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1 Introduction

Engineering education faces persistent challenges stemming from prevalent

misconceptions that prevent students from deeply grasping fundamental scientific

principles (Ammar et al., 2024; Ferreira et al., 2024; Ivanov et al., 2024; Minichiello and

Caldwell, 2021). Three fallacies particularly undermine educational quality: the perceived

simplicity of basic sciences (Büdenbender-Kuklinski et al., 2024; Eleri et al., 2007; Galbraith

and Haines, 2000; Greet et al., 2022; Lee et al., 2021; Omaish et al., 2021), the assumption

that any engineering graduate is inherently qualified to teach foundational subjects

(Mohammadpour and Maroofi, 2023; Ramolula and Nkoane, 2024; Schiering et al.,

2023; Zhumabay et al., 2024) and the belief that each engineering specialization requires

overly customized basic curricula (Cardella, 2008; Davis et al., 2017; Ferreira et al., 2024;

Kent, 2003). These misconceptions diminish educational rigor, compromise institutional

credibility, and impair graduates’ ability to navigate complex professional scenarios.

The first misconception stems from oversimplified perceptions of core sciences, such as

mathematics and physics. Often perpetuated by superficial teaching methods prioritizing

quick problem-solving over conceptual understanding (Li and Schoenfeld, 2019), this

approach discourages deeper engagement with fundamental concepts. Educational

research consistently highlights that solid grounding in basic sciences correlates strongly

with enhanced analytical skills and creativity in engineering problem-solving (Suherman

and Vidákovich, 2022; Tariq et al., 2025).

Secondly, institutions widely believe that an engineering degree alone qualifies

one to effectively teach foundational scientific courses (Artigue, 2020; Scott, 1908).

However, contemporary educational research emphasizes the necessity of specialized

pedagogical skills alongside subject-matter expertise (Zhang and Tian, 2024). Without

these pedagogical competencies, instructors struggle to accommodate diverse learning

styles, promote meaningful knowledge transfer, and maintain student engagement.

Consequently, ineffective teaching in foundational courses fosters superficial study habits

and undermines student retention and long-term performance.

The third misconception argues that engineering disciplines require highly tailored

basic science curricula (Van den Beemt et al., 2020). Although discipline-specific relevance

is beneficial, overly fragmented curricula obscure the universal nature of fundamental

scientific principles. Integrating chemistry, calculus, and physics interdisciplinary

educational frameworks produces graduates more capable of innovatively applying their

knowledge across varied engineering contexts (Passow and Passow, 2017; Carr et al., 1995).
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2 The fallacy of the simplicity of basic
sciences

A persistent misconception within engineering education is

the misguided assumption that foundational disciplines such

as mathematics, physics, and chemistry can be taught as

if they inherently lacked complexity, focusing narrowly on

technical aspects and neglecting broader contextual and integrative

perspectives. Empirical evidence from classroom studies in Asia

and Europe (Saha et al., 2024; Soeharto and Csapó, 2021).

demonstrates that when these subjects are reduced to procedural

exercises, students often fail to develop transferable problem-

solving skills. Similarly, comparative curriculum analyses in Africa

and Latin America (Bahroun et al., 2023; Mhlongo et al., 2023;

Shimizu and Vithal, 2023), reveal that simplified, rapid-progression

approaches correlate with weaker long-term conceptual retention.

Together, these findings indicate that presenting basic sciences as

merely technical undermines students’ professional competency.

Learners exposed early to diluted content may wrongly assume

that mastery requires minimal intellectual effort. Traditional

assessments further reinforce this problem, as they frequently

privilege short-term memorization over sustained analytical

reasoning (Bahroun et al., 2023; Vlachopoulos and Makri, 2024).

The consequences of this misconception are well-documented.

Longitudinal studies on engineering performance (Meylani, 2024;

Zhang et al., 2019). show that students unprepared for advanced

coursework report frustration, lower achievement, and declining

motivation. Many resort to superficial shortcuts, weakening their

conceptual base. The persistence of the “natural genius” myth,

where success in math and science is perceived as dependent on

innate talent, exacerbates the problem (Nicol andMacfarlane-Dick,

2006; Asbury et al., 2023), Psychological research into student

mindsets confirms that those who do not view themselves as

“naturally talented” disengage earlier and avoid sustained effort,

despite evidence that true mastery arises from disciplined practice,

systematic problem-solving, and repeated application of theoretical

concepts (Shaidullina et al., 2023; Subramaniam et al., 2020).

From an instructional perspective, this misconception creates

dual challenges: educators must manage students’ inadequate

preparation while resisting institutional pressures to lower

academic standards. If rigor is reduced to align with student or

administrative expectations, learners are left underprepared for

advanced topics (Daun et al., 2023; MacDonald et al., 2022), Cross-

cultural research also indicates variation: while in Europe students

often face highly standardized early science curricula, in parts

of Latin America and Africa fragmentation and underfunding

contribute to oversimplified instruction (Soeharto, 2019). In both

contexts, students attribute difficulties with complex material to

personal deficiencies rather than recognizing shortcomings in prior

preparation, eroding appreciation for the pivotal role of basic

sciences in engineering.

Addressing this fallacy demands robust pedagogical strategies

emphasizing conceptual depth. For instance, problem-based

learning (PBL) immerses students in realistic scenarios, compelling

meaningful application of core concepts (Mutanga, 2024; Virk et al.,

2022). Active learning encourages direct engagement with proofs,

experiments, and logical reasoning (Deslauriers et al., 2019; Dochy

et al., 2003), fostering analytical thinking beyondmemorization (du

Plooy et al., 2024; Wani and Hussian, 2024). Socratic questioning

enhances critical reflection (Fakour and Imani, 2025), and

digital simulations vividly demonstrate foundational principles’

complexity and relevance (Kefalis et al., 2025).

Institutionally, clear commitments to excellence in

foundational science education—through rigorous curricula,

thoughtful assessments, and extensive faculty pedagogical

training—are essential. Overcoming this fallacy requires

fostering a culture prioritizing depth, rigor, and sustained

engagement as key elements of engineering preparation, ultimately

equipping graduates for interdisciplinary collaboration and

advanced problem-solving.

3 The fallacy of universal competence
in teaching basic sciences

Another pervasive misconception in engineering education is

that engineering degrees inherently qualify individuals to teach

foundational scientific subjects effectively (Jeschke et al., 2021;

Stone, 2014). While disciplinary expertise is indispensable, this

assumption overlooks the specialized pedagogical competencies

required to foster deep conceptual understanding. Comparative

case studies from European universities (Goyibova et al., 2025)

show that technical proficiency without pedagogical training often

results in fragmented instruction, while North American research

emphasizes that pedagogical expertise strongly correlates with

student engagement and retention in basic sciences. Technical

mastery alone does not prepare instructors to structure content

systematically, anticipate misconceptions, or apply varied teaching

methodologies tailored to diverse learning needs (Borrego and

Henderson, 2014; Borrego et al., 2014).

Institutional practices often exacerbate this issue. Faculty

workload policies typically mandate fixed instructional hours (Al

Saeed, 2020), prompting administrators to assign mathematics,

physics, and chemistry courses to engineers based solely on

disciplinary background. In many institutions—particularly in

Latin America and parts of Asia—these foundational subjects at

the undergraduate level are taught by instructors holding only

engineering or master’s degrees, without doctoral qualifications

(PhD). This allocation overlooks the critical difference between

content expertise and pedagogical training (Kim and Ko, 2020;

Sarkar et al., 2024). Without formal preparation in areas such

as instructional design, active learning, or assessment strategies,

even well-intentioned instructors may adopt teaching practices that

inadvertently hinder conceptual comprehension.

Cultural attitudes within engineering schools further

perpetuate this issue. In environments where technical expertise

is prioritized over teaching quality, pedagogy is relegated to a

secondary role (Mohamed et al., 2023; Mokhets’engoane and

Pallai, 2022). Students exposed to poorly structured instruction

often attribute difficulties in mastering foundational sciences to

personal inadequacy, rather than recognizing flaws in instructional

design. Empirical evidence from South African andMiddle Eastern

universities (Juwarti and Octafian, 2025; Solomon and Du Plessis,

2023) confirms that this dynamic contributes to disengagement
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and negative perceptions of these courses. Over time, such patterns

undermine student confidence and compromise their readiness for

advanced engineering coursework.

The implications extend beyond student outcomes, influencing

institutional credibility and professional reputation. Outcome-

based education frameworks highlight employers’ concerns when

graduates lack essential problem-solving skills, despite passing

foundational courses. Similarly, prospective students and industry

partners may question program quality when critical courses are

led by instructors with limited pedagogical preparation. Institutions

also risk higher faculty turnover, as underprepared instructors may

feel unsupported or undervalued in their teaching roles.

Addressing this fallacy requires treating teaching as a

specialized skill supported by structured pedagogical training.

Evidence-based models include: (i) Formal certification

programs integrated into graduate education, ensuring future

faculty gain grounding in instructional design and learning

psychology. (ii) Mentorship systems pairing novice instructors

with experienced educators, providing ongoing guidance and

feedback. (iii)Professional development workshops focused on

evidence-based teaching strategies, digital learning tools, and

assessment practices. And (iv) Peer observation and reflective

teaching portfolios, which foster continuous improvement.

Cross-national comparisons suggest that structured

certification models, like those in parts of Europe, or mentorship-

based systems, common in North American institutions, represent

particularly effective pathways for enhancing teaching quality.

Incorporating such models into institutional policy would foster a

culture where pedagogical expertise is valued alongside technical

mastery, ensuring that foundational sciences are taught in ways

that empower, rather than discourage, future engineers.

4 The fallacy of over-specializing basic
sciences for engineering disciplines

A commonly held assumption in engineering education is that

foundational subjects such as mathematics, physics, and chemistry

must be highly tailored to each engineering discipline (Perdigones

et al., 2014; Winstone et al., 2017), Proponents argue that aligning

content with specific professional contexts improves relevance

and engagement (Mpuangnan and Ntombela, 2024). Case-based

studies from South Africa and Europe, however, indicate that

while students initially value contextualized examples, excessive

specialization fragments their training and reduces the transferable

skills required in interdisciplinary engineering practice.

Educational institutions frequently adopt specialized curricula

to mirror industry-specific needs. While contextualization has

benefits, over-specialization compromises coherence, as students

may complete narrowly focused courses yet lack the analytical

flexibility necessary for complex problem-solving. Research on

program outcomes in the UK and Asia confirms that graduates

from such programs are less adaptable to multidisciplinary work

environments (Bradberry and De Maio, 2019; Ming et al., 2023).

Early specialization also risks limiting creativity and

innovation. Innovation studies emphasize that major engineering

breakthroughs often emerge at disciplinary intersections (Cropley,

2015), suggesting that restricting exposure to broad scientific

principles undermines students’ ability to synthesize knowledge.

Overly compartmentalized foundational courses discourage

recognition of conceptual links across disciplines, stifling

integrative thinking.

Another consequence is institutional inefficiency. Comparative

evaluations of European and Asian universities (Grimus,

2020; Hadisaputra et al., 2024). show that duplicating

foundational courses across departments—each with different

curricula, pedagogical styles, and grading standards—produces

inconsistencies that erode institutional credibility. Students

from different programs graduate with uneven preparation,

undermining cohesion and shared academic rigor.

Narrowly defined curricula also fail to keep pace with rapid

technological change. Recent research highlights that emerging

engineering domains—such as smart grids, bio-inspired systems,

and sustainable energy—demand interdisciplinary collaboration

and adaptability (Nwulu et al., 2023). Students trained in overly

specialized courses struggle to reposition their knowledge when

facing new paradigms, leaving them less competitive in dynamic

labor markets.

Addressing this fallacy requires a balanced model:

i. Integrated foundational curricula delivered through

centralized oversight to maintain coherence across programs

(Harden, 2000; Henderson et al., 2011).

ii. Contextualized applications through interdisciplinary

projects and case studies, allowing relevance without

sacrificing breadth.

iii. Shared laboratory experiences where students from different

engineering fields collaboratively apply fundamental

principles, fostering cross-disciplinary dialogue.

iv. Continuous curriculum reviews involving industry and

academic stakeholders to ensure foundational content

remains relevant yet integrative.

Cross-national experiences suggest that hybrid models—

where a strong common foundation is complemented by

discipline-specific modules—maximize both coherence and

contextual relevance. Such approaches preserve the adaptability

and creativity essential for graduates to thrive in an era of rapid

technological convergence.

5 Discussion

5.1 Interpreting the evidence across the
three fallacies

The analysis of the three fallacies indicates that weaknesses

in how foundational sciences are framed (Fallacy 1), who teaches

them (Fallacy 2), and how curricula are structured (Fallacy

3) operate as mutually reinforcing mechanisms that constrain

students’ development of enduring conceptual understanding and

transferable problem-solving skills. When mathematics, physics,

and chemistry are presented as procedurally simple or narrowly

technical, students tend to adopt surface strategies that improve

short-term scores but erode long-term retention and higher-order

reasoning (Freeman et al., 2014; Kozanitis and Nenciovici, 2023).
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By contrast, programs that organize instruction around inquiry,

problem framing, and authentic application showmeasurable gains

in conceptual change and persistence in engineering pathways (Yu

and Guo, 2023; Doulougeri et al., 2024; Banack and Tembrevilla,

2024). These patterns suggest that the issue is not the inherent

complexity of the sciences but the didactic models and assessment

regimes that shape how students engage with them.

5.2 Contextualization with prior literature:
convergences and tensions

Our reading aligns with meta-analytic and systematic-review

evidence showing robust advantages of active and problem-

/challenge-based pedagogies over traditional lecturing in STEM

(Freeman et al., 2014; Kozanitis and Nenciovici, 2023; Yu and

Guo, 2023). At the same time, the literature also cautions

that not all implementations yield uniform effects; design

quality, assessment alignment, and faculty preparation moderate

outcomes (Wei et al., 2024; Melcher et al., 2025). In curricular

organization, recent synthesis work comparing subject-based

vs. integrated approaches finds no universal winner; instead,

coherence and evidence of learning design appear decisive,

and the current evidence base remains uneven in quality

(Kreijkes and Greatorex, 2024). For interdisciplinarity, empirical

studies indicate that competencies valued in contemporary

engineering—systems thinking, collaborative problem-solving,

reflective practice—are strengthened when foundational science is

taught within integrative contexts, provided that core conceptual

rigor is preserved (Liu et al., 2023; Xu, 2024). Finally, on

the motivational side, research suggests that instructors’ explicit

messaging and pedagogy matter: growth-mindset-supportive

practices can help close performance gaps for first-generation

students, though effects vary by context and implementation

(Canning et al., 2024; Chao and Wright, 2025).

5.3 Theoretical and practical contributions

First, the argument reframes “simplicity” not as an attribute

of the disciplines but as an instructional artifact arising from

decontextualized tasks and misaligned assessment. The synthesis

integrates PCK and constructive alignment to explain why

surface-oriented assessment regimes can normalize the perception

of simplicity even when content is inherently complex (Biggs,

1996; Shulman, 1986; Melcher et al., 2025). Second, it specifies

interdisciplinarity as an outcome of curricular governance:

centralizing foundational courses while embedding cross-

disciplinary projects yields a dual pathway that protects rigor and

cultivates transfer (Kreijkes and Greatorex, 2024; Liu et al., 2023).

Three design implications emerge. (a) Assessment redesign:

move beyond recall-heavy tests to performance tasks, concept

inventories, and open-ended problem sets that reward reasoning

and model-based thinking (Melcher et al., 2025; Pereira et al.,

2024). (b) Pedagogical preparation: implement structured

pathways—formal teaching certificates, mentored onboarding,

iterative peer observation, and targeted PD on active learning and

equitable practices—which empirical reviews link to improved

learning and retention in STEM (Rehman et al., 2024; Kim

and You, 2025; Johnson-Ojeda et al., 2025). (c) Curricular

architecture: adopt a hybrid model—strong common core

under centralized oversight plus discipline-relevant applications

through interdisciplinary projects and labs—shown to strengthen

adaptability without eroding conceptual depth (Kreijkes and

Greatorex, 2024; Doulougeri et al., 2024; Xu, 2024).

5.4 Limitations

Two limitations should temper interpretation. First, much of

the empirical base aggregates across institutional and cultural

contexts; effect sizes for active, problem-, and challenge-based

learning vary with class size, instructor expertise, and assessment

alignment (Wei et al., 2024; Kozanitis and Nenciovici, 2023).

Second, reviews comparing integrated and subject-based curricula

report heterogeneous implementations and, in several cases,

low methodological quality, which constrains definitive claims

about superiority (Kreijkes and Greatorex, 2024). These caveats

motivate cautious generalization and emphasize the need for

local evaluation.

5.5 Implications for future research

Future work should (i) conduct multi-site randomized or

quasi-experimental studies linking faculty development formats

(certificate vs. mentored practice vs. communities of practice) to

student conceptual outcomes in first-year math/physics/chemistry;

(ii) test assessment alignment interventions that explicitly target

deep-learning indicators; and (iii) evaluate hybrid curricular

governance models (centralized core+ embedded interdisciplinary

projects) using longitudinal measures of transfer, creativity,

and employability (Zhan and Yan, 2025; Fleming et al., 2024;

Abuelmaatti and Vinokur, 2025). Cross-regional replication (e.g.,

Latin America, Africa, Asia, Europe) is particularly important to

map contextual moderators (Liu et al., 2023; Smith and Doe,

2024).

To avoid overstatement, this discussion stops short of claiming

universal dominance of any single pedagogy or curriculum form.

Instead, it argues that rigorously taught foundational sciences,

supported by trained instructors and aligned assessments, and

embedded in coherent, hybrid curricular structures are consistently

associated with better learning, retention, and adaptability across

contexts—conditional on quality of implementation and local

constraints (Freeman et al., 2014; Yu and Guo, 2023; Kreijkes and

Greatorex, 2024). This position is congruent with the paper’s aims,

the cited evidence, and the theoretical frame linking PCK and

constructive alignment to interdisciplinary competence.
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