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1 Introduction

Engineering education faces persistent challenges stemming from prevalent
misconceptions that prevent students from deeply grasping fundamental scientific
principles (Ammar et al., 2024; Ferreira et al., 2024; Ivanov et al., 2024; Minichiello and
Caldwell, 2021). Three fallacies particularly undermine educational quality: the perceived
simplicity of basic sciences (Biidenbender-Kuklinski et al., 2024; Eleri et al., 2007; Galbraith
and Haines, 2000; Greet et al., 2022; Lee et al., 2021; Omaish et al., 2021), the assumption
that any engineering graduate is inherently qualified to teach foundational subjects
(Mohammadpour and Maroofi, 2023; Ramolula and Nkoane, 2024; Schiering et al.,
2023; Zhumabay et al., 2024) and the belief that each engineering specialization requires
overly customized basic curricula (Cardella, 2008; Davis et al., 2017; Ferreira et al., 2024;
Kent, 2003). These misconceptions diminish educational rigor, compromise institutional
credibility, and impair graduates’ ability to navigate complex professional scenarios.

The first misconception stems from oversimplified perceptions of core sciences, such as
mathematics and physics. Often perpetuated by superficial teaching methods prioritizing
quick problem-solving over conceptual understanding (Li and Schoenfeld, 2019), this
approach discourages deeper engagement with fundamental concepts. Educational
research consistently highlights that solid grounding in basic sciences correlates strongly
with enhanced analytical skills and creativity in engineering problem-solving (Suherman
and Vidakovich, 2022; Tariq et al., 2025).

Secondly, institutions widely believe that an engineering degree alone qualifies
one to effectively teach foundational scientific courses (Artigue, 2020; Scott, 1908).
However, contemporary educational research emphasizes the necessity of specialized
pedagogical skills alongside subject-matter expertise (Zhang and Tian, 2024). Without
these pedagogical competencies, instructors struggle to accommodate diverse learning
styles, promote meaningful knowledge transfer, and maintain student engagement.
Consequently, ineffective teaching in foundational courses fosters superficial study habits
and undermines student retention and long-term performance.

The third misconception argues that engineering disciplines require highly tailored
basic science curricula (Van den Beemt et al., 2020). Although discipline-specific relevance
is beneficial, overly fragmented curricula obscure the universal nature of fundamental
scientific principles. Integrating chemistry, calculus, and physics interdisciplinary
educational frameworks produces graduates more capable of innovatively applying their
knowledge across varied engineering contexts (Passow and Passow, 2017; Carr et al., 1995).
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2 The fallacy of the simplicity of basic
sciences

A persistent misconception within engineering education is
the misguided assumption that foundational disciplines such
as mathematics, physics, and chemistry can be taught as
if they inherently lacked complexity, focusing narrowly on
technical aspects and neglecting broader contextual and integrative
perspectives. Empirical evidence from classroom studies in Asia
and Europe (Saha et al, 2024; Soeharto and Csapd, 2021).
demonstrates that when these subjects are reduced to procedural
exercises, students often fail to develop transferable problem-
solving skills. Similarly, comparative curriculum analyses in Africa
and Latin America (Bahroun et al., 2023; Mhlongo et al., 2023;
Shimizu and Vithal, 2023), reveal that simplified, rapid-progression
approaches correlate with weaker long-term conceptual retention.
Together, these findings indicate that presenting basic sciences as
merely technical undermines students’ professional competency.
Learners exposed early to diluted content may wrongly assume
that mastery requires minimal intellectual effort. Traditional
assessments further reinforce this problem, as they frequently
privilege short-term memorization over sustained analytical
reasoning (Bahroun et al., 2023; Vlachopoulos and Makri, 2024).

The consequences of this misconception are well-documented.
Longitudinal studies on engineering performance (Meylani, 2024;
Zhang et al.,, 2019). show that students unprepared for advanced
coursework report frustration, lower achievement, and declining
motivation. Many resort to superficial shortcuts, weakening their
conceptual base. The persistence of the “natural genius” myth,
where success in math and science is perceived as dependent on
innate talent, exacerbates the problem (Nicol and Macfarlane-Dick,
2006; Asbury et al, 2023), Psychological research into student
mindsets confirms that those who do not view themselves as
“naturally talented” disengage earlier and avoid sustained effort,
despite evidence that true mastery arises from disciplined practice,
systematic problem-solving, and repeated application of theoretical
concepts (Shaidullina et al., 2023; Subramaniam et al., 2020).

From an instructional perspective, this misconception creates
dual challenges: educators must manage students’ inadequate
preparation while resisting institutional pressures to lower
academic standards. If rigor is reduced to align with student or
administrative expectations, learners are left underprepared for
advanced topics (Daun et al., 2023; MacDonald et al., 2022), Cross-
cultural research also indicates variation: while in Europe students
often face highly standardized early science curricula, in parts
of Latin America and Africa fragmentation and underfunding
contribute to oversimplified instruction (Soeharto, 2019). In both
contexts, students attribute difficulties with complex material to
personal deficiencies rather than recognizing shortcomings in prior
preparation, eroding appreciation for the pivotal role of basic
sciences in engineering.

Addressing this fallacy demands robust pedagogical strategies
emphasizing conceptual depth. For instance, problem-based
learning (PBL) immerses students in realistic scenarios, compelling
meaningful application of core concepts (Mutanga, 2024; Virk et al.,
2022). Active learning encourages direct engagement with proofs,
experiments, and logical reasoning (Deslauriers et al., 2019; Dochy
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etal., 2003), fostering analytical thinking beyond memorization (du
Plooy et al., 2024; Wani and Hussian, 2024). Socratic questioning
enhances critical reflection (Fakour and Imani, 2025), and
digital simulations vividly demonstrate foundational principles’
complexity and relevance (Kefalis et al., 2025).

Institutionally, clear commitments to excellence in
foundational science education—through rigorous curricula,
thoughtful

training—are

assessments, and extensive faculty pedagogical

essential. Overcoming this fallacy requires
fostering a culture prioritizing depth, rigor, and sustained
engagement as key elements of engineering preparation, ultimately
equipping graduates for interdisciplinary collaboration and

advanced problem-solving.

3 The fallacy of universal competence
in teaching basic sciences

Another pervasive misconception in engineering education is
that engineering degrees inherently qualify individuals to teach
foundational scientific subjects effectively (Jeschke et al., 2021;
Stone, 2014). While disciplinary expertise is indispensable, this
assumption overlooks the specialized pedagogical competencies
required to foster deep conceptual understanding. Comparative
case studies from European universities (Goyibova et al., 2025)
show that technical proficiency without pedagogical training often
results in fragmented instruction, while North American research
emphasizes that pedagogical expertise strongly correlates with
student engagement and retention in basic sciences. Technical
mastery alone does not prepare instructors to structure content
systematically, anticipate misconceptions, or apply varied teaching
methodologies tailored to diverse learning needs (Borrego and
Henderson, 2014; Borrego et al., 2014).

Institutional practices often exacerbate this issue. Faculty
workload policies typically mandate fixed instructional hours (Al
Saeed, 2020), prompting administrators to assign mathematics,
physics, and chemistry courses to engineers based solely on
disciplinary background. In many institutions—particularly in
Latin America and parts of Asia—these foundational subjects at
the undergraduate level are taught by instructors holding only
engineering or master’s degrees, without doctoral qualifications
(PhD). This allocation overlooks the critical difference between
content expertise and pedagogical training (Kim and Ko, 2020;
Sarkar et al., 2024). Without formal preparation in areas such
as instructional design, active learning, or assessment strategies,
even well-intentioned instructors may adopt teaching practices that
inadvertently hinder conceptual comprehension.

Cultural attitudes further
perpetuate this issue. In environments where technical expertise

within engineering schools
is prioritized over teaching quality, pedagogy is relegated to a
secondary role (Mohamed et al, 2023; Mokhetsengoane and
Pallai, 2022). Students exposed to poorly structured instruction
often attribute difficulties in mastering foundational sciences to
personal inadequacy, rather than recognizing flaws in instructional
design. Empirical evidence from South African and Middle Eastern
universities (Juwarti and Octafian, 2025; Solomon and Du Plessis,
2023) confirms that this dynamic contributes to disengagement
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and negative perceptions of these courses. Over time, such patterns
undermine student confidence and compromise their readiness for
advanced engineering coursework.

The implications extend beyond student outcomes, influencing
institutional credibility and professional reputation. Outcome-
based education frameworks highlight employers’ concerns when
graduates lack essential problem-solving skills, despite passing
foundational courses. Similarly, prospective students and industry
partners may question program quality when critical courses are
led by instructors with limited pedagogical preparation. Institutions
also risk higher faculty turnover, as underprepared instructors may
feel unsupported or undervalued in their teaching roles.

Addressing this fallacy requires treating teaching as a
specialized skill supported by structured pedagogical training.
Evidence-based models include: (i) Formal certification
programs integrated into graduate education, ensuring future
faculty gain grounding in instructional design and learning
psychology. (ii) Mentorship systems pairing novice instructors
with experienced educators, providing ongoing guidance and
feedback. (iii)Professional development workshops focused on
evidence-based teaching strategies, digital learning tools, and
assessment practices. And (iv) Peer observation and reflective
teaching portfolios, which foster continuous improvement.
that

certification models, like those in parts of Europe, or mentorship-

Cross-national ~ comparisons  suggest structured
based systems, common in North American institutions, represent
particularly effective pathways for enhancing teaching quality.
Incorporating such models into institutional policy would foster a
culture where pedagogical expertise is valued alongside technical
mastery, ensuring that foundational sciences are taught in ways

that empower, rather than discourage, future engineers.

4 The fallacy of over-specializing basic
sciences for engineering disciplines

A commonly held assumption in engineering education is that
foundational subjects such as mathematics, physics, and chemistry
must be highly tailored to each engineering discipline (Perdigones
et al., 2014; Winstone et al., 2017), Proponents argue that aligning
content with specific professional contexts improves relevance
and engagement (Mpuangnan and Ntombela, 2024). Case-based
studies from South Africa and Europe, however, indicate that
while students initially value contextualized examples, excessive
specialization fragments their training and reduces the transferable
skills required in interdisciplinary engineering practice.

Educational institutions frequently adopt specialized curricula
to mirror industry-specific needs. While contextualization has
benefits, over-specialization compromises coherence, as students
may complete narrowly focused courses yet lack the analytical
flexibility necessary for complex problem-solving. Research on
program outcomes in the UK and Asia confirms that graduates
from such programs are less adaptable to multidisciplinary work
environments (Bradberry and De Maio, 2019; Ming et al., 2023).

Early specialization also risks limiting creativity and
innovation. Innovation studies emphasize that major engineering
breakthroughs often emerge at disciplinary intersections (Cropley,

2015), suggesting that restricting exposure to broad scientific
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principles undermines students’ ability to synthesize knowledge.

Overly compartmentalized foundational courses discourage
recognition of conceptual links across disciplines, stifling
integrative thinking.

Another consequence is institutional inefficiency. Comparative
evaluations of European and Asian universities (Grimus,
2020; 2024). that

foundational courses across departments—each with different

Hadisaputra et al, show duplicating
curricula, pedagogical styles, and grading standards—produces
inconsistencies that erode institutional credibility. Students
from different programs graduate with uneven preparation,
undermining cohesion and shared academic rigor.

Narrowly defined curricula also fail to keep pace with rapid
technological change. Recent research highlights that emerging
engineering domains—such as smart grids, bio-inspired systems,
and sustainable energy—demand interdisciplinary collaboration
and adaptability (Nwulu et al., 2023). Students trained in overly
specialized courses struggle to reposition their knowledge when
facing new paradigms, leaving them less competitive in dynamic
labor markets.

Addressing this fallacy requires a balanced model:

i. Integrated foundational curricula delivered through
centralized oversight to maintain coherence across programs
(Harden, 2000; Henderson et al., 2011).

ii. Contextualized applications through interdisciplinary
projects and case studies, allowing relevance without
sacrificing breadth.

iii. Shared laboratory experiences where students from different
engineering fields collaboratively apply fundamental
principles, fostering cross-disciplinary dialogue.

iv. Continuous curriculum reviews involving industry and

academic stakeholders to ensure foundational content

remains relevant yet integrative.

Cross-national experiences suggest that hybrid models—
where a strong common foundation is complemented by
discipline-specific modules—maximize both coherence and
contextual relevance. Such approaches preserve the adaptability
and creativity essential for graduates to thrive in an era of rapid
technological convergence.

5 Discussion

5.1 Interpreting the evidence across the
three fallacies

The analysis of the three fallacies indicates that weaknesses
in how foundational sciences are framed (Fallacy 1), who teaches
them (Fallacy 2), and how curricula are structured (Fallacy
3) operate as mutually reinforcing mechanisms that constrain
students’ development of enduring conceptual understanding and
transferable problem-solving skills. When mathematics, physics,
and chemistry are presented as procedurally simple or narrowly
technical, students tend to adopt surface strategies that improve
short-term scores but erode long-term retention and higher-order
reasoning (Freeman et al., 2014; Kozanitis and Nenciovici, 2023).
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By contrast, programs that organize instruction around inquiry,
problem framing, and authentic application show measurable gains
in conceptual change and persistence in engineering pathways (Yu
and Guo, 2023; Doulougeri et al., 2024; Banack and Tembrevilla,
2024). These patterns suggest that the issue is not the inherent
complexity of the sciences but the didactic models and assessment
regimes that shape how students engage with them.

5.2 Contextualization with prior literature:
convergences and tensions

Our reading aligns with meta-analytic and systematic-review
evidence showing robust advantages of active and problem-
/challenge-based pedagogies over traditional lecturing in STEM
(Freeman et al., 2014; Kozanitis and Nenciovici, 2023; Yu and
Guo, 2023). At the same time, the literature also cautions
that not all implementations yield uniform effects; design
quality, assessment alignment, and faculty preparation moderate
outcomes (Wei et al., 2024; Melcher et al., 2025). In curricular
organization, recent synthesis work comparing subject-based
vs. integrated approaches finds no universal winner; instead,
coherence and evidence of learning design appear decisive,
and the current evidence base remains uneven in quality
(Kreijkes and Greatorex, 2024). For interdisciplinarity, empirical
studies indicate that competencies valued in contemporary
engineering—systems thinking, collaborative problem-solving,
reflective practice—are strengthened when foundational science is
taught within integrative contexts, provided that core conceptual
rigor is preserved (Liu et al, 2023; Xu, 2024). Finally, on
the motivational side, research suggests that instructors’ explicit
messaging and pedagogy matter: growth-mindset-supportive
practices can help close performance gaps for first-generation
students, though effects vary by context and implementation
(Canning et al., 2024; Chao and Wright, 2025).

5.3 Theoretical and practical contributions

First, the argument reframes “simplicity” not as an attribute
of the disciplines but as an instructional artifact arising from
decontextualized tasks and misaligned assessment. The synthesis
integrates PCK and constructive alignment to explain why
surface-oriented assessment regimes can normalize the perception
of simplicity even when content is inherently complex (Biggs,
1996; Shulman, 1986; Melcher et al., 2025). Second, it specifies
interdisciplinarity as an outcome of curricular governance:
centralizing foundational courses while embedding cross-
disciplinary projects yields a dual pathway that protects rigor and
cultivates transfer (Kreijkes and Greatorex, 2024; Liu et al., 2023).

Three design implications emerge. (a) Assessment redesign:
move beyond recall-heavy tests to performance tasks, concept
inventories, and open-ended problem sets that reward reasoning
and model-based thinking (Melcher et al., 2025; Pereira et al,
2024).  (b)
pathways—formal teaching certificates, mentored onboarding,

Pedagogical preparation: implement structured

iterative peer observation, and targeted PD on active learning and
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equitable practices—which empirical reviews link to improved
learning and retention in STEM (Rehman et al, 2024; Kim
and You, 2025; Johnson-Ojeda et al, 2025). (c) Curricular
architecture: adopt a hybrid model—strong common core
under centralized oversight plus discipline-relevant applications
through interdisciplinary projects and labs—shown to strengthen
adaptability without eroding conceptual depth (Kreijkes and
Greatorex, 2024; Doulougeri et al., 2024; Xu, 2024).

5.4 Limitations

Two limitations should temper interpretation. First, much of
the empirical base aggregates across institutional and cultural
contexts; effect sizes for active, problem-, and challenge-based
learning vary with class size, instructor expertise, and assessment
alignment (Wei et al, 2024; Kozanitis and Nenciovici, 2023).
Second, reviews comparing integrated and subject-based curricula
report heterogeneous implementations and, in several cases,
low methodological quality, which constrains definitive claims
about superiority (Kreijkes and Greatorex, 2024). These caveats
motivate cautious generalization and emphasize the need for
local evaluation.

5.5 Implications for future research

Future work should (i) conduct multi-site randomized or
quasi-experimental studies linking faculty development formats
(certificate vs. mentored practice vs. communities of practice) to
student conceptual outcomes in first-year math/physics/chemistry;
(ii) test assessment alignment interventions that explicitly target
deep-learning indicators; and (iii) evaluate hybrid curricular
governance models (centralized core + embedded interdisciplinary
projects) using longitudinal measures of transfer, creativity,
and employability (Zhan and Yan, 2025; Fleming et al., 2024;
Abuelmaatti and Vinokur, 2025). Cross-regional replication (e.g.,
Latin America, Africa, Asia, Europe) is particularly important to
map contextual moderators (Liu et al., 2023; Smith and Doe,
2024).

To avoid overstatement, this discussion stops short of claiming
universal dominance of any single pedagogy or curriculum form.
Instead, it argues that rigorously taught foundational sciences,
supported by trained instructors and aligned assessments, and
embedded in coherent, hybrid curricular structures are consistently
associated with better learning, retention, and adaptability across
contexts—conditional on quality of implementation and local
constraints (Freeman et al., 2014; Yu and Guo, 2023; Kreijkes and
Greatorex, 2024). This position is congruent with the paper’s aims,
the cited evidence, and the theoretical frame linking PCK and
constructive alignment to interdisciplinary competence.
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