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Connected or
compartmentalized knowledge
use: Two views of MKT with
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One common approach to assessing mathematical knowledge for teaching
(MKT) is designing items to measure individual subdomains of MKT as specified
by a theoretical framework, with factor analyses confirming, or disconfirming,
hypothesized subdomains. We interpret this approach as adhering to a
“compartmentalized” view of MKT, as opposed to a “connected” view of MKT.
We argue in this paper that a compartmentalized view of MKT is embedded
in the ways that frameworks are represented, discussed, and used in the field.
However, a compartmentalized view of MKT may unintentionally undermine
understanding of MKT, and in turn, how to measure and cultivate it in teachers.
We support this argument with an empirical analysis of nine typical practice-
based items designed to assess MKT at the secondary level, categorized
according to dimensions of five prominent frameworks for MKT. A key finding
is that all of the items capture multiple subdomains, suggesting they are
not measuring compartmentalized knowledge well. This finding held across
all five frameworks, suggesting that it is more a characteristic of practice-
based item design than of the frameworks used. We suggest that viewing MKT
from a connected view can open potential lines of research that can impact
assessment, learning, and teacher education.

KEYWORDS

mathematical knowledge for teaching, pedagogical content knowledge, secondary
mathematics teacher education, MKT frameworks, knowledge domains

1 Introduction

The 18th and 19th centuries heralded great advances in scientific theory. The pursuit
of indivisible substances supported the development of stoichiometry and the systematic
classification of elements, ultimately leading to the periodic table. However, classification
of elements could not explain how organic compounds, such as glucose and formaldehyde,
could comprise similar proportions of the same elements, yet behave in dramatically
different ways. To make progress in this problem, scientists needed to ask different kinds of
questions. They needed to expand their focus to the implications of how atoms connected
to each other, rather than only on whether elements could be isolated. Theory building
in mathematical knowledge for teaching (MKT) may now be in an analogous position,
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with questions and apparent conflicts arising in attempts to classify
and compartmentalize theorized subdomains of MKT.

In broad terms, MKT is the content knowledge used in
recognizing, understanding, and responding to mathematical
situations, considerations, and challenges that arise in the course
of teaching mathematics (e.g., Ball et al., 2008; Baumert et al,
2010; Thompson and Thompson, 1996). As interest in both the
construct of MKT and its measurement has increased, a number
of competing frameworks to describe MKT and its constituent
components have proliferated, and so has debate about the utility,
meaning, and observability of domains of MKT (e.g., Baumert et al.,
2010; Beswick et al., 2012; Depaepe et al., 2013; Hill et al., 2008;
Kaarstein, 2014).

There has been some progress in distinguishing subdomains
of MKT, particularly at a high level between purely mathematical
knowledge and knowledge applied in pedagogical contexts (e.g.,
Baumert et al., 2010). But researchers have also found that the
same terms are interpreted in multiple and sometimes incompatible
ways across different projects (Depaepe et al., 2013; Kaarstein,
2014), and some domains have proven difficult to assess directly
(Hill et al., 2008).

The purpose of this manuscript is to argue that a focus on
isolating domains of MKT is embedded in the way that various
(though not all) frameworks for MKT are represented, discussed,
and used in the field. Moreover, in adopting a compartmentalized
view, we may unintentionally limit the kinds of questions we
ask about the nature and use of MKT. Consequently, we
may undermine our understanding of MKT, and in turn our
understanding of how to measure and cultivate teachers’ MKT.
In the first portion of the paper, where we discuss conceptual
perspective and background, we describe evidence from the
literature that supports our argument, as well as where there are
exceptions. In the second portion of the paper, we illustrate our
argument through a study of nine cases of items designed to
assess MKT. The questions guiding our analysis were: In what
compartmentalized or connected ways do practice-based items (i.e.,
items that situate the respondent in a teaching scenario) elicit
evidence of MKT? How do connectedness or compartmentalization
appear to differ or be similar when viewing MKT through different
frameworks proposed for MKT?

2 Background

2.1 Conceptual perspective on MKT as
knowledge and knowing

Following Cook and Brown (1999), we take knowledge to be
possessed by individuals and groups, such as facts or procedures
or schemas. We take knowing to be actions performed, such as
analyzing student work. Following Ball (2017) and Ghousseini
(2017), we take MKT to encompass professional knowledge
and knowing. In this sense, knowing uses, demands, and may
cultivate knowledge. This conceptual perspective helps us make
sense of commonalities underlying existing work on MKT (e.g.,
Charalambous et al,, 2020; Copur-Gencturk and Tolar, 2022;
Kersting et al., 2012; McCrory et al., 2012; Hill et al., 2004; Hill and
Chin, 2018; Krauss et al., 2008; Rowland, 2013). Across work that
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conceptualizes MKT and its constituent domains, researchers have
attended to possessed mathematical and pedagogical knowledge,
while also identifying the “work of teaching, and in particular the
mathematical work of teaching” (Ball, 2017, p. 17, emphasis in
the original).

As Ball (2017) observed, MKT initially addressed a “quest to
uncover how mathematics is used in teaching” (p. 13). However,
she argued,

What we need to be talking more clearly about is mathematical
knowing and doing inside the mathematical work of teaching. This
change from nouns — “knowledge” and “teachers” — to verbs —
“knowing and doing” and “teaching” — is not mere rhetorical
flourish. These words can support a focus on the dynamics of a
revised fundamental question: what is the mathematical work of
teaching? (p. 14).

The work of teaching refers to instructional practices and how
teachers perceive ongoing interactions to shape these practices.
In response to students’ discourse and products, teachers may
determine the mathematical validity of multiple approaches, or
how and whether task features support students’ mathematical
trajectory (National Council of Teachers of Mathematics, 2014;
Office for Standards in Education, 2021). Generally, teacher
educators may privilege an image of instructional practices where
students participate in the creation of mathematics (Osterling,
2021). In enacting instructional practices, teachers make sense
of the context, see what can be done, and make reasoned
judgments for how to respond (Ball, 2017; Blomeke et al., 2022;
()stcrhng, 2021).

Hence, field has
conceptualized it, we follow the roots of MKT as premised

in examining MKT and how the

on the work of both mathematics and teaching (e.g., Ball et al,
2008; Thompson and Thompson, 1996). MKT encompasses
knowledge and knowing, because it is brought to bear in the
practice of teaching.

2.2 A critical distinction between
compartmentalized and connected
views

To problematize the purposes of frameworks for MKT, as
well as the purposes driving efforts made by scholars to validate
the accuracy of these proposed frameworks, we differentiate
between two views: compartmentalized and connected. By
compartmentalized, we refer to orientations toward finding
measurable distinctions among uses of theorized domains of MKT.
We argue that this view is supported by the ways in which
many framework authors and other scholars have presented and
used the frameworks.

Consider that frameworks are often represented in graphics
as area models in which non-overlapping sets are joined together
to make up the whole of MKT. Such graphics epitomize a
compartmentalized view. Perhaps the most well-known such
representation is the Learning Mathematics for Teaching (LMT)
model (see Ball et al., 2008, p. 403). We note that the authors of
the representation called careful attention in textual descriptions
to what they call the “boundary problem” (p. 403), in which
knowledge and knowing domains are often closely coordinated
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in the work of teaching in ways that make it difficult to discern
the precise division between domains. However, the powerful
heuristic of the graphical representation by Ball et al. (2008) with its
unambiguous divisions, tends to be the reader’s main impression,
rather than fuzzy overlap among domains. The representation
strongly suggests mutually exclusive categories with clear divisions.

Moreover, the LMT group’s work in the 2000’ sought to
empirically validate these divisions as descriptive of teacher
performance (Hill et al., 2004), implicitly endorsing the notion
that theorization is flawed if theorized constructs cannot be
independently measured. Confirmatory factor analysis approaches
used in this work, when taken as a means to validate the
structure of frameworks, also adhere to a compartmentalized
view, taking as given the logic of mapping individual items to
subdomains of frameworks. In this line of work, test forms are
assembled intended to assess the subdomains distinctly from other
components of MKT. Validity studies conducted by the LMT
project, Cognitively Activating Instruction (COACTIV; Baumert
et al., 2010); Knowledge for Algebra Teaching (KAT; McCrory
et al,, 2012) and Teacher Education Study in Mathematics (TEDS-
M; Tatto et al., 2008), fall into this model. Such approaches, as
described in the next section, have not always confirmed theorized
divisions.

In contrast to compartmentalized views, a connected view holds
that MKT is usefully thought of as having domains that may
necessarily overlap in teaching; in other words, that the domains are
not distinctly visible in teachers’ use or development of MKT. This
view may be implicit in the notion of practice-based item design that
underlies many MKT assessments (cf. Forzani, 2014). We discuss
the notion of practice-based in more detail in the next section. For
now, we note that assessments using practice-based item design
generally provide context intended to present a test-taker with a
problem of teaching practice, the solving of which may invoke
multiple knowledge demands. Under such a view, a failure of factor
analyses to confirm a division among theorized subdomains is less
fatal to the theory than might be imagined; drawing on multiple
domains in complex decision making in the moment need not be
taken as evidence that the distinctions between those domains are
not theoretically useful or meaningful.

We contend that a connected view is less prominent in
scholarship on MKT than a compartmentalized view, though there
are some projects aligned with the connected view. For example,
Thompson and Thompson (1996) analyzed a case of instruction
to illustrate how teachers’ images of mathematics “cuts across the
types of knowledge typically embraced by phrases such as content
knowledge or pedagogical content knowledge” (p. 19). Scholars
working on the Mathematical Understandings for Secondary
Teaching (MUST) project identified “perspectives,” rather than
domains of knowledge and knowing, and emphasized that these
perspectives “are interactive” (Heid et al.,, 2015, p. 12). The MUST
perspectives come closest to a purely knowing perspective, rather
than knowledge and knowing.

Hill (2016) argued that assessment design is productively
based on domains of teaching practices, rather than domains of
possessed knowledge. A number of lines of work resonate with
this argument, including Rowland’ (2013) work on the Knowledge
Quartet, which uses analyses of classroom instruction to classify
teaching practices that leverage mathematical knowledge, Kersting
et al. (2012) instrument in which teachers respond to videos,
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and Thompson’s (2016) framework for teachers’ development of
mathematical meaning.

2.3 Searching for a “periodic table” of
professional knowledge

In a presidential address to the American Educational Research
Association, Shulman (1986) foregrounded the need for a “coherent
theoretical framework” for examining professional knowledge and
knowing for teaching, including the “domains and categories of
content knowledge in the minds of teachers” (p. 9, italics ours).
In the two decades since Shulman’s call, multiple groups have
responded by developing frameworks that decompose MKT into
theorized domains and sought to generate validity evidence to
support those frameworks. These efforts have yielded mixed success
and largely illustrate a compartmentalized view of knowledge use.

2.3.1 The learning mathematics for teaching
(LMT) framework

The Learning Mathematics for Teaching (LMT) group was
among the first to respond to Shulman’s call; this group
hypothesized and tested a structure they characterized as a
“rudimentary periodic table of teacher knowledge” (Ball et al,
2008, p. 396). This “periodic table” included content knowledge
and pedagogical knowledge as distinguished by Shulman, and
hypothesized further sub-components of each, distinguishing,
under the umbrella of content knowledge, common content
knowledge from specialized content knowledge; and under the
umbrella of pedagogical content knowledge (PCK), knowledge of
content and students from knowledge of content and teaching.

In efforts to validate their framework the LMT group developed
an assessment instrument. The items in this instrument spanned
their theorized components and situated the use of mathematical
knowledge in teaching scenarios (Hill et al., 2004). The LMT
group conducted a series of studies to determine whether the
knowledge and knowing assessed with their instrument in fact
was mathematical knowledge used in teaching, and whether the
theorized components were measurably distinct from one another
(e.g., Schilling and Hill, 2007; Hill et al., 2007; Schilling, 2007).

The LMT’s evaluation of their own work aligns with a
compartmentalized view of knowledge use. Although the LMT
group found compelling evidence that their instrument did assess
mathematical knowledge used in skillful teaching (e.g., Hill et al,,
2005), they cited shortcomings of their work to identify distinct
domains of MKT, especially subdomains of PCK. Speaking to the
results of their factor analyses, Hill et al. (2004) commented, “there
remain some significant problems with multidimensionality with
these items, particularly in the areas of knowledge of students and
content [a component of pedagogical content knowledge] and, for
those who choose to use this construct, the specialized knowledge
of content” (p. 26). In this way, the knowledge components
are “imperfectly discerned” (Hill et al., 2008, p. 385). Due to
these issues, the LMT instrument does not distinguish between
common content knowledge and specialized content knowledge;
and subsequent iterations of their instrument do not contain
any items intended to represent PCK (e.g., Hill, 2007). In other
words, a compartmentalized view of knowledge, which positions
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multidimensionality as a problem, led to excluding a type of item
on subsequent versions of this assessment. This exclusion happened
despite evidence in qualitative studies that these kind of items
represented knowledge distinctive to mathematics teaching as
compared to knowledge use in other professions using mathematics
(Hill et al., 2007).

2.3.2 The cognitively activating instruction
(COACTIV) framework

Another group taking up the challenge of differentiating
hypothesized components of MKT through assessments is the
COACTIV group (Baumert et al., 2010), whose stated goal was to
“conceptualize and measure content knowledge and pedagogical
content knowledge separately” (p. 142, italics ours). This group
examined MKT at the secondary level.

The COACTIV framework is summarized in Baumert and
Kunter (2013). Their framework differs from that of the LMT group
both in degree of reification and in fundamental definitions. In
contrast to the work of the LMT group, COACTIV’s framework
focuses on the larger grain size distinctions between content
knowledge, PCK, and general pedagogical knowledge, but their
definition of PCK includes ideas that the LMT framework would
classify under specialized content knowledge.

The COACTIV group, like LMT, interpreted their main result
from a compartmentalized view. By comparing data from 181
teachers of 194 secondary mathematics classes, they found that
teachers’ scores on the PCK measure predicted 39% of the variance
in achievement between classes (with f = 0.42) and impacted
teachers’ capacity to design learning opportunities (f = 0.24 for
appropriate cognitive level and f = 0.24 for individual learning
support), whereas content knowledge assessment results had much
lower predictive power (f = 0.32 versus f = 0.42) and had nearly
trivial impact on the structure of learning opportunities (f = 0.01
for cognitive level and f = —0.06 for individual learning support)
(Baumert et al., 2010). In this way, “in contrast to Hill et al. (2008)
the COACTIV group has succeeded in distinguishing [content
knowledge] and [pedagogical content knowledge] of secondary
mathematics teachers conceptually and empirically” (p. 166).

2.3.3 The knowledge of algebra for teaching
(KAT) framework

Another framework for MKT used to design assessment is the
KAT framework, developed at Michigan State University (McCrory
etal., 2012).

While broadly grounded in the LMT group’s notion of MKT,
this framework differs significantly on a number of points. It is
limited to algebra, making it a more targeted framework than those
that pre-dated it. Its organizing principle is also markedly different,
as it divides knowledge into categories delineated by whether a
teacher might have been expected to acquire it during their own
K-12 schooling, through more advanced university coursework,
or through courses oriented toward teacher preparation. While
the category titled “algebra for teaching” overlaps with the LMT
frameworKs construct of “specialized content knowledge” (Ball
et al., 2008, p. 390), “algebra for teaching” is defined less by the
professional context in which the knowledge is expected to be
used and more by the context in which it is to be learned by
novice teachers.
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This line of work did not produce a larger-scale set of
assessments but shared some characteristics with other efforts
described here. Most saliently, they were guided by an aim
consistent with a compartmentalized view of knowledge use: to
identify and describe “distinct factors” of knowledge (Knowledge
of Algebra for Teaching [KAT], n.d.). Similar to the results of
LMT, subsequent factor analyses did not support the hypothesis
that their instrument measured distinct subdomains of knowledge
(Howell, 2012).

Teacher Education Study in Mathematics (TEDS-M). The
international TEDS-M study also used Shulman’s categories for
assessment development. The TEDS-M framework is described
in Tatto et al. (2008). Similar to the COACTIV work, this
framework draws a high-level distinction between “mathematical
content knowledge (MCK)” and “mathematical pedagogical
content knowledge (MPCK).” Their framework differs from that
of COACTIV and LMT in that it explicitly operationalizes
content knowledge with a matrix with curricular areas (e.g.,
number, geometry) and cognitive domains (knowing, reasoning,
and applying). The TEDS-M framework draws directly on the LMT
group’s operational definitions for PCK (and to some extent their
assessment items), so while the level of reification is more like
COACTIV’s, their definitional structure is more like LMT’s. Their
definition for MPCK includes “Analyzing or evaluating students’
mathematical solutions” (p. 45).

There are two main ways in which the TEDS-M exemplify
a compartmentalized view. First, validation efforts took the
distinction between MCK and MPCK as a starting point. Expert
reviews at the item level evaluated the “clarity and the extent
to which it was consistent with its classification” within their
framework (Tatto et al., 2012, p. 131). Second, the results of
prospective teachers MCK and MPCK are reported separately,
without any comparison or inferred relationships among the two
(Tatto et al,, 2012). There are no statistical results reported to
confirm or disconfirm the distinction between content knowledge
and PCK.

2.3.4 Teacher education study in mathematics
(TEDS-M)

The international TEDS-M study also used Shulman’s
categories for assessment development. The TEDS-M framework is
described in Tatto et al. (2008). Similar to the COACTIV work, this
framework draws a high-level distinction between “mathematical
content knowledge (MCK)” and “mathematical pedagogical
content knowledge (MPCK).” Their framework differs from that
of COACTIV and LMT in that it explicitly operationalizes content
knowledge with a matrix with curricular areas (e.g., number,
geometry) and cognitive domains (knowing, reasoning, and
applying). The TEDS-M framework draws directly on the LMT
group’s operational definitions for PCK (and to some extent their
assessment items), so while the level of reification is more like
COACTIV’s, their definitional structure is more like LMT’s. Their
definition for MPCK includes “Analyzing or evaluating students’
mathematical solutions” (p. 45).

There are two main ways in which the TEDS-M exemplify
a compartmentalized view. First, validation efforts took the
distinction between MCK and MPCK as a starting point. Expert
reviews at the item level evaluated the “clarity and the extent
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to which it was consistent with its classification” within their
framework (Tatto et al, 2012, p. 131). Second, the results of
prospective teachers MCK and MPCK are reported separately,
without any comparison or inferred relationships among the two
(Tatto et al., 2012). There are no statistical results reported to
confirm or disconfirm the distinction between content knowledge
and PCK.

2.3.5 The mathematical understandings for
secondary teaching (MUST) framework

In contrast to the work already described, the MUST project
embraced the potential interaction among aspects of knowledge for
teaching. Moreover, they recognized that this stance differentiated
their work from prior efforts to conceptualize MKT. As Heid
et al. (2015) noted, “rather than seeking primarily to identify
the knowledge and specific understandings of mathematics useful
in secondary teaching, the MUST project chose instead to
“highlight the dynamic nature of secondary teachers’ mathematical
understandings” (p. 5).

The three perspectives described in the MUST framework
are mathematical proficiency, mathematical activity, and
mathematical context of teaching. Mathematical proficiency
describes understandings and orientations that students need
in their grade and beyond, such as conceptual understanding,
procedural fluency, and productive disposition. Mathematical
activity describes actions of “doing mathematics,” such as
noticing mathematical structure and generalizing mathematical
findings. Mathematical context of teaching enables teachers to
use and develop their personal mathematical knowledge and
knowing to help advance students’ mathematical understandings.
This perspective involves accessing and understanding the
mathematical thinking of learners, knowing and using the
curriculum, and reflecting on the mathematics of teaching practice.

The MUST project exemplifies a connected view in their
approach to describing mathematical knowledge for teaching.
While they identify theoretically different aspects of mathematical
knowledge for teaching that “together form a robust picture of
the mathematics required of a teacher of secondary mathematics,”
they do not shy away from the idea that “the three perspectives of
MUST are interactive” (Heid et al., 2015, p. 12). Their examples
of knowing and using mathematics use consistently encompass
all three perspectives. Their examples of using the framework
to design formative assessments leverage all three perspectives,
and they do not attempt to differentiate the contributions from
each perspective.

2.4 MKT frameworks, practice-based
teacher education, and assessment

The development of the above frameworks coincided with a
widespread focus in the field on practice-based teacher education
(Forzani, 2014; McDonald et al,, 2013): the idea that teacher
learning should be focused on the instructional practices that
teachers will be engaged in. Instructional practices are a form of
engagement rather than a form of propositional knowledge (Sykes
and Wilson, 2015). Hence, from this perspective, teacher education
should be organized to provide opportunities for teachers to
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learn instructional practices and that those opportunities should
be embedded earlier and more frequently than may have been
the case in prior decades. For example, Grossman et al.’s (2009)
seminal work on pedagogies of practice delineates different ways
of engaging teachers around practice during teacher preparation.
An associated focus on core instructional practices (Forzani, 2014;
Core Practices Consortium, n.d.) sought during these years to
identify the instructional practices most worthy of focus, often
relying on factors such as how commonly a practice is used or how
likely its fluent use is to impact student learning.

The theory also informed assessment item design, with the
LMT group and those following their model focusing strongly on
the use of practice-based items: those that use scenarios to engage
the participant in a sample of an instructional practice, such as
analyzing student work, or selecting an example (Hill et al., 2004).
These groups followed the underlying logic that responding to
mathematical prompts in the context of instruction is more likely to
elicit knowledge use specialized to teaching (Gitomer et al., 2014).
In the years since, these approaches have become the standard for
assessing MKT. For example, the Praxis CKT assessments, now
administered across multiple subjects and grade spans for teacher
certification are organized with items focused on instructional
practices (ETS, n.d.) and most research-based instruments that
measure MKT use this item design to some extent.

2.5 Framework purposes, and impacts,
and critiques

Shulman’s (1986) call to map the domains of knowledge for
teaching were grounded in a concern for the professionalization
of teachers. The resulting conversation around MKT and its
components has played an important role in shifting the discourse
around mathematical requirements for teacher education from
simply more math to identifying and developing mathematical
knowledge and knowing that is distinctively used in teaching
(e.g., Conference Board of the Mathematical Sciences, 2001, 2012;
Association of Mathematics Teacher Educators, 2017).

Alongside this evolution, the use of frameworks has shifted
away from defending the existence of professional knowledge and
knowing toward using them as an intellectual resource for the
work of teacher education. Frameworks for MKT are now used to
design assessments (e.g., Herbst and Kosko, 2012; Tatto et al., 2008),
including some high-stakes tests (ETS, n.d.), clarify the nature and
development of MKT (e.g., Baumert et al., 2010; Bair and Rich,
2011; Beswick et al., 2012), and facilitate teacher education and
professional development (e.g., Elliott et al., 2009; Heid et al., 2015;
Rowland, 2013).

However, some researchers who used instruments designed
from a compartmentalized view have suggested that a connected
view of MKT use may better support productive inquiry. For
example, Beswick et al.’s (2012) factor analysis of knowledge and
belief assessment results from 62 middle-school teachers found
that one construct fit the data better than multiple constructs.
They concluded, “analysing and categorizing their knowledge,
although useful in many respects, risks losing an appreciation
of the complexity of the work of teaching mathematics and
may never be possible with complete clarity” (p. 154). Although
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they were not the first to provide evidence that assessments
of MKT may suggest only a single underlying construct, they
went farther than previous scholars by arguing explicitly that
the assessment of MKT as a single uni-dimensional construct
may be more fruitful than focusing on domain distinctions.
Similarly, Copur-Gencturk et al. (2019)’s study of upper elementary
teachers concluded that MKT as measured by the assessment
was best conceptualized as unidimensional and suggested that
more work is needed to disentangle the extent to which this
reflects the underlying construct rather than item design. And
while we know from other work that seamless extension of the
underlying frameworks from elementary to secondary teaching
cannot necessarily be assumed (Speer et al.,, 2015), we believe that
the underlying question raised by this analysis is as worth asking
for secondary teachers as for elementary teachers. The COACTIV
group also concluded that content knowledge influences the
development of pedagogical content knowledge (Kleickmann et al.,
2013) suggesting an underlying connection not quite aligned to
their assessment framework. These scholars concluded that a
connected view could benefit research into comparing teachers’
MKT with student outcomes, as well as assessing the effectiveness
of professional development.

Other scholars have called into question the utility of
decompositions of MKT, particularly outside of the assessment
domain. As Silverman and Thompson (2008) argued, even if
MKT were composed of independent knowledge bases, MKT
is more than the union of its parts. Moreover, decompositions
of MKT, especially those that focus even in part on declarative
knowledge, may obscure underlying practices of teaching and
learning that are critical to MKT use and its development (Heid
et al., 2015; Rowland, 2013; Silverman and Thompson, 2008;
Thompson, 2016; Watson, 2008). Rocha (2025) contrasts two
epistemological perspectives on MKT, notes that more static
views of knowledge such as those represented in the above
frameworks are fundamentally different from views that approach
teacher knowledge from the perspective of development. They
argue that these differences must be better understood for the
field to move forward productively and note in particular the
inadequacy of static views in supporting teacher education. Other
scholars, similarly critiquing extant frameworks, seek to reify them
further, adding different perspectives (e.g., Pansell, 2023). From this
perspective, it is unsurprising that scholars take a connected view of
knowledge use or seek to design entirely different frameworks when
their purpose is facilitating experiences in teacher education and
professional development (e.g., Heid et al., 2015; Rowland, 2013).

In summary, the purposes of framework development may
explain whether scholars take a compartmentalized or connected
view of knowledge use. Inquiry from a compartmentalized view
focuses on identifying empirically distinguishable domains, and
success is evaluated by evidence for differentiating domains.
A connected view may better support inquiry into teachers’
development of MKT along their professional trajectory, because
it avoids delineation problems and embraces the inherent overlap
in knowledge use. Finally, considering evidence from research
initially designed with a compartmentalized view of knowledge use,
there may be a role for a connected view of knowledge use even
for assessment purposes. And while the field largely persists in
holding compartmentalized views of MKT and organizing around
those views, there is some emergent evidence, both empirical and
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theoretical, calling into question the dominance of that view, which
served to motivate the present study.

3 Materials and methods

We turn now to an empirical study that we use to illustrate
the ways in which MKT, as represented in assessment items, may
align more with a connected than compartmentalized view. Our
study takes a novel approach to the issue of whether subdomains
are distinguishable. Rather than asking how many factors there are,
or whether there are distinguishable factors, we instead ask:

e (RQ1) In what compartmentalized or connected ways do
practice-based items elicit evidence of MKT?

e (RQ2) How does connectedness or compartmentalization
appear to differ or be similar when viewing MKT through
different frameworks proposed for MKT?

While the study produces findings with respect to the studied
items, our purpose in presenting this empirical work is less to draw
strong conclusions about the items and more to use the exercise
of applying frameworks to a common set of items as a lens for
exploring the implications of framework choice. In doing so, we
hope to raise critical questions about what each framework and the
set of frameworks taken together make less or more visible about
the nature of MKT.

We begin with an example item from the study, shown in
Figure 1, in order to familiarize the reader with the item type and
to make more salient the thinking that provoked the study. Then
we discuss methods used, item and framework selection, and our
coding process. Following this, we discuss results and implications.

3.1 A framing example

The Morgan item, like those produced by multiple projects
cited previously, is scenario-based, placing the test-taker in Ms.
Morgan’s shoes in asking for an evaluation of work her students
have produced. This item represents typical classroom interaction
on multiple levels. These students have been asked to find an
equation that fits a set of bivariate data, a type of content problem
ubiquitous to algebra curricula. Every day, teachers attend to and
interpret student work. The intended answers are that Student As
work demonstrates a mathematically valid approach and Student
B’s work does not. Of course, it is difficult to interpret Student B’s
work in the absence of information of what Student B might do
when the x-values change by values other than + 1. In the context
of actual instruction, we would expect a skilled teacher to ask follow
up questions to better inform their understanding of this student’s
thinking. In the context of the assessment item, we simply hope that
a teacher notes that the given evidence leaves it unclear whether
Student B’s work shows evidence of understanding the role of the
change in x.

We hypothesize a teacher responding to this item needs to
proceed through a series of reasoned steps, including recognizing,
making sense of, and noting any mathematically relevant features
of the student level task, making sense of the student explanations,
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During a lesson on writing equations of linear functions represented in tables,
Ms. Morgan asked her students to write the equation of the linear function X
represented in the table shown, and to explain how they found their answers. ; (1’1
Students found the correct equation, but they gave different explanations of how 3 16
they found their answers. 4 |21
For each of the following student explanations, indicate whether it demonstrates a
mathematically valid approach to writing the equation of a linear function.
Student A Each time the value of x goes up by 1, the value of y goes up by 5, so the slope
is 5. And if x goes down by 1, then y will have to go down by 5, so the y-
intercept is 1. That means the equation is y = 5x + 1.
Student B I just looked at the value of y and saw that it kept increasing by 5, so m = 5.
Then I subtracted that number from the first value of y in the table, so b = 1.
You always put m times x and add the b, so the equation is y = 5x + 1.
FIGURE 1

The Morgan item. Note that for brevity a third student’'s work sample is omitted and the item format adjusted. Item copyright @2013 Educational

Testing Service, publicly released item

inferring from the explanation a generalized method for each
student, and deciding whether the method as inferred relies on a
systematic and sufficiently generalizable logic.

However, this is simply a hypothesis, and as such raises
questions about what reasoning teachers might use in responding
to such an item and what the implications might be for claims
about what the item measures. For example, a teacher who attends
strongly to the student-level mathematics might solve the student-
level problem. In doing so, this teacher might notice that it is
necessary to account for the changes in x-values, that consecutive
changes are always 1 in the given table, and that differences need
not be always 1. These observations might prime the teacher to note
the key difference between the two students’ approaches: Student A
does explicitly account for differences in x-values, and Student B
does not. A second teacher, familiar with student thinking, might
recognize the approach that student B takes as a common student
conception. A third teacher might be able to infer the issue from
the explanations given by the students and recognize that Student
B’s reasoning might not generalize.

It is precisely the deep contextualized reasoning that is required
that makes items like this one elicit evidence of MKT. But does this
mean that this item assesses student-level mathematics for the first
test-taker, knowledge of student error patterns for the second, and
interpretative skill for the third? If so, has it somehow failed as an
assessment item by not drawing out evidence of precisely one MKT
sub-domain? And what are we to make of a test-taker who takes
some of each of these actions and draws on various domains in a
connected and fluid way?

3.2 Research design

As a foundation to our study, we observe that the literature
suggests two reasons that practice-based item design may be
incompatible with a compartmentalized view. First, different
domains may be applied to draw similar conclusions (e.g., Lai
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and Jacobson, 2018), and second, facility in one domain may
be dependent on facility in others (e.g., Baumert et al., 2010).
We also note that this incompatibility, while evinced by results
of the literature, is also not well-understood. To examine this
phenomenon, we do a version of a comparative case study (Yin,
2009), in which the cases are items and accompanying idealized
response patterns, where the items exemplify practice-based item
design, and the object is to explore and explain how such items
draw on multiple theorized subdomains. We now summarize the
steps of this case study.

Before addressing the main research questions directly, we first
sought to evaluate the empirical accuracy of the cases, guided by
the question:

e (RQO) Do teachers’ responses to each item align or not align with
the idealized response patterns for that item?

We introduce this research question here and not previously,
because addressing this research question is not the main focus of
our study. However, it was a prerequisite to addressing the main
research questions, hence numbering it as “RQ0.”

To address the main research questions, we selected a set
of frameworks for MKT to examine, and we operationalized
the identification of each component of each framework in a
description of elicited MKT. To address our RQl (In what
compartmentalized or connected ways do practice-based items
elicit evidence of MKT?), we identified the components of each
framework elicited by enacting the idealized response patterns
to the components of each framework elicited by enacting the
idealized response patterns to that item.

To address RQ2 (How
compartmentalization appear to differ or be similar when
viewing MKT through different frameworks proposed for
MKT?), we compared component identification across items
and across frameworks.

does  connectedness  or

Our design is illustrated in Figure 2.
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Item selection: Select a set of MKT
assessment items as common comparison
point across multiple frameworks for MKT
!
(Addressing RQO) Analyze the empirical
accuracy.of zdealt;ed respons? pz.ztterns for Select a set of frameworks for MKT
each item, which are descriptions of !
hypothesized essential elements of reasoning Operationalize the identification of each
for each item component of each framework
1
(Addressing RQ1) For each item, identify the components of each framework elicited by
enacting the idealized response patterns to that item
1
(Addressing RQ2) Compare component identification across items and across frameworks
FIGURE 2

Study design: relationship between methods to address each research question.

3.3 Item selection and rationale

We selected a set of nine practiced-based items designed to
elicit MKT, including the Morgan item. Items were paired with
idealized response patterns (IRPs), idealized descriptions of typical
correct responses to items as a proxy for actual responses; and
our RQO guides a separate analysis to confirm the adequacy of
the proxies. We call these descriptions patterns rather than pattern
because IRPs can account for multiple possible responses to the
item. We now discuss the selection of items and their associated
data as cases (Yin, 2009).

The items used in this study and their idealized response
patterns were developed as part of a systematic effort to extend
practice-based item design principles to upper-secondary content
areas and had undergone extensive expert review prior to the
start of the present analysis (Howell et al., 2013b). We selected
these nine items from a pool of 51 items designed to assess
MKT at the secondary level. This item pool contained items in
the areas of linear, quadratic, and exponential expressions and
functions, content topics originally chosen to represent broadly
the most critical components of a typical algebraically focused
secondary curriculum. Among the nine items, eight were closed-
ended items (e.g., Morgan, which asks the teacher to evaluate
whether each of Student As and Student B’s responses demonstrates
a mathematically valid approach), one (Swain) was open-ended.
Two of the eight closed-ended items were testlets (e.g., Morgan)
with multiple subparts (e.g., Morgan Student A, Morgan Student
B). An advisory panel consisting of three external experts in
secondary mathematics education reviewed potential sets of items
for use in this study as well as pilot interview transcripts with
teachers about the items. Based on their recommendations, we
narrowed our selection to three items in each topic area, with
attention to maintaining diversity among item types, content areas,
and representation, and to selecting items with no previously
identified design flaws. The list of selected items and descriptions
is provided in Supplementary Appendix B. By selecting a variety
of MKT assessment items, we create a common comparison point

across multiple MKT frameworks. We anticipated that the diversity
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of item types would provide the potential to exemplify components
of different frameworks for MKT.

3.4 Evaluating the accuracy of idealized
response patterns: analysis for RQO

We describe here the method we used to evaluate the accuracy
of the idealized response patterns (IRPs). Because we wished to
treat these descriptions as representing typical correct responses,
a preliminary step was to evaluate empirical evidence for support
or lack of alignment of IRP to teachers’ actual responses. We
operationalized the IRPs by identifying essential elements of the
reasoning represented by each IRP, resulting in 3-5 elements per
IRP. We compared the operationalized IRPs to responses from
think-aloud interviews of secondary teachers across the items.
Figure 3 shows an IRP, operationalization, and sample teacher
reasoning for Morgan Student B.

We compared IRPs to reasoning in 171 responses from 23
teachers, whose years of experience ranged from student teaching
to 16 years of experience, with a median of 5 years and average of
5.7 years. Participants were recruited via email lists to alumni of
two teaching programs, one in a metropolitan area and one in a
suburban area. All teachers who expressed interest in participating
were selected to participate.

We used block assignment so that each participant responded
to a subset of approximately six items, with each item collecting
between 13 and 15 participants’ reasoning. When an item was
a testlet (e.g., Morgan), we counted each subpart as a distinct
response (e.g., assessing Student A’s response and assessing Student
B’s response are separate), resulting in 171 responses.

We coded each teacher’s response against the IRP for that
item in two ways. First, we coded each response as aligning or
not aligning to the reasoning in the IRPs. Responses were coded
as aligning with the IRPs if the response represented all essential
elements of IRPs (allowing for some degree of variation in the exact
wording participants used). Second, we coded the interviewee’s
answer as aligning or not aligning to the item’s intended answer (e.g.,
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IRP

Operationalization

Sample teacher reasoning

This student only looks at
the change in y, and then
subtracts that answer
from the first y-value in
the table with no
reference to what the
value of x would be in
that ordered pair. While
it is possible that the
student recognizes that
the change in x is 1, the
explanation does not
provide evidence of this.
Additionally, the student
explanation does not state
clearly how the student
knows that (0, 1) is the y-
intercept. Since the
student does not identify
the change in x as the y-
values change nor the
value of x when y is
equal to 1, this method
would not generalizable
to other problems. Thus,
the explanation does not
provide sufficient
evidence that the student
demonstrated a
mathematically valid
approach to writing the
equation of a linear
function.

B1. Ability to determine the rate of
change and initial value of a
function from two (x,y) values,
including reading these from a
table; seeing that here, rate of
change is 5 and initial value is 1.

B2. Ability to write the equation of
a line given a table of values;
recognizing that data fit y = 5x + 1.

B3. Ability to evaluate
explanations of a mathematical
concept or procedure for validity
or generality. Specifically, it is
important to justify that the input
values in the table change by 1
each time.

B4. Ability to construct the
general method implicit in a
student explanation of a procedure
and evaluate whether it
demonstrates a mathematically
valid approach to writing the
equation of a linear function;
specifically, noticing that Student
B does not mention change in x
being 1 in the table, so the
explanation provides no evidence
that Student B understands that
constant change is needed for their
method to generalize.

B1. “The first thing that I had
to do ... was I had to actually
find the equation myself ... x
is going up by one and y is
going up by five ... |
continued the pattern in the
reverse direction of y minus
five to get me to the y
intercept until I could
subtract the 5 and got the 1.”

B2. “And so then I got my
equation y = 5x + 1”.

B3. “And so that’s kind of
saying m is equal to delta y
instead of saying that m is
equal to delta y divided by
delta x.”

B4. “I get this misconception
all the time because ...
teachers start with the table
that has delta x = 1 because
it’s simpler, right? But then
students sort of over
generalize ... if the table
went up like 2, 4, 6, 8 in the x
column ... They wouldn’t
know that they have to divide
the delta y by delta x. And so
to me if they had referenced
looking at delta x, ... saying
that this is a special case
where you only have to look
at delta y then I would have
said it was okay”

FIGURE 3

Idealized response patterns (IRP), operationalization, and sample teacher reasoning for Morgan student B.

he the response “Student B does not demonstrate enough evidence
for a mathematically valid approach” was coded as aligning).

The purpose of this coding was to account for whether the
presence of what we hypothesized as essential elements of the IRPs
actually led to items’ intended answers and whether absence of at
least one essential element of the IRPs would lead to unaligned
answers. Note that this coding is binary (aligned or did not align
with IRP reasoning, aligned or did not align with item’s intended
answer) precisely because we are examining the accuracy of IRPs
(whether they describe teachers’ reasoning in empirical data).

For each participant’s response, four possibilities result, as
shown in Figure 4. We interpret the item/IRP pair as accurate
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when intended answers result from the presence of all proposed
essential elements of the IRP and unintended answers result from
the absence of even one proposed essential element. We interpret
the item/IRP pair to be inaccurate otherwise. In other words, a not
accurate code represents false positives or false negatives.

We then computed the percentage of accurate codes across
responses per item. Certainly having 100% accurate codes is most
desirable, but the possibility of reaching a correct answer with
flawed reasoning by guessing is simply a reality in any selected
response item format, making it unlikely that the number of false
positive responses would ever approach zero. To gauge whether
the percentage of accurate codes was reasonable, we compared
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Did participants’ answer
align with the item's intended answer?
Aligned Not aligned

Did participants’ Aligned IRP is accurate IRP is not accurate

reasoning

i i ? . . .
align with the IRP? Not aligned | IRP is not accurate IRP is accurate
FIGURE 4

Coding logic for addressing RQO.

the distribution and percentage of accurate codes to the findings
of a prior study that utilized a similar methodology and was
conducted in elementary-level mathematics and English Language
Arts (Howell et al., 2013a). We took the results of that study as
a reasonable estimate of results that could be expected for such
measures.

As discussed below, our findings suggest that the accuracy of
the IRPs was sufficient for study purposes. We mention this result
now so that the reader can assume the accuracy of the IRPs in
reading the remainder of this methods section, where we address
framework selection and describe coding processes.

3.5 Analysis for RQ1 and RQ2

To address RQI, to examine whether

practice-based items elicit evidence of MKT in connected or

we use IRPs

compartmentalized ways. We consider an item to elicit evidence
of MKT in a connected way if its IRP requires the coordination
of multiple domains in a particular framework. For instance,
consider the IRP for the Morgan item (Figure 3) and the TEDS-
M definitions of mathematical content knowledge (MCK) and
mathematical pedagogical content knowledge (MPCK). We see
Bl and B2 as eliciting MCK, because they are about applying the
definition of slope and intercept to a table. We also see B3 as MCK,
because it is about reasoning. We consider B4 to elicit MPCK
because one component of MPCK is “Analyzing or evaluating
students’ mathematical solutions or arguments” (p. 45). The
Morgan IRP then elicits MKT in a connected way when using
the TEDS-M framework, because both MCK and MPCK were
needed to reason through the item. However, just because one
item elicits MKT in a connected way by one framework does
not mean that practice-based items in general do so. Hence, we
examine our sample of practice-based items relative to multiple
frameworks, and to address RQ2, we compare how connectedness
and compartmentalization appear to differ or be similar when
viewing MKT through different frameworks. We now discuss how
we selected frameworks for this analysis.

3.5.1 Framework selection
To address RQI,
practice-based items elicit evidence of MKT in connected or

we use IRPs to examine whether

compartmentalized ways. We consider an item to elicit evidence
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of MKT in a connected way if its IRP requires the coordination
of multiple domains in a particular framework. For instance,
consider the IRP for the Morgan item (Figure 3) and the TEDS-
M definitions of mathematical content knowledge (MCK) and
mathematical pedagogical content knowledge (MPCK). We see
B1 and B2 as eliciting MCK, because they are about applying the
definition of slope and intercept to a table. We also see B3 as MCK,
because it is about reasoning. We consider B4 to elicit MPCK
because one component of MPCK is “Analyzing or evaluating
students’ mathematical solutions or arguments” (p. 45). The
Morgan IRP then elicits MKT in a connected way when using
the TEDS-M framework, because both MCK and MPCK were
needed to reason through the item. However, just because one
item elicits MKT in a connected way by one framework does
not mean that practice-based items in general do so. Hence, we
examine our sample of practice-based items relative to multiple
frameworks, and to address RQ2, we compare how connectedness
and compartmentalization appear to differ or be similar when
viewing MKT through different frameworks. We now discuss how
we selected frameworks for this analysis.

We sought theoretical frameworks for MKT that were fully
developed in available documents, and that directly claimed
to describe the entire MKT construct. We performed searches
for literature on MKT in various databases, including the
VMZ2ED repository (Krupa et al., 2024). Ultimately, we considered
five theoretical frameworks for MKT: Ball et al. (2008) MKT
framework; KAT (McCrory et al., 2012); COACTIV (Krauss et al.,
2008); TEDS-M (Tatto et al., 2008); and MUST (Heid et al., 2015).
We did not restrict framework selection to those explicitly designed
to describe secondary level MKT but did exclude those that could
not reasonably be taken to describe the MKT measured in our item
set. For example, we excluded the GAST (Mohr-Schroeder et al.,
2017) and DTMR (Izsak et al., 2019) frameworks because our item
set did not include geometry items or focus on fraction arithmetic.

Each examined framework proposed 2-3 subdomains, as
summarized in Figure 5 and with additional description of sources
in Supplementary Appendix A. The frameworks generally delineate
“purely” mathematical knowledge and its use from amalgams of
mathematical and pedagogical knowledge and its use. However,
interpretations differed across the frameworks. These variations
seemed amenable to our design: if, even across frameworks that
sliced MKT differently, we generally found that IRPs were not
isolated in any domain, this supports the argument for a connected
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Ball et al.
(2008)
MKT

CCK: Common Content Knowledge (p. 399) “mathematical knowledge and
skill used in settings other than teaching”; SCK: Specialized Content
Knowledge (p. 396) “mathematical knowledge and skill unique to teaching ...
not mixed with knowledge of students or pedagogy” PCK: Pedagogical
Content Knowledge (pp. 391-392) “the most useful ways of representing and
formulating the subject that make it comprehensible to others. ... conceptions
and preconceptions that students [bring]”

McCrory et
al. (2012)
KAT

School Knowledge (pp. 596-597) “content that typically would be taught and
tested in U.S. high school courses conventionally called Algebra I and Algebra
I1”; Advanced Knowledge (pp. 597-598) “college-level mathematics, that
gives ... perspective on the trajectory and growth of mathematical ideas
beyond school algebra”; Teaching Knowledge (pp. 598-599) “mathematics
that is useful in teaching, but is not typically taught in conventional
mathematics classes either at the high school or postsecondary levels. ... [such
as] knowledge of the different definitions of a particular mathematical object,
and [their] affordances.”

(2008)
COACTIV

Krauss et al.

CK: Content Knowledge (p. 876) “a deep understanding of the contents of the
secondary school mathematics curriculum. It resembles the idea of
‘elementary mathematics from a higher viewpoint’ (in the sense of Klein,
1933).”; PCK: Pedagogical Content Knowledge (pp. 875-876) “knowledge
needed ‘to make content comprehensible to others’... [including knowledge of]
... different ways [for] solving a given task ... student misconceptions and
difficulties ... useful representations, analogies, illustrations, or examples”

Tatto et al.
(2008)
TEDS-M

MCK: Mathematical Content Knowledge (pp. 22-23); “Knowing”, “applying”,
and “reasoning” in grade level taught, as well as within 2 years above the
grade level taught; MPCK: Mathematics Pedagogical Content Knowledge (p.
23) “mathematics curricular knowledge” (e.g., “establishing appropriate
learning goals™), “knowledge of planning” (e.g., “selecting appropriate
activities”), “enacting mathematics” (e.g., “analyzing the content of students’
questions™).

Heid et al.
(2015)
MUST

MP: Mathematical Proficiency (p. 11, 14); “Conceptual understanding,
procedural fluency, strategic competence, adaptive reasoning, productive
disposition, and historical and cultural knowledge” (p. 14); MA: Mathematical
Activity (pp. 11-12, 14) “Whereas the MP perspective describes the general
types of mathematical understandings that a teacher should have and use, the
MA perspective describes specific mathematical actions. ... representing
mathematical objects and operations, connecting mathematical concepts,
modeling mathematical phenomena, and justifying mathematical arguments.”;
MC: Mathematical Context of Teaching (p. 12, 14) “probe mathematical ideas,
access and understand the mathematical thinking of learners, know and use the
curriculum, assess the mathematical knowledge of learners, and reflect on the
mathematics of practice.” (p. 14)

FIGURE 5
Proposed subdomains of MKT in examined frameworks.

rather than compartmentalized view of MKT. On the other hand,
if IRPs could be cleanly placed into single subdomains, then this
would lend support to a compartmentalized view of MKT.

3.5.2 Operational descriptions of framework
component

To develop a usable set of codes that could be applied to our
IRPs for each framework, our first step was to extract operational
definitions of key subdomain. We did so using seminal documents
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listed in Figure 5 by quoting descriptions directly from the source.
We added clarifications throughout the coding process where
authors’ original language in the source document or other reports
was insufficient to inform coding decisions. For instance, we
operationalized “conventional mathematics classes” (from KAT)
to mean courses taught by mathematics departments that do not
primarily enroll teachers.

We note here that early in this process we were faced with the
need to make a choice about coding subdomains of pedagogical
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content knowledge (PCK). Several frameworks included a domain
with the phrase “pedagogical content knowledge,” making explicit
reference to Shulman’s (1986) definition of the term, but two
of these frameworks (COACTIV and TEDS-M) elected not to
differentiate subdomains of PCK in their assessment design. While
the Ball et al. (2008) framework does define subdomains of PCK,
and at least one study describes efforts to assess one of those
subdomains directly (Hill et al., 2008), most assessment efforts
based on this framework have focused on differentiating between
common and specialized knowledge, with less focus overall on
measuring PCK and its subdomains. Given these considerations,
we elected not to code subdomains of PCK.

3.5.3 Coding

Once an initial code list was developed from seminal
documents of each framework, researchers coded essential
elements of the item’s IRP for the domain(s) of the framework
that the piece represented. To do so, we assessed to what
degree an IRP element was an instance of each domain of each
framework, keeping open the possibility that an IRP element may
not correspond to any domain of a framework, or that it may
correspond to multiple elements. For instance, when considering
the COACTIV framework, we coded B4 in the Morgan IRP
(Figure 3) to be both CK and PCK, because the notion of
mathematical generalization is consistent with mathematics from a
higher standpoint (CK) and B4 concerns student misconceptions
(PCK); and we coded Bl and B2 to not correspond to CK or
PCK, because they are not about working with students or tasks,
and applying a standard procedure to a standard task does not
constitute deep knowledge of the secondary curriculum.

A codebook was created and used in order to maintain adequate
rigor (MacQueen et al, 1998; Saldana, 2012), and, following
Creswell’s (2009) suggestion to document as many analysis steps
as possible, the coding sheet included a note section for the coders
to keep a record of their reasoning for assigning certain codes to
an item, any questions they had, the decisions made, and additional
observations worthy of attention.

Coding was done independently, with two coders per item,
and a third coder brought in to arbitrate discrepancies as needed.
At least one author coded each item. Two colleagues familiar
with research on MKT served as additional coders as needed.
Inter-rater reliabilities between the pairs of initially assigned raters
were calculated as simple percent agreement and were generally
adequate, ranging from 0.69 to 0.97, but our goal in this coding
was less to establish reliability in coding and more to produce
a consensus around accurate final coding. Because we drew on
codes extracted from the selected frameworks, we were limited in
how far we could develop our code list without compromising
fidelity to each frameworK’s authors’ intentions. Given this, the
inter-rater reliability in this study may reflect more than anything
else the degree to which each frameworK’s provided definitions were
specified in ways that made them amenable to use as codes.

What is more salient to our study is the intercoder agreement, a
term introduced by Creswell (2009) to represent the final agreement
among researchers after reconciling discrepancies in initial coding.
Gibbs (2007) suggested that researchers can minimize bias by first
individually coding the same set of data using the same codes and
then discussing the results of the coding with a goal of reaching
a common agreement about the meaning and application of each
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code. Following this method, we were able to reach consensus
on the final code application. We then counted, for each item
under each framework, the number of domains of that framework
represented in the IRP for that item, to represent quantitatively
the number of compartments that item could be taken to measure
under the given framework.

4 Results

4.1 Analysis of idealized response
patterns: results for RQO

Results from the analysis of IRP accuracy are shown in Table 1.
Our results indicate that the idealized response pattern is supported
in most cases, with 89% of responses falling on diagonal (We
note that all responses to the Morgan item were on diagonal; all
participants but one selected “Student B does not demonstrate
a mathematically valid approach,” and these participants all note
that there was lack of evidence of Student B’s attending to change
in x; the one participant that selected “Student B demonstrates a
mathematically valid approach” did not mention anything about
Student B’s attention to change in x.).

As for comparison to prior studies (Howell et al., 2013a), we
noted that the on-diagonal percentage (89%) compared favorably
to those found in similar studies of elementary mathematics (88%)
and elementary level English Language Arts (90%). We interpret
this result as providing evidence that the IRPs can be taken as a
proxy for the teacher reasoning drawn on in responding correctly
to the items analyzed in this study.

4.2 Number of domains assessed by
framework and item: results for RQ1 and
RQ2

Table 2 shows the number of domains of each framework
assessed by each of the nine items, with Figure 6 specifying the
specific domains. There was some variation in the degree to
which individual item elicited evidence of multiple domains. The
Hillyard item represented one extreme, eliciting evidence of a single
subdomain (PCK) under four of the five frameworks, and evidence
of multiple subdomains under only one, the MUST framework
(Heid et al., 2015), where it was coded as eliciting evidence of both
mathematical activity and mathematical context. By way of contrast,
the Morgan item elicited evidence of multiple subdomains under all

TABLE 1 Alignment between ideal response patterns (IRPs) and
selected answers.

Alignment to IRP Correct Incorrect
answer answer
88 (51%)° 3 (2%)>

All elements of IRP present in
response

At least one element of IRP is absent 14 (8%)° 66 (38%)¢
These responses can be considered “false negatives.” ®These responses can be considered
“false positives.” “These responses indicate accuracy of the IRPs; in our study, a total of 89%

of responses aligned with the IRP.
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TABLE 2 Number of subdomains measured by item by framework, with frameworks and item listed in alphabetical order.

[ Framework | Balletal 2008 |

COACTIV MUST TEDS-M
2 3 3 2

Number of subdomains 3
coded
Iltem name
Allen 3 1 2 2 2
Carlies 3 2 2 3 2
Hillyard 1 1 1 2 1
Morgan 3 2 3 3 2
Rose 3 2 2 3 2
Swain 3 2 2 2 2
Swift 3 2 3 3 2
Watkins 2 1 2 2 2
Williams 2 1 2 3 1
Ball et al. COACTIV (KAT
CCK SCK PCK |[CK PCK |Sch Adv
FIGURE 6
Subdomains captured by IRPs.

five frameworks, indicating that it may elicit evidence of a blend
of domains regardless of which framework is selected. Variation
by framework was less pronounced, with all frameworks except
COACTIV showing all available domains coded to a significant
subset of the items; we note that the COACTIV framework only
contained two domains. All frameworks were represented across
all items and all items elicited something from each framework,
confirming, as expected, that the frameworks were reasonable ways
to describe the MKT elicited across the set of items.

5 Discussion

5.1 Discussion of findings

In the first portion of the paper, we advanced an argument
that the reification of MKT in frameworks has led to the field’s
adoption of a compartmentalized view of MKT, with a potentially
disproportionate representation in the literature of studies focused
on defining, measuring, and defending a given decomposition of
the whole. We complemented that argument with a description
of a two-part study of MKT items. In the first part of this study,
we compared hypothesized idealized response patterns to teachers’
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interview responses to those items. We found that these idealized
response patterns do represent teachers’ actual reasoning. In the
second part of this study, we used these idealized response patterns
to code each item for the domains measured using five different
frameworks for MKT. Our results illustrate that reasoning for
most items, as represented by the idealized response patterns,
rely on multiple elements of domains of multiple frameworks,
suggesting that for most items, knowledge is used in connected
ways. Additionally, as a set, these items did not measure domains
of any of these frameworks distinctly, suggesting that sets of items
are insufficient to distinguish among components that are theorized
to be important.

One explanation for our results is that this set of items
was designed to capture MKT by following a practice-based
item design theory. From a practice-based perspective, what
makes an assessment task effective in measuring MKT is how
closely it represents the work of teaching and, hence, the
item is considered successful based on how well it represents
“the actual practices we hope teachers will successfully master,
rather than the more slippery notion of the kinds of knowledge
teachers should possess” (Hill, 2016, p. 5). And because these
tasks of teaching are designed to approximate the work of
teaching, it stands to reason that, like teaching, a strong
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assessment item might call on multiple types of knowledge use
and ask the test taker to coordinate them in application to
the work of teaching. Because the set of items we examined
were designed to be practice-based, we cannot claim that our
findings are likely to generalize to assessment items that follow
a different design. However, as Hill (2016) points out, many
current assessments (and all of those explicitly based on the
frameworks we examined) follow some degree of this practice-
based design in which an item focuses on engaging the test
taker in key tasks of teaching mathematics. This suggests that the
findings may generalize, at least in part, to many current MKT
assessment efforts.

Overall, a potential interpretation of our results is that these
frameworks, each designed with different and particular intent
and potentially useful with respect to that purpose, may not
be useful for distinguishing measurable subdomains of MKT.
Our study illustrates that the tendency for practice-based items
to capture multiple subdomains is a common issue across
frameworks and perhaps one that is a necessary result of practice-
based item design. To some degree this is a divide between
approaches to theory and approaches to assessment. If one takes
a compartmentalized view of an MKT framework, assuming
that subdomains must be distinctly measurable in isolation from
the larger construct to establish the value of the theory, this
result could be viewed as problematic, or as refuting the theory.
We also note that there are various measurement techniques
that to our knowledge have not been applied to the study of
MKT, that may give estimates for subdomain knowledge even
when multiple subdomains are drawn upon (e.g., Tatsuoka,
1983, Copur-Gencturk et al, 2019). We hold, however, that
identification of distinctly measurable subdomains, or estimation
of knowledge of such subdomains, is not the only or even
the most desirable purpose of theory; a theorized subdomain
need not be distinctly measurable in isolation from the larger
construct to be useful in informing the field’s thinking, designing
policy, or as a heuristic for organizing teacher supports. Our
analysis adds depth to previous arguments for the utility of a
connected view of MKT (e.g., Beswick et al, 2012; Watson,
2008) by directly demonstrating the co-occurrence of theorized
subdomains, and by showing that it occurs across multiple
frameworks used in the field and is not simply an attribute of one
of them.

An alternate interpretation of the same results might point
to the finding as a weakness of practice-based item design,
in that MKT items written to this design, even if found to
be reasonable measures of MKT writ large, may not be a
productive method for the assessment of more refined components.
We caution, however, that while this may be a reasonable
critique, practice-based items have a long and established place
in the literature and a stronger evidentiary base to date than
other approaches to measuring MKT, so it would be unwise
to dismiss them on this basis. There is clear evidence that
assessments written to this model are measuring MKT, which
represents remarkable progress made over several decades of
research and development work. We would prefer to foreground
in this conversation the need to decide, given a particular
assessment use case, whether it is necessary or desirable to measure
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subdomains of MKT in isolation, or whether a general measure
of MKT suffices.

5.2 Limitations

We caution here against potential overgeneralizations of our
results, which we would characterize as more illustrative than
generalizable. The set of items analyzed is small, and while
we intentionally selected items to represent strong examples of
practice-based item design theory for which we had evidence of
success in capturing MKT, our observations may not generalize
to all practice-based items and almost certainly do not generalize
to differently designed assessment items. That a practice-based
approach is prevalent in the field provides some evidence that itis a
fruitful design method, but other approaches may emerge that are
equally able to measure MKT and better able to capture its domains,
or more careful domain analysis and framework development
might produce a set of distinctions in knowledge and knowing that
can be measured in clear isolation from one another.

We also note a variability across the cases analyzed, calling
attention to the two cases that seemed to measure distinct domains
best: the Hillyard item, which was coded as measuring only one
domain under most frameworks, and the Williams item, which
was coded as measuring only one domain under three frameworks.
These cases illustrate that is clearly possible, even within the set
of items we analyzed, for an item to measure a single subdomain
under a framework. In fact, the results for the Hillyard item, which
were coded with the single domain of PCK in all frameworks with a
PCK component, corroborates the suggestion of Lai and Jacobson
(2018) that it may be possible to write a pure PCK item when
the reasoning requires pedagogical warrant. It is not our claim
that practice-based items measure multiple subdomains, with no
exception. We simply note that measuring isolated subdomains
does not appear to be a typical pattern.

We also note that the critique of frameworks on the basis of our
numerical results is inappropriate given the purpose and method of
the coding. Frameworks did not have equal numbers of categories
to begin with, and our coding decisions may have exaggerated
these differences or obscured them. Some frameworks afforded
clearer coding decisions than others, but none were designed with
this type of coding in mind, and many of the authors of the
frameworks acknowledge some ambiguity in the boundary cases
between domains. Not all the frameworks were explicitly designed
to support assessment design, and it is also worth noting that
none were utilized to design the set of items we analyzed, and it
is possible, therefore, that our items may distinguish subdomains
less well than items designed for that purpose under a particular
framework might do.

Finally, we note the necessary limitation of having utilized
a small set of frameworks that explicitly focus on MKT, which
limits the implications of our findings. There are, as noted in
the background section, scholars who critique not just particular
frameworks for knowledge, but the broader approach, including
for example underlying idea that describing knowledge in static
ways is useful (e.g., Rocha, 2025). While some of these critiques
may complement our findings about connectedness, neither the
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critiques nor alternate framings such as Thompson (2016) were the
subject of our inquiry and therefore our empirical results cannot
speak directly to those.

5.3 Implications

We note that the true takeaway from our results is simple: there
is not a clear mapping between MKT subdomains and assessment
items. Whether this is seen as a weakness of the theory or of the
item design is somewhat irrelevant to our larger point, which is
just that compartmentalized views of MKT may be inadequate to
describe the way that MKT is drawn on and used by teachers.
We suggest that research would benefit from stepping back from
debates about individual frameworks and theorized domains of
MKT and instead consider what it would mean to design research
and practice around a more connected view of knowledge use.
In this view, theoretically distinguishable uses of knowledge may
necessarily overlap during the work of teaching.

In this study, we asked: In what compartmentalized or
connected ways do practice-based items elicit MKT? How does
connectedness or compartmentalization appear to differ or be
similar when viewed through different frameworks proposed for
MKT? Our study provides evidence that practice-based items may
tend to elicit MKT in connected ways because uses of knowledge
domains co-occur, regardless of which framework is used to parse
MKT. In our results, the only framework to not isolate any domains
in any idealized response pattern was MUST, which was also the
only framework we used that was developed from a connected view.

One way in which our study is novel is that we sought to take
up directly the question of the compartmentalized nature of MKT.
And while other scholars observe a finding of unidimensionality as
reflecting a flaw in conceptualizations of MKT, we interpret such
findings in a more nuanced way by observing that connectedness
among and between subdomains in use may manifest in assessment
as unidimensionality while still leaving room for considerable
complexity in how we understand the domain and organize
instruction around it. It is not that the conceptualized sub-domains
are somehow “wrong” because they are not well supported by
assessment evidence, but rather that we need better ways of
understanding sub-domains that are both non-isomorphic and
deeply intertwined. The present study takes an initial step toward
a more connected view of MKT, but the results suggest that there
is much more to study and to understand, questions that we
unintentionally overlook if adopting a compartmentalized view of
MKT. For example, our analysis provides evidence that reasoning
through teaching problems can draw on multiple knowledge
domains, but co-occurrence is a limited descriptor of connections,
and we could imagine lines of research that explore the nature
of these connections, the directionality of dependence where
there is such directionality, the cognitive demands associated with
coordination of these knowledge domains, and how those domains
and the connections among them are more or less salient under
different use cases such as assessment, learning, and application in
teaching. In other words, we acknowledge that this is just a start
toward addressing the questions that led us down this path, and
we hope that the field will consider the potential affordances of
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a connected perspective on MKT and engage in work to better
understand those connections moving forward. To return to the
periodic table metaphor of Ball et al. (2008), we suggest moving
beyond studies that seek to isolate rudimentary elements and
toward ones that explore the nature and properties of compounds
and how different conditions may elicit different behavior by the
same molecule.
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