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The integration of artificial intelligence in education has enabled the
development of predictive models for academic performance. However, most
existing approaches lack interpretability and do not provide actionable insights
for decision-making. This study addresses these limitations by deploying
optimized machine learning models, specifically XGBoost and Random Forest,
to predict student performance considering geographically, institutional,
socioeconomic, and academic factors. Unlike previous research focused only
on accuracy, this work incorporates SHAP-based interpretability techniques
and an interactive decision support system to analyze the impact of various
variables on educational outcomes. The model was trained and validated on a
dataset of 50,000 student records, optimized through hyperparameter tuning
and cross-validation. Results indicate that XGBoost achieves an R? of 0.91,
outperforming traditional approaches, and reduces the mean square error (MSE)
by 15%. The feature importance analysis reveals that five variables explain 72%
of the variability in performance, highlighting the influence of socioeconomic
conditions, infrastructure, and the student-teacher ratio. In addition, simulations
of educational policies show that improving teacher training and access to
technology increases performance by 18% and reduces dropout by 12%. This
study presents a scalable and interpretable predictive model that anticipates
student performance and helps optimize educational strategies through artificial
intelligence applied to decision-making.

KEYWORDS

adaptive learning, problem-solving, artificial intelligence in education, learning
personalization, education, institutional use

1 Introduction

Using machine learning techniques in educational analytics has transformed
how academic performance patterns are identified and intervention strategies are
designed (Abdrakhmanov et al, 2024). The ability to predict student performance
based on multiple factors allows educational institutions to implement preventive
measures, optimize resources, and improve decision-making. However, much of the

01 frontiersin.org


https://www.frontiersin.org/journals/education
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://doi.org/10.3389/feduc.2025.1632315
http://crossmark.crossref.org/dialog/?doi=10.3389/feduc.2025.1632315&domain=pdf&date_stamp=2025-08-29
mailto:ivan.ortiz@udla.edu.ec
https://doi.org/10.3389/feduc.2025.1632315
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feduc.2025.1632315/full
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Guevara-Reyes et al.

previous research has been limited by predictive models
that, although they achieve acceptable levels of accuracy, lack
interpretability and do not consider applicability in real-world
settings (Ikegwu et al., 2024). This gap between predictive accuracy
and interpretability constitutes a key barrier to the adoption
of such systems in actual educational environments, where
decisions must be both data-driven and explainable to educators
and administrators.

This work arises from the need to overcome this gap by
providing models that accurately predict academic performance
and also offer transparency in obtaining these predictions.
Educational institutions often struggle to identify the reasons
for poor student performance, in part because most existing
models operate as black boxes. Therefore, offering explainable
results becomes essential to align predictive outcomes with
pedagogical actions.

Research in academic performance prediction has identified
multiple variables that impact student outcomes, including
geographic, institutional, socioeconomic, and educational factors.
Recent studies have shown that combining machine learning-
based models with contextual data improves predictive accuracy
by 10-15% over conventional methods (Kamimura et al., 2022).
However, most of these approaches have limitations regarding
the interpretation of results and integration into educational
systems. Furthermore, there is a lack of practical validation in
real operational environments, which restricts the utility of many
existing models to theoretical or experimental scenarios.

This study responds to the need to develop predictive models
that maximize accuracy and are also interpretable and applicable in
educational management. The implementation of techniques such
as Shapley Additive exPlanations (SHAP) allows the analysis of the
influence of each variable in the predictions, offering a detailed view
of the determining factors in academic performance (Ben Jabeur
et al., 2022). In addition, integrating the model in an interactive
visualization system facilitates the exploration of different scenarios
and the formulation of data-driven strategies. The justification for
this approach lies in the growing demand for decision-support tools
in the educational field, where performance prediction must be
accompanied by understandable explanations that allow teachers
and administrators to take evidence-based measures (Muhamedyev
et al., 2020).

To address these challenges, the study was developed
using a dataset that covers information from educational
with different geographic and
More than 50,000
collected with variables

institutions socioeconomic

characteristics. student records were

including academic performance,
institutional conditions, and socioeconomic factors. Data cleaning,
normalization, and categorical variable coding techniques were
applied during preprocessing to ensure the dataset’s quality.
Subsequently, optimized machine learning models were trained
using hyperparameter tuning, cross-validation, and feature
selection techniques.

The results showed that XGBoost had the best predictive
performance, reaching a coefficient of determination (R?) of 0.91
and reducing the mean square error (MSE) by 15% compared to
base models. Furthermore, the assessment of feature importance
revealed that 72% of the variability in academic performance can
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be explained by five main variables: socioeconomic level, type of
institution, student-teacher ratio, access to technological resources,
and previous grade point average (Yang, 2024). These findings
are consistent with previous studies that highlight the influence
of contextual factors on learning. However, unlike those studies,
this work incorporates a structured interpretability layer, evaluates
performance in real time, and allows for the formulation of policy
scenarios within a single operational framework.

The system performance evaluation showed that the response
time in low-load environments remains below 1 s. At the same
time, in high-concurrency scenarios, it does not exceed 2 s, with
a computational efficiency of 92% in low load and 85% in high
load. This efficiency level indicates that the proposed solution
can be integrated into educational systems without compromising
the model’s speed and accuracy. Additionally, educational policy
simulations were carried out to evaluate the impact of various
intervention strategies. The results showed that strengthening
teacher training and expanding access to educational resources can
increase academic performance by 18% and reduce the dropout rate
by 12%, thus validating the model’s usefulness as a predictive tool
for data-driven policymaking.

The main contributions of this work include (1) the integration
of advanced machine learning models with interpretable AI
methodologies, (2) the development of a scalable system that
maintains high efficiency in real-time environments, and (3) the
implementation of a visualization platform for simulation and
educational planning (Maeda et al., 2024). Unlike previous studies
that focused solely on model accuracy, this approach allows us
to understand the reasons behind the predictions and evaluate
their applicability in educational management (Charytanowicz,
2023). The optimization of the model for real-world environments
ensures its viability in institutions with different technological
capabilities. At the same time, the development of an interactive
platform facilitates the exploration of educational scenarios and
the formulation of data-driven strategies Yin et al. (2024). This
combination of elements makes this work a contribution to the field
of education and applied artificial intelligence (AI).

This study demonstrates that integrating machine learning,
model interpretability, and decision support tools can transform
how educational outcomes are analyzed and predicted. Providing
clear explanations about predictions improves confidence in
using these systems and allows for more effective adoption in
academic settings. Implementing this system facilitates the early
identification of students at risk of underperformance and provides
a solid basis for formulating strategies that optimize learning
quality in different educational contexts.

The remainder of this paper is structured as follows. Section
2 presents the literature review, which analyzes prior work
on machine learning for academic performance prediction and
highlights the existing limitations in interpretability and system
deployment. Section 3 describes the materials and methods,
including data acquisition, preprocessing, model selection, and
interpretability strategies. Section 4 reports the experimental
results, focusing on the predictive performance, operational
efficiency, and feature relevance analysis. Section 5 discusses the
implications of the findings, emphasizing the applicability of the
proposed system in real educational settings. Finally, Section 6
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presents the conclusions and outlines directions for future research,
including scalability, ethical deployment, and extensions to broader
educational contexts.

2 Literature review

In recent years, the integration of Al in the educational field has
gained significant relevance, especially in Educational Data Mining
(EDM) and Learning Analytics (LA) (Martinez Lunde et al., 2024;
Bellaj et al., 2024). These disciplines seek to improve educational
outcomes by analyzing large volumes of data and enabling the early
identification of at-risk students. However, the opacity of many AI-
based systems limits their adoption in academic contexts, where
interpretability and trust are essential.

A recent study (Raji et al., 2024) offers valuable insight into
applying explainable AI (XAI) techniques that can be extrapolated
to the educational field. The authors highlight the importance of
interpretability in AT models to foster trust among end users. It was
identified that the most used XAI techniques are model-agnostic
and that deep learning models are the most widely used. However, it
points out the limited participation of professionals in the process,
identifying the need for closer collaboration between Al experts and
domain professionals to develop appropriate frameworks to guide
the design, implementation, and evaluation of XAI solutions.

The article (Bonifazi et al., 2024) addresses the “black boxes”
issue in Al, where even developers struggle to interpret how model
decisions are generated. This lack of transparency is particularly
critical in education, as it hinders the identification of biases and
erodes trust in AI-generated recommendations.

To address these challenges, it is essential to develop Al models
that are not only accurate but also interpretable and transparent.
Implementing XAI techniques in EDM and LA can help educators
better understand the factors influencing student performance,
allowing them to make more informed decisions (Puthanveettil
Madathil et al.,, 2024; Rachha and Seyam, 2023). Furthermore,
interdisciplinary collaboration between AI experts, educators, and
other relevant stakeholders is crucial to ensure that the solutions
developed are practical and ethically responsible.

Choi et al
explainable AI methods for student performance prediction

(2025) conducted a systematic review of

in STEM education, highlighting the need for improved visual
interpretability and alignment with practical educational use
cases. Their findings revealed the predominance of SHAP in
model explanations, while also calling for tools that bridge the
gap between model accuracy and actionable insight-an approach
addressed in this study through dashboard integration. For its
part, Nagy and Molontay (2024) proposed a dropout prediction
model enhanced by SHAP-based interpretability. Their results
demonstrated that tree-based models can provide interpretable
and effective interventions, although they did not consider
broader educational policy scenarios or real-time institutional
decision support.

Nnadi et al. (2024) applied XAI to predict student adaptability,
integrating SHAP explanations to enhance the understanding of
student profiles. However, their model was not embedded into
interactive environments or real-time applications, limiting its
operational impact on educational management systems. Ramos-
Pulido et al. (2024) explored the relationship between career
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satisfaction and university learning through statistical and data
science models. While not focused on prediction, the study
emphasizes the importance of integrating student experience and
career factors, supporting the inclusion of socioeconomic and
institutional variables in our model.

Shoaib etal. (2024) developed an Al-based predictor for student
success embedded in campus management systems, focused on
personalized learning. While this integration advances adaptability,
their approach lacks explicit mechanisms for explaining model
outputs and for evaluating the effect of policy-level decisions,
such as resource allocation or institutional strategies, both core
elements of the present work. Abdrakhmanov et al. (2024)
proposed a framework to predict academic performance in
STEM disciplines using machine learning. Their findings align
with ours in identifying institutional and prior performance
indicators as strong predictors, yet their work did not incorporate
interpretability frameworks, limiting its practical implementation
in educational settings.

The reviewed literature reveals a clear progression toward
the integration of machine learning in education, with increasing
interest in models that are both accurate and explainable.
Nevertheless, a significant gap persists in the operational
deployment of interpretable AI within real-world institutional
systems, particularly in applications that support policy-level
decisions, adaptive feedback, and real-time educational planning.

To provide a more structured synthesis, six representative
studies were selected from the broader literature. These studies,
which differ from those previously cited (Raji et al., 2024; Bonifazi
et al., 2024; Puthanveettil Madathil et al., 2024; Rachha and Seyam,
2023), were chosen based on their direct relevance to the objectives
of this research: the application of explainable AI techniques, the
use of predictive models in higher education, and their potential
for integration into institutional decision-making contexts.

Table I summarizes the key characteristics of these studies,
comparing their educational focus, use of XAI techniques, level
of real-time or embedded deployment, institutional application,
and the primary gaps identified in each case. As shown, while
several studies demonstrate solid advances in model transparency
and predictive accuracy, most remain limited to offline analysis
or isolated interventions. Only one study integrates predictive
models into operational campus systems, and even then, without
mechanisms for model interpretability. Moreover, none of the
reviewed works offer combined support for explainability, real-time
deployment, and institutional strategy simulation.

This reinforces the contribution of the present work, which
not only implements SHAP-based explainability but also integrates
the results into a live, institution-facing decision support interface.
By embedding interpretable AI directly within the educational
management workflow, this study addresses the critical need
for transparent, actionable, and adaptive intelligence in modern
learning environments.

3 Materials and methods

The methodological process followed in this study is illustrated
in Figure 1. The system architecture integrates multiple layers,
from raw educational records through preprocessing, model
training, deployment, and user-facing interfaces. This pipeline was
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TABLE 1 Comparative analysis of representative studies on explainable Al in education.

Study XAl technique Real-time / embedded Institutional use
Choi et al. (2025) SHAP (global), LIME, PDP No Partial (intervention support)
Nagy and Molontay (2024) SHAP, LIME, PI, PDP No Partial (stakeholder feedback)
Nnadi et al. (2024) SHAP, LIME, ALE, anchors, counterfactual No No

Ramos-Pulido et al. (2024) SHAP (in GBM), logistic regression No Partial (alumni-level analysis)
Shoaib et al. (2024) CNN + ensemble (no XAI) Yes Yes

Abdrakhmanov et al. (2024) Random Forest, SVM, neural networks (no XAI) No No

Raw Data &5
(Educational Records) 8 &
Data Preprocessing:
Cleaning, Encoding,
Normalization 4
g an .
| | ik
Feature Engineering =
& Selection
Model Training =5
(Random Forest /XGBoost) <3
Model Deployment
(FastAPI, Kubernetes)

API Gateway/
REST Interface

Presentation
Layer

y

Dashboard / Decision
Support System

FIGURE 1
End-to-end system architecture for student performance
prediction.

designed to ensure interpretability and operational viability in
academic environments.

Frontiersin Education

3.1 Data sources and collection

This work is based on data from official sources of the
Ecuadorian educational system, integrating administrative records
and results of standardized assessments. Combining these datasets
allows for a comprehensive evaluation of geographic and
sustainability factors in predicting academic performance.

3.1.1 Master file of educational institutions (AMEI)

The Master File of Educational Institutions (AMEI) is a
database managed by the Ministry of Education of Ecuador,
which contains detailed information on all educational institutions
in the country. This file is updated periodically and provides
a comprehensive overview of educational establishments’
geographic distribution, infrastructure, human resources, and
institutional characteristics.

The AMEI contains information on the geographic location of
educational institutions, including administrative identifiers such
as zone, province, canton, and parish. It also includes institutional
identification data such as the AMIE code, name of the institution,
support (public/private), and school regime. In addition, it provides
information on the available infrastructure, including resources,
access to essential services, and ownership of buildings. Data
on human resources include the total number of teachers and
administrators segregated by gender. Finally, the AMEI offers
detailed information on student enrollment, including the number
of students enrolled by educational level, their distribution by
gender, and the teaching modality. This data source is essential for
analyzing the influence of geographic and institutional conditions
on academic quality, allowing for establishing relationships
between spatial factors and student performance.

3.1.2 Ser Bachiller evaluations

The Ser Bachiller evaluation system, applied in Ecuador until
January 2020, is a standardized instrument designed to measure
students’ level of knowledge and skills at the end of secondary
education. This evaluation determined access to public higher
education and was a key indicator of academic performance in
different areas.

Ser Bachiller is representative because it evaluates most
students in the country’s last year of high school. Its coverage is
multidimensional since it measures competencies in mathematics,
language and literature, natural sciences, and social sciences.
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TABLE 2 Variables from AMEI and Ser Bachiller datasets.

10.3389/feduc.2025.1632315

Category Variable Description

Geographical Zone, province, canton, parish Administrative identifiers that reflect the territorial location of the institution
Area (Urban/Rural) Classification according to geographic location

Institutional Support Type of financing: public, private or fiscomisional
School regime Modality: morning, evening or night

Socioeconomic Infrastructure and accessibility Evaluation of building conditions, internet access, electricity, and drinking water
Teacher-student ratio Average number of students per teacher

Academic Available resources Number of classrooms, laboratories, and libraries available in the institution
Imat (Mathematics) Score in the Mathematics section of Ser Bachiller
Ilyl (Language and Literature) Score in the Language and Literature section
Icn (Natural Sciences) Score in the Natural Sciences section
IES (Social Sciences) Score in the Social Sciences section

Being a standardized evaluation, it provides comparable data
at a national level, eliminating biases derived from each
institution’s internal assessment. Its relevance in educational
quality lies in the fact that, when used as a criterion for
admission to public universities, it allows inferring students’
academic preparation.

Ser Bachiller scores have been used in this study as target
variables for prediction models, allowing the identification of
patterns in student performance based on geographic and
institutional factors.

3.1.3 Analysis period

To ensure the study’s temporal validity, data from 2018 to 2020
were selected. This selection responds to the availability of complete
and consistent data in AMEI and Ser Bachiller. It also allows for
analyzing the conditions before the COVID-19 pandemic, avoiding
biases derived from the interruption of face-to-face classes and
modifications in the evaluation processes. The temporal variability
of this period is sufficient to evaluate trends and changes in
educational quality.

3.1.4 Description of variables

The selected variables were grouped into four categories:
geographic, institutional, socioeconomic, and academic. Table 2
presents the classification of these variables, which form the basis
of the prediction models used in the study.

This classification of variables structures the relationship
between the factors analyzed and students’ academic performance.
The combination of geographic, institutional, socioeconomic, and
educational data facilitates the construction of more precise and
explanatory predictive models.

3.2 Data preprocessing

Data preprocessing is essential in building machine learning
models as it ensures the data is suitable for analysis and prediction.

Frontiersin Education

This process includes handling null values, transforming
data
and visualizing

categorical variables into numerical representations,

normalization, selecting relevant features,
correlations (Santos et al., 2024).

Figure 2 presents the main steps of the data preprocessing
workflow. The process begins with raw data ingestion, followed
by handling missing values to ensure data completeness.
Next, categorical variables are transformed into numerical
representations using encoding techniques. Normalization and
scaling are applied to numerical features to standardize data
ranges and improve model performance. Finally, feature selection
is conducted to eliminate redundant variables and optimize
computational efficiency.

To ensure the authenticity of the data, consistency checks
were implemented across all records. These included validation
of AMIE institutional codes, elimination of duplicated rows, and
cross-verification of geographic and academic fields to detect
and correct logical inconsistencies. For example, institutions
with incompatible modality and regime information were
manually reviewed and adjusted. In terms of bias mitigation,
stratified sampling was applied to maintain proportional
representation across geographic zones and institution types
(public, private, and federal). Additionally, variable distributions
were analyzed to detect potential skewness associated with
Although the

standardized nature of Ser Bachiller reduces

demographic or socioeconomic conditions.
institutional
evaluation bias, complementary normalization was performed to
ensure comparability across cohorts. Finally, the preprocessing
pipeline included automated scripts to verify data integrity and
reproducibility at each transformation stage, minimizing human-
introduced inconsistencies and supporting the replicability of the
modeling process.

After completing the preprocessing and variable selection
stages, the final dataset comprised ~48,000 records and 27 features
distributed across the four defined categories. These include both
original and transformed variables used in model training and
interpretability analysis. Additionally, an exploratory analysis of
the target variables from the Ser Bachiller dataset revealed a
consistent distribution across subject areas, with no significant

frontiersin.org


https://doi.org/10.3389/feduc.2025.1632315
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Guevara-Reyes et al.

Raw Data

A4

|
[ Handling Null
L

Values

Y

Categorical
Encoding

A\ 4

Preprocesssed
Data

|
|
)
|

FIGURE 2
Workflow of the data preprocessing steps.

imbalance detected that would require the application of synthetic
resampling techniques.

3.2.1 Handling null values and inconsistent data

The original dataset contains null values in several variables
due to incomplete records or errors in data collection. Because
missing data can affect the performance of predictive models,
different imputation strategies were applied depending on the type
of variable (Pontieri et al., 2003).

Imputation based on the meaning and media was used for
numerical variables, depending on the data distribution (Laurent
etal., 2022). The mean was chosen in variables with approximately
normal distributions, while in those with skewed distributions, the
media was used to avoid the influence of outliers. The equation
applied for imputation with the meaning is:

1
Ximputation = N ZXi (1)

Where Ximputation i the value replaced in the missing data,
N is the number of non-null observations, and X; represents the
existing values.

For categorical variables, imputation by mode was applied,
assigning the most frequent value within each category.
Additionally, consistency checks were performed on records
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with apparent inconsistencies, such as educational institutions
with duplicate values in their identification.

Furthermore, to ensure robustness against extreme values,
outlier detection was systematically applied to numerical variables
with known dispersion issues, such as the student-to-teacher
ratio. This variable, being highly skewed in some rural or special
institutions, was analyzed using the interquartile range (IQR)
method. Observations beyond 1.5 times the IQR above the third
quartile or below the first quartile were flagged. For extreme
anomalies, such as ratios exceeding 100 students per teacher or
falling below 1, manual inspection was conducted. When records
were found to be erroneous or duplicated, they were removed.
In cases where values were correct but extreme, winsorization
was applied to limit their impact on model training. This process
contributed to improving model generalizability and mitigating the
influence of atypical institutional configurations.

3.2.2 Coding of categorical variables

The dataset includes multiple categorical variables, such
as the institution’s support type, the geographic area, and
the school regime. Since machine learning models require
numerical representations, these variables were transformed using
encoding techniques.

One-Hot Encoding (OHE; Agrawal et al, 2023) was
implemented for nominal variables without an intrinsic order,
generating a binary variable for each category. This technique is
formalized as:

1, if the category is present

OHE(X) = (2)

0, ifthe category is not present

This method avoids the imposition of artificial relationships
between categories and prevents bias problems in the models.

For ordinal categorical variables, such as the educational level
of the institution, Label Encoding was used, assigning numerical
values according to a defined hierarchy. This transformation is
represented as:

LE(X) = {0,1,2,..,N — 1} (3)

Where N is the number of categories in the variable. This
encoding maintains the hierarchical relationship between the
categories, which is helpful in specific models such as decision trees.

3.2.3 Data normalization and scaling

Scale-sensitive machine learning models such as logistic
regression and neural networks require transforming numerical
variables to improve training stability. MinMaxScaler was applied,
which rescales values in a range [0,1] using the following equation:

X — Xmin

X ="
Xmax - Xmin

)

Where X’ is the normalized variable, Xpin and Xpayx represent
the minimum and maximum values of the dataset. This method
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ensures no variable dominates the prediction by magnitude,
improving model convergence.

Although standardization (Z-Score Scaling) was considered,
MinMaxScaler was ultimately selected due to the characteristics of
the models used in this study. Tree-based models such as Random
Forest and XGBoost are not particularly sensitive to feature scaling,
but preserving the original distribution range aids in maintaining
consistency across interpretability tools like SHAP. Additionally,
for models like neural networks, MinMaxScaler contributes to
faster convergence and numerical stability during training, making
it a practical choice for the selected pipeline.

(5)

Where p is the mean and o is the standard deviation. However,
due to the nature of the selected models, MinMaxScaler was chosen.

3.2.4 Feature selection and multicollinearity
assessment

A correlation assessment between variables was performed
to reduce dimensionality and improve computational efficiency.
Pearson correlation was used to measure the linear relationship
between numerical variables:

YR - ) ©

Y- xR Y - 12

Where X and Y are numerical variables, X and Y their means,
and r the correlation coefficient.
Features with |r] >  0.85 were removed to avoid
multicollinearity problems since values close to 1 or —1 indicate
redundancy in the information. Variance Inflation Factor (VIF)

was also used to assess collinearity between explanatory variables:

1

="

7)

Where R? is the coefficient of determination of the regression
of each variable concerning the others. A threshold of VIF < 5 was
established to select only independent variables.

To illustrate this procedure, Figure 3 presents a flowchart of
the feature selection and multicollinearity control process. This
diagram outlines each step followed prior to model training,
including the removal of highly correlated variables and the
VIF-based filtering.

SHAP was selected over other interpretability techniques
due to its strong theoretical foundation based on cooperative
game theory, which ensures consistency and local accuracy in
attributing feature contributions (Lundberg and Lee, 2017). Unlike
methods such as LIME, which generate approximations based on
local perturbations, SHAP computes exact or near-exact Shapley
values for tree-based models, making it particularly suitable for
Random Forest and XGBoost, which are core models in this
study. Moreover, SHAP allows for both global interpretability
(by aggregating feature importance across all instances) and
local explanations (on a per-student basis), which is essential
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Input Features Threshold:

(Original features |4 > 0.85
from preprocessed dataset)
Correlation Matrix =

emove
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Threshold: |r| > features

0.85

Variance Inflation Thieshold:

Factor (VIF) VIE<5

(Selected variables with
“low multicollinearity)

'

Final Feature Set
(Selected variables with
low multicollinearity)

'

SHAP Computation
| (Using Random Forest XGBoost)

FIGURE 3
Feature selection and multicollinearity control pipeline.

in educational settings where individual diagnostics are often
required. Recent studies in educational data mining have also
adopted SHAP to enable detailed insights into student performance
predictors (Choi et al., 2025). This reinforces its validity as an
explainability tool in academic prediction models.

3.3 Modeling methodology

Data modeling is a crucial stage in developing predictive
systems, as it determines the model’s performance and ability
to generalize to new data. This study evaluated various machine
learning approaches to predict students’ academic performance,
selecting models that strike a balance between interpretability
and accuracy.

3.3.1 Evaluated models

For academic performance prediction, the Random Forest
and XGBoost models were selected. Both are widely used in
classification and regression problems due to their ability to handle
non-linear relationships and their robustness to noisy data (Niazkar
et al., 2024; Uslu-Sahan et al., 2023).
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The Random Forest model was chosen due to its ability to
handle datasets with multiple features, its resistance to overfitting
thanks to the combination of multiple decision trees, and its
ease of interpretation through variable importance analysis. Its
formalization is based on the following equation:

oI5,
y—ni;hz(x) )

Where h;(x) represents the prediction of each tree, and # is the
number of trees in the forest.

The XGBoost model was selected for its efficient optimization
capacity, handling of missing values, and resistance to overfitting
problems through regularization. This model improves the
prediction by optimizing a loss function over multiple iterations
using the following update at each step t:

fix) =fii@) +n)_ gilx) )

i=1

Where gi(x) is the optimization direction, n is the learning
factor, and f;(x) is the prediction at iteration .

The LightGBM and CatBoost models (Zhang and Janosik, 2024;
Li et al,, 2024a) were initially considered but discarded because
they were less interpretable than Random Forest and XGBoost in
this specific context. Although LightGBM is more computationally
efficient, it may be less robust to data with high multicollinearity.
At the same time, CatBoost is optimized for categorical data
with many unique values, which is not the predominant case in
this study.

The decision to prioritize Random Forest and XGBoost
over alternative models such as SVM, kNN, or deep neural
networks was guided by both empirical evidence and practical
considerations. These two ensemble models provide an effective
balance between predictive accuracy and interpretability,
which is crucial in educational contexts where model decisions
stakeholders.

have demonstrated that XGBoost consistently achieves high

must be understandable to Previous studies
performance across domains while maintaining robustness to
missing data and multicollinearity issues (Niazkar et al., 2024). In
contrast, although SVM and neural networks can yield competitive
results, their lack of interpretability and sensitivity to parameter
tuning limits their practical applicability for academic performance
prediction (Ramos-Pulido et al., 2024; Choi et al., 2025). Moreover,
LightGBM and CatBoost, although initially considered, were
discarded due to either their lower robustness to collinearity
or their limited explanatory clarity in preliminary simulations,
as discussed in prior literature (Li et al,, 2024a). Therefore, the
selection of Random Forest and XGBoost aligns with the twin
objectives of model transparency and context-aware performance
in educational data mining tasks.

3.3.2 Division of the dataset

To evaluate the predictive capacity of the models, the dataset
was split into training (80%) and test (20%) sets, ensuring a
representative distribution of the different categories of academic
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performance. This split was performed using the scikit-learn
train_test_split function with stratification on the target variable to
maintain the proportion of classes.

Dirain> Drest = train_test_split(D, test_size = 0.2, stratify = y)

(10)
Additionally, to reduce the variance of the model error
estimate, k-fold cross-validation was used with k = 5, which

involves splitting the training set into five subsets, where each
is used as a validation set in a separate iteration. This was
implemented using scikit-learn’s KFold. This technique helps
improve the robustness of the model by ensuring that its
performance does not depend on a single partition of the data.

All reported performance metrics, including accuracy,
precision, recall, F1-score, and R?, correspond to the mean values
computed across the five validation folds. This ensures a more
stable and generalizable assessment of model behavior, minimizing

the influence of any single partition of the data.

3.3.3 Optimization techniques

Hyperparameter optimization techniques were applied to
improve model accuracy and avoid overfitting problems. Two
approaches were evaluated:

e Grid Search, which performs an exhaustive search for
hyperparameter combinations in a defined space.

e Optuna, an adaptive Bayesian optimization based on dynamic
hyperparameter selection.

Since Grid Search can be computationally expensive, Optuna
was chosen. This software tunes hyperparameters by efficiently
exploring the search space. The optimization was performed by
maximizing model performance, allowing the best combination of
hyperparameters to be found without exhaustively evaluating all
possible combinations.

Each model requires the tuning of specific hyperparameters
that affect its performance. The following search spaces were
defined for Optuna’s optimization process for each model:

Random Forest

o Number of trees (n_estimators) between 50 and 500, as a
more significant number of trees improves model stability but
increases computation time.

e Maximum depth (max_depth) was tested between 3 and 20 to
control the complexity of the model and avoid overfitting.

e Fraction of features used in each split (max_features) was
explored in the range of 0.5 to 1.0.

e Minimum number of samples per leaf (min_samples_leaf) was
optimized to prevent the creation of leaves with very little data,
reducing the risk of overfitting.

XGBoost

e Learning factor (learning_rate) within the range of 0.01 to 0.3,
determining the step size in model optimization.
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e The number of trees (n_estimators) followed a similar
adjustment process to that of Random Forest but with
additional tuning in each iteration.

e The maximum depth (max_depth) was explored between 3
and 10, affecting the model’s learning ability.

e Regularization parameters (A and «) were optimized
to control the penalty in model complexity, mitigating
overfitting.

e The subsample rate was adjusted between 0.5 and 1.0 to reduce
dependency on specific data points.

Optuna was executed using the Tree-structured Parzen
Estimator (TPE) as the optimization algorithm, with a search
budget of 100 trials per model. The objective function was defined
based on the Fl-score obtained through 5-fold cross-validation,
ensuring robustness in the performance evaluation. This approach
allowed the dynamic adaptation of the search process according
to previously evaluated combinations. For classification models
such as SVM and k-NN, the following search spaces were defined:
for SVM, the regularization parameter C was explored between
1073 and 102, and the kernel coefficient y between 10~% and
107%; for k-NN, the number of neighbors ranged from 3 to
20, with distance metrics including Euclidean and Manhattan.
This configuration allows a balance between model complexity,
accuracy, and generalization.

This
identification of hyperparameter configurations that balance

optimization strategy allowed for the automatic
model complexity and generalization capacity without the need to
evaluate every possible combination.

3.3.4 Model performance evaluation

To measure the performance of the models, various metrics
adapted to the context of predicting academic performance were
used. The Mean Square Error (MSE) measures the average
difference between predicted and actual values and is defined as:

I e
MSE—nZ(yl 7i) (11)

i=1

The R? evaluates the explanatory capacity of the model, given
by:

i —3i)?
RR=1-—=21 77
> i —»)?

Precision, Recall, and F1-score assess the ability of classification

(12)

models to distinguish between different performance levels. The
F1-score is defined as:

Precision - Recall

F1=2 (13)

 Precision + Recall

The models are evaluated using an independent test set to
determine their generalization capacity. The results are then
compared to identify the best model based on the combination of
these metrics.
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3.4 Model interpretability

Interpretability in machine learning models is critical when
applying these techniques to decision-making in the educational
field. Understanding the contribution of each variable in predicting
academic performance is crucial to validating the robustness of
the model and ensuring that educational institutions and public
policymakers can understand and act on the results. In this
study, various strategies were applied to assess feature importance,
mitigate bias, and analyze model errors, ensuring that academic
performance prediction is accurate and explainable.

3.4.1 Feature importance analysis

Based on cooperative game theory (Sayegh et al., 2024), SHAP
was used to determine each variable’s relevance in predicting
student performance. SHAP assigns a marginal contribution
to each variable based on its impact on the model result,
considering all possible combinations of features. Unlike other
approaches, such as feature importance in Random Forest or
cumulative gain in XGBoost, SHAP allows for consistent and global
model interpretation.

The application of SHAP revealed that the most influential
variables in predicting academic performance were the teacher-
student ratio, access to technological infrastructure, and the
institution’s geographic location. These variables directly correlated
with the scores obtained in the Ser Bachiller test, highlighting that
factors such as the number of students per teacher can significantly
impact educational outcomes. In institutions with a lower student-
teacher ratio, average performance was higher, suggesting that
individualized attention contributes positively to learning.

The analysis also identified non-linear effects in some
characteristics, particularly those related to technology and school
infrastructure access. It was observed that the presence of computer
labs and internet access not only influenced performance in
Mathematics and Natural Sciences but also positively affected the
comprehension of Language and Literature, indirectly impacting
the capacity for information processing and autonomous learning.
This finding highlights the importance of considering the provision
of educational resources and their effective integration into the
teaching process.

Regarding model stability, SHAP allowed the detection of
predictions’ sensitivity to changes in certain variables. It was
identified that the variability in the scores of students with similar
characteristics was more significant in rural institutions than urban
ones, suggesting that other contextual factors have not been fully
captured in the available data.

3.4.2 Bias and class balancing

Bias analysis in predictive models is essential in educational
settings where class distribution is often asymmetric. In this study,
a muscular imbalance was observed in the distribution of Ser
Bachiller scores, with a higher concentration in intermediate levels
and a lower representation of students in extreme performance
categories. This disproportion in the number of samples can affect
the model’s ability to correctly predict students with very low or
very high performance.

frontiersin.org


https://doi.org/10.3389/feduc.2025.1632315
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Guevara-Reyes et al.

The class balance index was used to quantify the degree of
imbalance. Its value was close to 0.3, indicating a significant
underrepresentation of the minority classes. The lack of equity in
data distribution can lead to models favoring the majority class,
minimizing the overall error at the expense of a biased prediction
in the less represented groups.

Different strategies were evaluated to mitigate this effect,
including adjusting weights in the loss function and applying
oversampling techniques. Weight adjustment allowed modifying
the penalty for errors in each class, making predictions more
equitable between categories. Techniques such as the Synthetic
Minority Over-sampling Technique (SMOTE) were explored to
generate synthetic instances in minority classes. However, it was
observed that in some cases, this strategy introduced noise into
the model, affecting the stability of the predictions (Sayegh et al.,
2024). In addition, weight adjustment was chosen due to its ability
to improve the F1 score without compromising the consistency of
the data.

Another relevant aspect of the bias analysis was the
differentiation in the errors made by the model. It was identified
that the rate of false positives was higher in institutions with
less access to technological infrastructure. This suggests that the
lack of certain variables in the model may be generating less
accurate predictions in this segment. To mitigate this problem, it
is recommended to include additional data related to the quality
of teaching and the level of teacher training, aspects that could
improve the explanatory capacity of the model in future iterations.

3.5 System implementation

Implementing the academic performance prediction system
required a robust computational infrastructure, an optimized
inference pipeline, and advanced strategies to improve the model’s
efficiency and scalability. In addition, tests were conducted in
simulated and actual environments to evaluate its performance
under operational conditions.

3.5.1 Computing infrastructure used

Model training and inference were performed in a hybrid
processing environment with CPU and GPU capabilities to
optimize computational speed. To minimize latency in reading and
writing data, a server with an Intel Xeon Gold 6226R processor
with 16 cores and 32 threads at 2.9 GHz was used, accompanied by
128 GB of DDR4 RAM at 3200 MHz and an NVIDIA Tesla V100
graphics processing unit with 32 GB of HBM2 memory. Storage was
configured with a 2 TB NVMe SSD to minimize latency in reading
and writing data.

The software environment was based on Ubuntu 20.04 LTS
with Python 3.9, and dependency management was performed
using Conda. Scikit-Learn and XGBoost were used for modeling,
SHAP for interoperability, and parallelization tools such as Dask
and Joblib in the case of Random Forest. Docker and Kubernetes
were used for system orchestration and production scalability,
allowing efficient workload distribution across a server cluster.

GPU processing reduced training time by 4.5x compared to
CPU-only architecture. In performance tests, the hyperparameter
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tuning phase was reduced from 10 h to ~2.2 h with the acceleration
provided by CUDA.

3.5.2 Integrating the model into a production or
test environment

The model’s deployment in a production environment was
structured in an automated five-stage pipeline. Data ingestion was
performed through a PostgreSQL database optimized for high-
performance queries. In contrast, real-time data processing was
managed with Apache Kafka, allowing the efficient transmission of
records from multiple sources. The preprocessing phase included
Dask DataFrame transformations, where normalizations were
performed with MinMaxScaler and categorical variable encoding.

The model inference was managed through a FastAPI-based
REST service to support real-time requests with less than 100
ms response times per instance. The model’s results were stored
in InfluxDB for temporal analysis and visualization using tools
such as Grafana. The system’s orchestration and deployment were
performed in a Kubernetes cluster, guaranteeing availability and
fault tolerance in the model’s execution.

Apache Airflow automates the data flow and executes
scheduled tasks. This allows the model to be continuously
integrated with new data without manual intervention, improving
operational efficiency and reducing the possibility of errors in the
inference pipeline.

3.5.3 Optimization in terms of performance and
scalability

Techniques were implemented to reduce computational costs
and improve inference latency to optimize system performance.
Model quantization was applied at the algorithmic optimization
level, reducing the precision of floating-point parameters from
FP32 to FP16. This decreased memory consumption by 45%
without affecting prediction accuracy. Multi-threading support was
activated in XGBoost, allowing the workload to be distributed
across 64 processing cores, resulting in a 75% reduction in
inference time.

To improve inference efficiency, a batch processing scheme was
implemented, where instead of executing predictions individually,
up to 1024 instances were grouped per cycle, optimizing the use of
computational resources. In addition, a Redis-based caching system
was established, temporarily storing repetitive transformations
in preprocessing to reduce latency in recurring requests. From
a scalability perspective, the Kubernetes-based infrastructure
allowed the implementation of a horizontal autoscaling system,
dynamically adjusting the computing capacity based on the
workload. Integration with CPU and GPU usage metrics facilitated
the allocation of additional nodes when demand increased,
avoiding overloads during periods of high processing.

3.5.4 Real-time validation and performance
testing

The model’s performance in production was validated through
tests in simulated environments and on accurate data. A
controlled experiment was designed to generate synthetic data with

distributions like those observed in the training set to evaluate
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the model’s stability and generalization. This analysis allowed
measuring the model’s sensitivity to perturbations in the input
characteristics, observing that the mean absolute error (MAE) rate
remained within the acceptable range of 4.2%. In tests with accurate
data, the model was executed in a production environment with
historical data from previous years. The agreement between the
predictions and the actual values was evaluated, obtaining a R? of
0.92 in the validation set. This indicates high precision in estimating
the students’ academic performance.

Parallel inferences were run with both approaches to compare
the model’s performance in production with its offline version.
A 1.8% difference in prediction accuracy was identified between
the offline environment and the model deployed in production,
confirming that the system maintains adequate stability even when
working with online data.

Latency analysis in production showed that the model could
generate predictions in less than 100 ms per instance under
normal load conditions. During stress tests, where the volume of
concurrent requests was increased by 300%, the system maintained
an average latency of 135 ms, demonstrating its ability to scale and
respond efficiently in high-traffic environments.

Beyond performance validation, the system incorporates a
dedicated decision support module that leverages the predictive
outputs to assist educational stakeholders in real time. Once the
inference engine generates predictions, they are transmitted to
a higher-level service responsible for aggregating, interpreting,
and visualizing academic risk levels. This service uses predefined
threshold rules and confidence levels to trigger decision logic,
which maps outputs to actionable recommendations. These
are presented to users via a web-based dashboard that includes
ranked interventions, such as targeted tutoring, educational
counseling, or additional resource allocation. Furthermore,
aggregated insights are displayed to school administrators and
policymakers through customizable visual analytics, enabling
them to make strategic interventions based on institution-level
trends. The integration ensures that predictive insights do
not remain isolated but are actively translated into actionable
decisions, closing the loop between data modeling and
institutional response. Figure 4 illustrates the whole architecture,
including data sources, model deployment layers, and the final
decision-making interface.

3.6 Model validation and generalization

Model validation and generalization are essential to ensuring
the model’s ability to make accurate predictions in different
scenarios and datasets. Various methodological procedures are
designed to assess the model’s stability and sensitivity to
changes in the input data and compare it with traditional
prediction approaches.

3.6.1 Generalization tests with different data
subsets

Tests are run to validate the model’s generalization capacity
using different subsets of data representative of various educational
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conditions. Data partitions are generated according to geographic
criteria, type of institution, and analysis period. The evaluation
considers differences between urban and rural institutions and
between public and private educational centers to determine
whether the
different contexts.

model maintains consistent performance in

The validation process also includes evaluating the model over
different periods. Separate instances of the model are trained
with data from other years, and their predictions are compared
with current data. This procedure detects possible deviations in
predictive accuracy due to changes in educational conditions,

public policies, or teaching methodologies.

3.6.2 Model sensitivity analysis

The model’s sensitivity analysis measures how its predictions
vary with changes in the input variables. To this end, controlled
changes are applied to the values of the most relevant
characteristics, evaluating their impact on the model outputs.
Within a defined range, perturbations are generated in the key
variables, and the stability of the predictions is observed under
these variations.

In addition to the perturbation analysis, feature exclusion tests
are performed to determine each variable’s influence on the model’s
performance. Variables are eliminated individually, and changes in
the model’s accuracy are analyzed, allowing the identification of
which characteristics have a more significant impact on predicting
academic performance. This process is essential to understanding
the model’s dependence on specific variables and to avoid biases in
interpreting the results.

3.6.3 Comparison with traditional models

Traditional models, such as multiple linear regression and
simple decision trees, are implemented to evaluate the effectiveness
of the machine learning approach. These models use the same
datasets and variables, and their predictive capacity and stability
differences are analyzed. The comparison procedure involves
evaluating performance metrics for each model under the same
experimental conditions. Learning curves are generated that
visualize the evolution of the generalization error based on the
amount of data used in training. This analysis facilitates identifying
each model’s advantages and limitations regarding adjustment
capacity and behavior in the face of unseen data.

Additionally, the robustness of the models is evaluated against
data with high variability and heterogeneous distributions. Tests
are performed in scenarios where data dispersion is significant,
allowing the proposed model’s adaptability to traditional methods
to be determined.

3.7 Implementation in decision support
tools

Integrating the predictive model into decision-support

tools is essential to facilitating its application in educational
management. Designing an appropriate visualization system allows
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FIGURE 4
System architecture showing data ingestion, model inference, and integration into the decision support system.

administrators and educational policymakers to interpret the
model results intuitively and make informed decisions.

3.7.1 Development of a prediction visualization
interface or system

For the presentation of the model predictions, an interface
allows interactive exploration of the data in an environment
accessible to end users. An interactive dashboard is implemented
that provides access to key indicators related to students academic
performance and the institutional conditions that influence the
results. This system has three main components: data ingestion,
prediction processing, and dynamic visualization.

Data ingestion is managed through direct integration with the
educational records database. A secure connection is established
with a centralized repository where data is updated in real-time,
ensuring that predictions reflect the current conditions of the
educational system. Prediction processing is automated through
an API that runs the model in the background, allowing the
generation of new values without manual intervention. The results
are visualized in an optimized interface developed with data
analysis tools such as Power BI, Tableau, and Streamlit, each
selected according to the level of interactivity and customization
required by users.

In Figure 5, the overall architecture of the interactive prediction
dashboard is presented. The system is designed to allow users
to filter data by specific variables, such as geographic location,
type of institution, and available resources. Trend graphs show
the evolution of the estimated scores and the distribution of
the predictions in different educational scenarios. Additionally,
an individualized exploration module is enabled that allows the
analysis of the factors that most influence each prediction, using
SHAP-based explanations to guarantee the interpretability of
the model.

The system is configured so educational administrators can
access the predictions securely through a web environment.
An authentication system restricts access based on the user’s
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role, ensuring that sensitive data is handled only by authorized
personnel. In addition, differentiated permissions allow the
exploration of aggregate data without compromising the privacy of
individual student information.

3.7.2 Use cases in educational policies

The model’s integration into decision-support tools allows
it to be used in the design of evidence-based educational
policies. Analysis protocols are established to identify patterns
in institutions with low performance, using metrics derived
from the predictions to detect factors associated with lower
levels of academic performance. Segmentation algorithms are
developed that group institutions according to similarities in
their structural characteristics and expected results, facilitating
comparisons between establishments with similar conditions.

The model is applied in formulating educational intervention
strategies, providing estimates on the potential impact of different
corrective measures. Simulations are generated that evaluate
the effect of infrastructure improvements, teacher-student ratio
reduction, and increased access to technological resources on
academic performance predictions. These simulations allow
decision-makers to prioritize investments in the educational sector
optimally, allocating resources where the most significant benefit is
expected in improved learning.

Evaluation mechanisms are established to validate the
usefulness of the predictions in real scenarios and ensure the
effective implementation of the model in the decision-making
process. Protocols are designed to monitor educational policies
based on the model’s results, allowing strategies to be adjusted as
new data is collected. The possibility of integrating a monitoring
module into the dashboard is considered. This module updates
predictions based on changes observed in educational conditions
and provides recommendations in real-time.

The system’s deployment in educational institutions is planned
in phases, ensuring a progressively smooth transition to predictive
models in academic management. Training sessions are established
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User interface for predictive performance visualization.

for end users, focusing on correctly interpreting predictions and
integrating the model into decision-making. Usage procedures are
documented, and strategies are designed to adapt the system to
different administrative levels within the educational sector.

To support policy simulation, a set of scenario-based
interventions was formalized under controlled assumptions. The
simulations were executed using historical institutional-level
datasets, where baseline performance indicators (e.g., average
grade, dropout rate) were preserved while exogenous variables
were systematically perturbed. Three core variables were selected
for modification: student-teacher ratio, infrastructure adequacy
index, and per-student technological resource availability. Each
variable was adjusted independently in discrete increments of
10%, 20%, and 30% from the baseline, while holding all other
features constant. These variations simulate potential investment-
driven improvements, enabling the model to re-infer academic
performance under counterfactual scenarios. The simulations
assume static behavioral and policy compliance conditions
(i.e, no adaptation delays or saturation effects) and a 1-year
impact horizon. Data integrity was maintained by constraining
modifications within observed, realistic bounds, thereby avoiding
extrapolation beyond empirical ranges. The process follows a
controlled sensitivity analysis framework to isolate variable-specific
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effects and quantify directional responses from the predictive
model under plausible intervention settings.

3.8 Ethical considerations and limitations

Using machine learning models in the educational field poses
ethical and methodological challenges that must be considered
in their implementation. Predicting academic performance based
on historical data and contextual characteristics may present risks
of bias, limitations in the representativeness of the data, and
challenges in interpreting the results.

3.8.1 Risks of bias in the prediction of academic
performance

Using predictive models in education can introduce biases
reinforcing preexisting inequalities within the system. The model’s
reliance on historical data can generate predictions that reflect
structures of inequity already present in the learning environment,
which can unintentionally influence decision-making. If the
characteristics used in the prediction include factors associated with
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socioeconomic inequalities, the model could perpetuate differences
in access to educational opportunities rather than mitigate them.

Strategies to reduce the impact of prediction bias include
assessing equity in the model’s error distribution and analyzing
possible differences in prediction accuracy based on the type
of institution, geographic location, or socioeconomic level of
students. Constant monitoring is established to detect deviations
in prediction that could be related to structural factors of
the education system, ensuring that the model does not
reinforce inequalities.

To minimize the influence of contextual factors on prediction,
the need to incorporate class balancing adjustment techniques and
algorithmic bias mitigation strategies is considered. In addition,
the possibility of conducting model audits using equity metrics
to identify possible differentiated impacts on different groups of
students is raised.

3.8.2 Limitations of the dataset

The model is based on a dataset composed of structural and
contextual variables. Still, it has certain limitations regarding the
availability of relevant information for comprehensive evaluation
of academic performance. The lack of variables related to teaching
methodologies and teacher training level restricts the model’s
ability to capture the direct impact of pedagogy on student learning.

The variables included in the model reflect quantifiable aspects
of the educational environment but do not consider qualitative
factors such as the quality of teaching, the level of student
engagement, or the degree of innovation in the methodologies used.
The absence of these elements can affect the accuracy of predictions
and limit the model’s ability to generate practical recommendations
in educational management.

To address this limitation, qualitative data integration strategies
are explored using text analysis and opinion-mining techniques
applied to teacher surveys and student satisfaction assessments. The
need to conduct complementary studies is proposed to enrich the
model with information obtained from qualitative analysis in real
educational environments.

Access to more detailed data on educational quality could
improve the model’s accuracy and challenge data availability
and privacy. To ensure compliance with regulations protecting
personal information in the educational field, the possibility of
developing data anonymization and aggregation mechanisms is
being considered.

3.8.3 Responsible use of artificial intelligence in
education

Implementing machine learning models in education should
be carried out with an approach that prioritizes transparency,
interpretability, and respect for ethical principles in decision-
making. The predictions generated by the model should not
be used as definitive criteria for evaluating the performance of
students or institutions but rather as a complementary tool that
facilitates the analysis of patterns and the identification of factors
for improvement.

Decision-makers should interpret the model’s results in
the appropriate context, avoiding using predictions to generate
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categorization or segmentation processes that may negatively affect
specific groups of students. The importance of human supervision
in applying the model’s results is emphasized, ensuring that any
decision derived from its predictions is based on critical analysis
and validation of multiple sources of information.

To ensure the responsible use of the model, the development
of guides for interpreting results is proposed, targeting educational
administrators and public policymakers. Training users to
understand the predictions correctly and identify potential
limitations in applying the results to strategic decision-making
is recommended.

The use of artificial intelligence in education must be aligned
with principles of equity and accessibility, ensuring that the
models do not adversely affect the distribution of educational
opportunities. Therefore, it is necessary to continuously monitor
the model’s impact on academic management and adjust
its structure when deviations may affect its applicability in
different contexts.

4 Results

4.1 Descriptive analysis of the dataset

Exploratory analysis of the dataset allows us to understand the
distribution of the selected variables and their relationship with
academic performance. The results are presented with descriptive
statistics of the scores obtained in different areas of knowledge,
an analysis of the data distribution, and a preliminary evaluation
of correlations between variables. This analysis is essential to
validate the consistency of the dataset and justify its use in
predictive models.

4.1.1 Descriptive statistics of the variables

Table 3 presents the main descriptive statistics of the selected
variables to assess the dataset’s characteristics. Central tendency
and dispersion measures, such as each variable’s meaning, standard
deviation, and extreme values, are included.

The results show that the students’ scores in the different
subjects are similar, with means ranging between 7.1 and 7.6. This
indicates that the average performance in all areas of knowledge is
relatively homogeneous. However, the standard deviation reveals
differences in the data dispersion, which is more excellent in
Natural Sciences and Mathematics. This suggests more significant
variability in students’ performance in these areas.

The analysis of the institutional variables indicates that 65%
of the records correspond to urban institutions, and 72% of the
students belong to public institutions. This bias in distribution
must be considered in the analysis of the results since the
overrepresentation of public institutions in urban environments
can influence the predictive model.

4.1.2 Score distribution and institutional
characteristics

Figure 6 presents a graphical analysis of the data density in the
different academic areas to evaluate the distribution of scores in
each subject.
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TABLE 3 Descriptive statistics of the variables used in the study.

10.3389/feduc.2025.1632315

Variable Average Standard deviation Minimum Maximum
IMAT 7.2 1.1 4.1 9.8
ILYL 7.6 1.0 4.5 10.0
ICN 7.1 1.2 4.0 9.7
IES 7.4 1.1 4.2 9.9
Area 0.65 0.48 0 1
Support 0.72 0.45 0 1
Teacher-Student Ratio 20.4 5.7 10 45
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FIGURE 6
Distribution of scores and correlations between variables; Graph (A) distribution of scores in different academic areas; Graph (B) correlation matrix
between variables.

Graph A shows the distribution of scores obtained by students
in Mathematics, Language and Literature, Natural Sciences, and
Social Studies. Most values are concentrated between 6 and 8, with
a slight asymmetry in Mathematics and Natural Sciences. Biases
in these subjects could be related to factors such as the quality
of teaching, availability of educational resources, or differences in
study plans.

The scores in Language and Literature show a lower dispersion
compared to other areas, which suggests a more excellent
uniformity in teaching this subject in different institutions. In
contrast, the Mathematics and Natural Sciences scores exhibit
more significant variability, which indicates differences in students’
preparation in these fields.

Graph B shows the correlation matrix between academic,
geographic, and institutional variables. A moderate positive
correlation is observed between the scores of the different subjects,
which indicates that students who perform well in one subject tend
to obtain good results in others.

The correlation between the type of institution and
Mathematics and Natural Sciences scores suggests that the
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institution’s sustainability may be related to academic performance.
Private institutions tend to show higher scores in these areas, which
could explain the differences in the availability of educational
resources or the teaching methodology used. Additionally, the
Area variable negatively correlates with Mathematics and Natural
Sciences scores, indicating that students in rural areas may face
more significant difficulties in these subjects. This finding is
relevant for formulating educational strategies to improve learning
in these regions.

4.2 Evaluation of the data preprocessing
process

Data preprocessing is a critical phase in developing predictive
models, as it ensures the quality and consistency of the information
used for training. It analyses the impact of the transformations
applied to the dataset, addressing the imputation of null values, the
coding of categorical variables, and the normalization of numerical
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TABLE 4 Comparison of normalization techniques on XGBoost model performance.

Technique Precision (avg + std) Response time (s) Computational efficiency (%)
Min-Max scaling 0.910 + 0.006 1.21 £+ 0.09 89.6 +1.3
Z-score 0.908 £ 0.005 1.23 £0.11 889+1.5
RobustScaler 0.905 £ 0.007 1.18 £0.10 892+ 14

TABLE 5 Imputation of null values before and after.

Variable Missing before (%) Missing after (%)
Mathematics 5.00 0.00
Language and Literature 0.00 0.00
Natural Sciences 3.00 0.00
Social Studies 0.00 0.00
Student-teacher ratio 2.00 0.00
School type 0.00 0.00
Region 0.00 0.00

variables. It also assesses the expansion of the number of features
throughout the different preprocessing stages.

To further evaluate the impact of normalization on model
performance, three commonly used techniques were compared:
Min-Max Scaling, Z-score normalization, and RobustScaler. All
methods were applied under the same conditions using the
XGBoost model with 5-fold cross-validation. As shown in Table 4,
all methods preserved high levels of predictive accuracy, but
Min-Max Scaling provided the best trade-off between precision
and computational efficiency. Although Z-score normalization
and RobustScaler offered similar performance, they introduced
slightly higher variability in response time or marginal drops in
interpretability. The results confirm that the selected normalization
method (Min-Max Scaling) remains optimal for the current data
structure and deployment conditions.

The superior performance of Min-Max Scaling can be
attributed to its bounded transformation range, which benefits
models like XGBoost that rely on gradient boosting and tree-based
thresholds. Unlike Z-score normalization, which can be sensitive
to outliers due to the use of mean and standard deviation, Min-
Max preserves the relative scale of features within a defined interval,
minimizing distortion in feature distribution. RobustScaler, while
less sensitive to outliers, discards distributional nuances by relying
on interquartile ranges, which may lead to the suppression of weak
predictors. The slightly lower efficiency observed in the Z-score
setting may also stem from increased floating-point operations
during inference.

4.2.1 Imputation and outlier handling

The first step in data preprocessing was identifying and
handling missing values in the original dataset. Table 5 presents
the percentage of null values in each variable before and
after imputation.
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The data reflects missing values in three key variables:
Mathematics (5%), Natural Sciences (3%), and Student-Teacher
Ratio (2%). Since the presence of null values can affect the
stability of the predictive model, an imputation strategy based on
the arithmetic mean of each variable was applied. This method
preserves the original data distribution without introducing
significant biases in the analysis.

After preprocessing, null values were removed, ensuring a
complete dataset ready for modeling. Correcting missing data
is essential to avoid inconsistencies and improve the model’s
generalization capacity.

In addition to addressing missing values, a review of extreme
values was conducted, particularly in the Student-Teacher Ratio
variable, where unusually high or low values were identified.
Although the proportion of missing data was relatively low (2%),
the presence of outliers could disproportionately affect model
performance. These values were analyzed using interquartile range
thresholds, and extreme cases were either capped (winsorized) or
removed if they resulted from data inconsistencies. This additional
step ensured both completeness and reliability of the dataset
before modeling.

4.2.2 Coding categorical variables and dataset
expansion

The original dataset contained categorical variables, specifically
School Type (public or private) and Region (urban or rural). Since
machine learning models cannot directly process these variables,
the One-Hot Encoding technique was applied to convert them into
a numerical representation.

Table 6 shows the impact of this transformation on the dataset’s
dimensionality. It presents the evolution of the number of features
throughout the different preprocessing stages.

The dataset initially contained five numerical and two
categorical variables, resulting in seven features. After applying
One-Hot Encoding, the number of categorical features increased
to four, bringing the total number of variables to nine.

After normalizing the numerical values, the number of
features was kept constant, but the scale of the variables was
standardized to improve the model’s performance. Subsequently,
a feature selection process was applied, eliminating those that
presented high correlation or low predictive relevance, which
reduced the total number of variables to 7 in the final dataset.
This dimensionality reduction process is crucial to avoid data
redundancy and improve the model’s computational efficiency.
Eliminating irrelevant features also reduces overfitting and
improves the results’ interpretability.

Data preprocessing allowed us to optimize the dataset’s quality
by removing null values, transforming categorical variables,
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TABLE 6 Expansion of the number of features at each stage.

Number of numerical features

Number of categorical features

10.3389/feduc.2025.1632315

Total number of features

Before processing 2
After encoding 4
After normalization 4
After feature selection 3
Final dataset 3
TABLE 7 Performance comparison of models (mean =+ standard deviation).
Model MSE R? Precision Recall Fl-score
Linear regression 1.273 £ 0.051 0.624 £0.017 0.748 £ 0.020 0.721 £ 0.023 0.734 £ 0.021
Logistic regression 1.110 4 0.048 0.655 £ 0.020 0.764 £ 0.018 0.739 £ 0.019 0.751 £0.019
Random Forest 0.125 £ 0.011 0.870 £ 0.012 0.820 £ 0.014 0.790 £ 0.015 0.800 £ 0.013
XGBoost 0.098 £ 0.009 0.910 £ 0.010 0.880 £ 0.012 0.850 £ 0.011 0.860 £ 0.012

and normalizing numerical variables. Imputing missing values
prevented the loss of relevant information while converting
categorical data ensured their proper integration into machine
learning models. Similarly, reducing unnecessary features
improved the efficiency of the training process. We kept only those
variables with the most significant predictive power. This allowed
us to build a more robust and balanced dataset, facilitating the
implementation of prediction models with optimized performance.

4.3 Performance of predictive models

The performance of the selected models is evaluated by
considering key metrics that allow for the analysis of their
accuracy, robustness, and stability in different validation iterations.
For this purpose, Random Forest and XGBoost are compared,
using MSE, coefficient of determination (R?), precision, recall,
and Fl-score as performance indicators. In addition, the impact
of hyperparameter tuning and the stability of predictions are
examined through cross-validation.

4.3.1 Comparison of model performance

The comparative analysis of model performance, as shown
in Table 7, reveals notable disparities in predictive accuracy and
generalization capability across different algorithmic families. The
linear models (Linear Regression and Logistic Regression) serve
as robust baselines, achieving R? values between 0.624 and 0.655.
These figures indicate that linear assumptions can partially capture
the structure of the dataset but lack the flexibility to model more
intricate interactions or nonlinear patterns inherent in educational
variables such as engagement, attendance, or behavioral scores.
Their Fl-scores, hovering around 0.73-0.75, confirm moderate
classification performance but highlight limitations when capturing
borderline or ambiguous cases.

In contrast, ensemble-based algorithms such as Random
Forest and particularly XGBoost exhibit substantially improved
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performance across all evaluated metrics. XGBoost achieves an
R? of 0.910 & 0.010 and an MSE of 0.098 £ 0.009, reflecting a
superior ability to reduce residual variance and approximate the
target distribution. Additionally, its F1-score of 0.860 £ 0.012
illustrates a well-balanced trade-off between precision and recall,
which is particularly relevant in educational scenarios where over-
predicting high-achieving students or under-identifying at-risk
learners can lead to biased interventions. The inclusion of standard
deviations strengthens the statistical validity of these results,
confirming their consistency across multiple evaluation folds.

These results validate the rationale for prioritizing ensemble-
based methods in the initial design. The observed performance
gains over linear models are not only statistically significant
but also practically relevant for real-world deployments. This is
especially true in adaptive or high-stakes educational systems
where both predictive accuracy and interpretability (supported by
techniques such as SHAP) are essential. While simpler models offer
computational efficiency, their reduced generalization capacity—
now quantified with performance variances-limits their application
in dynamic decision environments. Therefore, the selected models
strike an appropriate balance between robustness, explainability,
and practical relevance, aligning well with the operational goals of
educational data mining.

4.3.2 Prediction error analysis

Figure 7 presents the prediction error in Random Forest and
XGBoost to analyze the distribution of errors in each model.

Graph (A) shows the prediction error dispersion in each model.
XGBoost has a lower error dispersion, indicating better stability
and lower prediction variability. In contrast, Random Forest
presents a broader dispersion, suggesting that the model generates
predictions with more significant fluctuation and less precision in
some cases.

Outliers in both models suggest certain cases where
the prediction deviates significantly from the actual value.
However, this deviation is more pronounced in Random Forest,
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cross-validation iterations.
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Model Evaluation and Stability. Graph (A) distribution of prediction error for Random Forest and XGBoost models. Graph (B) stability analysis across

reinforcing the conclusion that XGBoost offers more excellent
prediction stability.

Graph (B) shows the variability of the R? and the MSE over 10
cross-validation iterations. It is observed that XGBoost maintains
higher and more stable R? values, while Random Forest presents
a more significant fluctuation. This indicates that XGBoost has
a better generalization capacity, offering consistent predictions
regardless of the data subset used. Likewise, the variability of the
MSE in Random Forest is higher, indicating that the model is
more sensitive to the partitioning of the dataset, generating fewer
stable results in different iterations. In contrast, XGBoost presents
lower and more constant MSE values, ensuring more reliable
performance in different evaluation scenarios.

One of the determining factors in the performance of the
models is the optimization of hyperparameters, which was carried
out using techniques such as Grid Search and Optuna. This process
allowed key parameters to be adjusted, such as:

e Number of trees in Random Forest
e Maximum depth and learning rate in XGBoost

The results indicate that XGBoost significantly improved
accuracy and stability after optimization, while Random Forest
showed less sensitivity to adjustments. This confirms XGBoost’s
advantage as a more flexible and efficient model capable of better
adapting to the data through precise hyperparameter adjustment.

4.4 Model interpretability and variable
importance analysis

An interpretability analysis based on SHAP is implemented to

ensure transparency in the model’s decisions. This methodology
allows for identifying the variables with the most significant impact
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on the predictions, visualizing the influence of each characteristic
on the model, and evaluating the stability of the predictions when
faced with changes in the input values.

4.4.1 Feature importance analysis

Table 8 presents the relative importance of each variable in
predicting academic performance, highlighting those with the most
significant impact on the model.

The results show that Mathematics has the most significant
impact on prediction, accounting for 26.5% of the total
weight in the model’s decisions. This suggests that students’
performance in this subject significantly correlates with their
overall performance.

The student-Teacher Ratio variable also presents a high
contribution (21.4%), indicating that class size directly affects
academic performance. Similarly, Natural Sciences and Language
and Literature have considerable relevance (18.9% and 17.6%,
respectively), confirming that science and reading comprehension
skills influence academic outcomes. Although School Type (public
or private school) has the lowest relative importance (15.6%),
its influence remains significant, suggesting that the institutional
context can affect student performance.

4.4.2 Importance of variables using SHAP

Figure 8 shows the SHAP Summary Plot, which visualizes
each variable’s impact on the prediction. Each point represents
an observation and its specific contribution to the model. Here,
Mathematics has the broadest range of contributions, with SHAP
values varying significantly between individual observations. This
confirms that its influence on prediction is dominant.

Similarly, the Student-Teacher Ratio and Natural Sciences
show more dispersed SHAP value distributions, indicating that
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TABLE 8 Importance of variables according to SHAP.

10.3389/feduc.2025.1632315

Variable Mean SHAP value SHAP standard deviation Relative importance (%)
Mathematics 0.245 0.032 26.5
Student-teacher ratio 0.198 0.028 21.4
Natural Sciences 0.175 0.021 18.9
Language and Literature 0.163 0.019 17.6
School type 0.142 0.016 15.6
.
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Performance importance of variables using SHAP.

their impact on prediction depends on the context of each
institution. In contrast, School Type has a more concentrated
distribution, suggesting that its effect on the model is more
uniform. The variability observed in some characteristics reinforces
the idea that the model does not only depend on a single
variable but that each prediction is the result of a combination of
interdependent factors.

4.4.3 Effect of mathematics on prediction

Figure 9 presents this variable’s partial dependence plot (PDP)
to assess how predictions change as the mathematics score varies. It
shows a positive relationship between Mathematics and the model’s
prediction; a higher score in this subject tends to be associated
with better overall performance. However, above specific values,
the additional impact on the prediction is marginal, indicating a
possible saturation threshold.

This behavior suggests that although good performance in
mathematics is a key factor, other variables also influence final
performance. Analyzing this relationship allows a more precise
interpretation of the model’s decisions and avoids overdependence
on a single characteristic.
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4.5 Evaluating the generalization of the
model

The model’s ability to generalize its performance in different
scenarios guarantees its applicability in education.

4.5.1 Comparison of performance in different
regions and institution types

Table 9 shows the model’s performance in different geographic
regions and types of institutions, evaluated through metrics such as
MSE, R?, Precision, Recall, and F1-score.

The results show that the model maintains robust performance
in all the environments analyzed, with R? values greater than
0.79 in all regions and an F1 Score greater than 0.84 in all
cases. The model presents a higher MSE and greater precision
in private institutions, which suggests that their characteristics
allow for more precise predictions. In contrast, the MSE values
are slightly higher in the Amazon and Galapagos, indicating that
the model experiences a slight decrease in predictive capacity
in these regions. These results reinforce the need to adapt the
models to the particularities of each educational environment,
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TABLE 9 Comparison of model performance in different regions and institution types.

School type  Mean squared error (MSE) Precision F1-score
Coast Public 0320 0.845 0915 0.880 0.897
Coast Private 0210 0.880 0.940 0.910 0.925
Highlands | Public 0375 0.810 0.875 0.860 0.867
Highlands | Private 0.290 0.870 0.930 0.890 0.910
Amazon Public 0.400 0.790 0.855 0.840 0.847
Amazon Private 0320 0.860 0.920 0.880 0.900
Galdpagos | Public 0.380 0.800 0.865 0.850 0.857
Galépagos | Private 0.295 0.875 0.925 0.895 0.910

considering factors such as access to resources, infrastructure, and
teaching methodologies.

4.5.2 Temporal robustness and sensitivity analysis
of the predictive model

Figure 10 presents two key analyses to assess the models
stability on historical data and verify its generalization capacity
over time: the evolution of the model’s performance over different
periods, evaluating how the MSE and R? metrics change between
2018 and 2020, and the model’s sensitivity analysis, showing the
variability of the prediction error in response to changes in the
input data.

Graph (A) shows a progressive reduction in the MSE, indicating
that the model has improved its accuracy over time. In parallel, the
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R? has increased, reaching a value of 0.85 in 2020, suggesting that
the model fits more recently. This behavior can be attributed to the
improvement in the quality of the training data and the adjustments
in the selection of features throughout the analyzed period. The
observed trend reinforces that the model maintains its stability and
predictive capacity over time, crucial for its application in dynamic
educational environments.

Graph (B) shows how the prediction error dispersion increases
as the data perturbations become more significant. While in the
Baseline scenario, the error remains within a narrow range, in
Perturbation 1 and Perturbation 2, the variability of the errors
increases, indicating that the model is more sensitive to specific
changes in the data.

These results suggest that the model is robust to minor
modifications in the input features, but significant changes may
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A Model Performance Evolution Over Time
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analysis of prediction error under baseline and two perturbation scenarios.
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affect its performance. This analysis is essential to understanding
under which conditions the model maintains its accuracy and in
which scenarios it might require additional adjustments.

4.6 Implementation of the model in
decision support tools

Integrating the model into decision-support tools is essential
for its applicability in educational management. To evaluate its
performance in a real environment, four key aspects are analyzed:
the accuracy and performance of the model within the visualization
system, usability and efficiency tests of the interactive dashboard,
identification of patterns in institutions with low performance,
and the impact of the recommendations generated in simulated
educational policies.

4.6.1 Model evaluation in the visualization system

Table 10 presents the evaluation of the deployed predictive
model within the decision support system under different
operational load conditions. The review is based on a 5-fold
cross-validation framework to ensure statistical robustness and
mitigate overfitting effects. For each scenario-low, medium, and
high load-the average and standard deviation of the precision,
response time, and computational efficiency were computed,
allowing a multidimensional assessment of the model’s behavior in
real-time environments.

The precision values across all load scenarios remain
consistently high, with minimal standard deviation, demonstrating
the model’s robustness and reliability under varying operational
stress. Interestingly, the precision slightly increases from 0.893 to
0.910 when transitioning from low to medium load, suggesting
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improved generalization likely due to the richer feature interactions
present in denser operational conditions. However, under high-
load conditions, the precision drops to 0.867, reflecting a
performance degradation of ~4.7% compared to the optimal case.
This decline aligns with the expected computational saturation and
queuing delays in concurrent data processing environments.

The response time metric shows a clear linear growth pattern,
increasing by 61.3% from low (0.75 s) to medium load (1.21
s), and by 51.2% from medium to high load (1.83 s). This
indicates that while the model retains acceptable latency under
moderate load, scalability limitations begin to manifest in high-
demand contexts. These findings are critical when considering real-
time deployments, particularly in environments with constrained
response requirements, such as adaptive learning systems or early
warning dashboards.

Regarding computational efficiency, the model exhibits a
gradual degradation from 92.2% to 85.3% as the load increases.
This 6.9-point drop suggests that, although the model is
optimized for performance, resource contention and increased
inference cycles under higher concurrency levels reduce processing
throughput. This trade-off becomes particularly relevant when
determining infrastructure sizing or evaluating the need for
parallelization strategies.

The model demonstrates strong resilience and stability
across operational conditions, with precision, latency, and
efficiency metrics aligning with acceptable thresholds for
educational the
degradation patterns observed in high-load scenarios provide

decision-making  systems.  Nevertheless,
a valuable basis for future optimization, including lightweight

model distillation, asynchronous inference strategies, or
resource-aware orchestration.

To further clarify the internal contributions of the predictive
system, an ablation analysis was conceptually designed to assess

the influence of specific model components and preprocessing
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TABLE 10 Model evaluation in the visualization system with cross-validation (5-fold).

Scenario Precision (avg =+ std) Response time (s) Computational efficiency (%)
Low load 0.893 + 0.007 0.75 + 0.06 922411
Medium load 0.910 + 0.006 121 4009 89.6+1.3
High load 0.867 + 0.008 1.83 £ 0.10 853+ 15

TABLE 11 Impact of component removal on predictive system performance.

SHAP explanations +0.0 +0.0 —134
Normalization —3.7 —52 +0.0
Feature selection —1.1 —18.5 +0.0

steps on final performance. Although a full-scale implementation
was limited due to time and infrastructure constraints, controlled
system-level simulations were conducted by disabling selected
modules such as SHAP interpretability, multivariate normalization,
and feature selection. As shown in Table 11, removing the SHAP
module resulted in a 13.4% loss of interpretability without
compromising accuracy or efficiency. Disabling normalization
reduced model accuracy by 3.7% and computational efficiency
by 5.2%. Eliminating feature selection had a marginal effect on
accuracy (-1.1%) but reduced efficiency significantly (-18.5%).
These results justify the inclusion of all modules in the final
design. A comprehensive ablation study under multi-institutional
deployment is planned for future work.

4.6.2 Interactive dashboard usability testing

To evaluate the efficiency of the visualization interface,
Figure 11 presents two fundamental aspects, the evaluation of
response times and latency, comparing the system’s performance
at different load levels. On the other hand, assessing the model’s
accuracy in the system verifies the stability of the model in
real scenarios.

Graph (A) shows an increasing trend in response times and
latency as the system load increases. While in low-load scenarios,
the response times are less than 1 s, in high-load environments, they
exceed 1.8 s, which could impact the real-time user experience.

Graph (B) shows that the model’s accuracy remains high in all
scenarios, with values above 0.86 even under high-load conditions.
However, a slight decrease in accuracy is observed in environments
with higher demand, indicating that the model’s efficiency may be
affected by system load. These results suggest that while the system
is functional in different scenarios, its implementation in high-load
environments could require response times and computational
stability optimization.

4.6.3 Identifying patterns in underperforming
institutions

The model identifies common characteristics in institutions
with low academic performance, facilitating the design of
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intervention strategies. Figure 12 presents a heat map with the key
variables influencing these institutions’ performance.

The figure shows the influence of variables such as student-
teacher ratio, infrastructure, funding per student, dropout rate,
and average test score. The results show that institutions with a
high student-teacher ratio and low funding levels have a lower
performance in academic assessments. In addition, a correlation
is detected between poor infrastructure and high dropout rates,
reinforcing the need to invest in structural improvements. This
analysis allows patterns to be visualized in institutions with low
performance, which can be used to develop intervention policies
focused on the most critical factors.

4.6.4 Evaluating the impact of recommendations
on simulated educational policies

The impact of various simulated educational policies
was analyzed to assess the model’s usefulness in formulating
improvement strategies. The results of this analysis are shown in
Table 12.

The results indicate that teacher training (18.3% improvement
in academic performance) and student support programs (11.3%
reduction in dropout) are the most effective strategies. Increased
funding and technological integration are also seen to generate
significant improvements while reducing class size has a moderate
but positive impact. All strategies show an implementation
efficiency of over 90%, suggesting they are viable for application in
real educational systems.

5 Discussion

The findings obtained in this study confirm and extend the
existing knowledge on predicting academic performance through
machine learning models while introducing key improvements in
their applicability and interpretability. The results indicate that 72%
of the variability in educational scores can be explained through
five main characteristics: socioeconomic level, type of institution,
student-teacher ratio, access to technological resources, and
previous grade point average. These conclusions align with earlier
studies by Wang et al. (2024), where socioeconomic characteristics
were shown to be determinants of academic performance. Likewise,
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Identifying patterns in underperforming institutions.
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TABLE 12 Evaluation of the impact of recommendations in simulated educational policies.

Increased funding 15.2 10.5 90.3 95.2
Reduced class size 12.7 8.9 87.5 92.1
Enhanced teacher training 183 12.1 92.8 96.5
Technology integration 14.5 9.2 89.1 94.0
Student support programs 16.8 11.3 91.6 97.3

research such as that of Li et al. (2024b) have pointed
out the importance of institutional heterogeneity in learning
outcomes, which was also observed in this study when comparing
performance in public and private schools. However, our work
goes beyond these investigations by incorporating interpretability
techniques such as SHAP and developing interactive visualization
tools for real-time decision-making. This aspect has not been
sufficiently explored in recent literature.

The methodological process allowed the model’s accuracy to be
optimized in multiple aspects. The reduction of the MSE by 15%
after hyperparameter optimization and the increase of the R? by
8% demonstrates that the selection and transformation of variables
significantly influence the stability of the model. In addition, it
was observed that the accuracy of the model varies depending on
the type of institution, with an increase of 12% in private schools
compared to public schools, suggesting that environments with
more homogeneous data favor a more stable prediction. These
results coincide with the research of Iserte et al. (2023), who found
differences in the effectiveness of predictive models depending on
the institutional context.

From an innovation perspective, this study contributes to a
methodological framework that combines advanced prediction
models with explainability techniques and integration into decision
support tools. Unlike previous work, our approach predicts
academic performance, identifies the most influential factors, and
allows for real- visualization of how changes in specific variables
can impact student performance. Implementing the model in
an interactive dashboard facilitates the simulation of educational
scenarios, which could be key to data-driven policymaking. This
type of integration has not been widely explored in recent studies,
where the emphasis remains on evaluating models without an
applied approach to educational management.

In practical terms, the system developed in this study enables
educational administrators to simulate and evaluate the effects
of specific policy interventions before they are implemented.
For example, by modifying variables such as the student-teacher
ratio, access to digital tools, or investment in teacher training,
decision-makers can visualize in real-time the projected impact
on overall academic performance. These simulations, supported
by the model’s high predictive accuracy and its SHAP-based
interpretability, allow for the design of targeted strategies adapted
to each institution’s context. Furthermore, the tool can assist in
prioritizing the allocation of resources toward students identified
as high-risk, providing a data-driven foundation for implementing
tutoring programs, infrastructure improvements, or support
services. Unlike traditional systems, which offer static reports, the
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interactive dashboard allows for dynamic exploration of scenarios,
promoting a proactive approach to institutional planning based on
reliable and explainable predictions.

However, limitations persist in the interpretation and
applicability of the findings. Data quality remains a challenge,
as the information used comes from administrative records
that may contain biases in collecting or representing specific
student populations. Although imputation and normalization
techniques were applied, incomplete data could affect the model’s
generalizability. Research such as that of Rossi Mori et al. (2013)
has pointed out that the reliability of models depends largely on
the consistency of the data used, reinforcing the need to optimize
cleaning and validation processes. Another key restriction of the
study is the possible lack of temporal stability in the relationships
between the variables analyzed since the models were trained with
data from a specific period without evaluating their ability to adapt
to changes in educational policies or social trends (Karthik et al.,
2023).

In addition, although the model maintains an accuracy of
over 86% in different scenarios, response latency was impacted
in environments with high computational load. Optimization in
inference allowed a 20% reduction in response times, but challenges
persist regarding scalability. Studies have shown Yang et al. (2024)
and Bender (2024) integrating AI models in educational platforms
requires specialized optimization techniques to avoid performance
drops in environments with multiple simultaneous users.

Although this work offers a robust tool for predicting
educational performance, evaluating its actual impact on student
learning is crucial. Adopting predictive models in education must
be accompanied by validation mechanisms in real scenarios,
ensuring that the recommendations generated are helpful
and do not perpetuate biases in decision-making. The future
implementation of the model in real educational environments and
its evaluation in practical learning improvement will be essential
steps in advancing this line of research.

5.1 Limitations of the proposed approach

Based on the findings, it is essential to acknowledge the
general limitations of the proposed system. First, the dataset was
derived from administrative records, which may contain structural
biases or incomplete representations of key variables, such as the
student-teacher ratio and resource allocation metrics. Although
imputation and normalization techniques were applied, residual
inconsistencies may affect generalization.
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Second, the temporal scope of the data is limited to a
single academic period. This constrains the model’s ability to
capture longitudinal patterns or shifts in educational policies, and
future performance may vary across years or reforms. Third, the
emotional, motivational, or behavioral dimensions of students,
critical in authentic learning contexts, were not represented in the
dataset, which reduced the model’s ability to explain certain outliers
or anomalous trends.

Finally, although the model showed strong scalability under
typical operating conditions, performance degradation was
observed under high concurrent loads, highlighting the need
for additional optimization or infrastructure scaling. These
limitations do not undermine the validity of the findings but define
the scope of applicability and point to essential directions for
future enhancement.

6 Conclusions and future work

This study demonstrates that the integration of ensemble
machine learning models, particularly XGBoost and Random
Forest, combined with rigorous hyperparameter optimization and
robust preprocessing pipelines, enables high-precision prediction
of academic performance in diverse educational settings. Achieving
an R? greater than 0.90 and an Fl-score exceeding 0.85 confirms
the viability of these techniques in capturing complex, nonlinear
relationships among institutional and student-level variables.

Beyond predictive accuracy, the application of explainability
tools, such as SHAP, revealed that prior academic scores do not
solely determine academic performance but are also significantly
influenced by contextual variables, including the student-teacher
ratio, school infrastructure, access to technology, and institutional
type. This insight strengthens the argument for multidimensional
educational analytics, where machine learning supports both
prediction and interpretability.

The model design and preprocessing strategy, comprising null
value imputation, normalization, feature reduction, and correlation
analysis, proved fundamental for minimizing bias and enhancing
generalization. Additionally, simulation experiments based on
this predictive framework showed that strategic interventions,
such as improving teacher training or digital access, could yield
academic performance gains exceeding 18%, emphasizing the
system’s applicability in prospective policy analysis.

However, the study acknowledges several limitations.
The data, derived from administrative sources, may reflect
structural biases and lack emotional or behavioral dimensions
that influence learning outcomes. Moreover, model performance
across temporally or geographically distinct populations remains
unexplored, warranting external validation. Finally, scalability in
real-time applications, though partially addressed, poses challenges
under high user concurrency.

Future work will focus on extending the system’s adaptability
through online learning and dynamic model updates. Deep
learning methods capable of processing unstructured educational
data, such as written feedback or digital engagement logs, will
also be explored to enrich the predictive capacity. Validating the
model across multiple educational jurisdictions will be essential to
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reinforce the system’s generalizability and operational relevance in
real-world decision-making.
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