter, only the students’

responses were analyzed. This limitation prevented evaluation

of the generalizability of the course effectiveness across different

settings and expertise levels. In the future, further surveys will be

conducted to assess the effectiveness of the course for the more

experienced data science and ML experts strictly working in a

professional setting.

6 Conclusions

This work presents an approach for structuring a course on

explainability in machine learning. The aim of the course was

to provide a formal introduction to the field of explainability.

Although advances in XAI come at a rapid pace, the fundamental

ideas and objectives are likely to remain the same. The course was

primarily designed for industry professionals, data scientists, and

students with a programming and data science background. One

of the main drivers governing the development of the material

was to address the reported misuse of XAI techniques in practical

applications.

To this end, a combination of diverse XAI techniques was

included in the material, focusing on conceptual details and

distinctions between different explanation types. Finally, most of

the lectures were accompanied by a workbook demonstrating the

function and utility of the corresponding XAI technique, in order

to allow students to gain some hands-on experience. Students’

feedback and performance provided strong evidence that the course

was effective in meeting its learning objectives.
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