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The aim of this study was twofold. First, this study explored the potential use of 
a high-stakes multiple-choice test for measuring cognitive complexity by using 
Bloom’s Taxonomy and applying cognitive diagnostic models. Second, it investigated 
the interplay of cognitive complexity with gender and item difficulty. Data from 
1,000 applicants to English PhD programs were analyzed. Six experts coded test 
items based on the cognitive levels they target. Q-matrices were constructed, 
one for each expert, specifying item-cognition relationships. The G-DINA model 
was used to assess these relationships. Based on the best-fitting Q-matrix, 27% 
of the items measured the lowest cognitive level (Remember), 50% measured 
Understand, and 23% measured Analyze levels. Test takers demonstrated mastery 
of these levels by 56, 39, and 28%, respectively. Findings indicated that the test 
primarily assessed lower levels of Bloom’s Taxonomy. In addition, the results 
showed that male test takers outperformed female counterparts at higher levels. 
Furthermore, the analysis showed that cognitive complexity contributed to item 
difficulty. Finally, implications were discussed, and suggestions were made.
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1 Introduction

The key role that high-stakes tests play in test takers lives necessitates a critical assessment 
to ensure that the tests accurately measure student abilities (Kubiszyn and Borich, 2024; French 
et al., 2023; Mason, 2007). Whereas high-stakes tests have traditionally been aligned with the 
rote memorization of facts, they should ideally make a switch to being comprehensive measures 
of student capability. This means shifting toward the assessment of students for their critical 
thinking and problem-solving capabilities, and that is achieved through focusing on the 
cognitive complexity of test items. This issue has accordingly received extensive research 
attention (e.g., Ehrich et al., 2021; Noroozi and Karami, 2022), and frameworks like the one 
employed in international assessments such as Trends in International Mathematics and Science 
Study (TIMSS) 2019 exemplify this focus by incorporating a cognitive dimension alongside the 
traditional content dimension. This dual focus ensures that in this way a more holistic evaluation 
of the students’ capabilities takes place, preparing them for the demands of the 21st century 
more effectively (Gorin, 2006; Shavelson, 2010).
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Bloom’s Taxonomy provides a well-established framework for 
classifying and categorizing cognitive objectives in education and 
assessment (Alshurafat et al., 2024; Anderson and Krathwohl, 2001; 
Krathwohl, 2002, Krathwohl and Anderson, 2009; Pellegrino et al., 
2016; Ramirez, 2017). This framework subdivides the cognitive 
domains into six categories of Remembering, Comprehending, 
Applying, Analyzing, Evaluating, and Creating (Anderson and 
Krathwohl, 2001; Das et al., 2022). These levels range from lower-order 
thinking (LOT) skills to higher-order thinking (HOT) skills (Freahat 
and Smadi, 2014; Krause et al., 2021). According to Muhayimana et al. 
(2022), LOT skills require recalling and comprehending information 
(remembering and applying knowledge), while HOT skills demand 
deeper analysis, application, and evaluation (analyzing, evaluating, and 
creating). Assessing HOT skills is crucial as they reflect critical 
thinking, problem-solving, and innovation—capabilities essential for 
preparing 21st-century learners to address complex socio-scientific 
challenges (Rahayu and Alsulami, 2024). The emphasis on specific 
HOT skills may vary across different subject domains, reflecting the 
nature of authentic problems encountered in each discipline. A large 
body of research has investigated cognitive levels in high-stakes tests 
across various contexts (e.g., Baghaei et al., 2021; DeWitt et al., 2013; 
Jung Lim, 2014; Ho, 2022). However, most studies focused solely on 
identifying Bloom’s Taxonomy in analyzed tests rather than assessing 
how effectively the tests assess the targeted cognitive skills. 
Furthermore, nearly all of these studies used a qualitative method and 
descriptive statistics as the means of analyzing the data of their research.

In addition, for decades, Multiple-Choice Questions (MCQs) have 
been the dominant format in large-scale testing (Tractenberg et al., 
2013). While MCQs are undoubtedly effective in assessing factual 
knowledge and information recall, there’s a growing body of studies 
suggesting that MCQs may also measure complex capabilities beyond 
simple recall (e.g., Cecilio-Fernandes et al., 2018; Crowe et al., 2008; 
Douglas et al., 2012; Jensen et al., 2014; Karpen and Welch, 2016; Kim 
et  al., 2012; Kıyak et  al., 2022; Thompson and O'Loughlin, 2015; 
Thompson et al., 2016; Yeong et al., 2020). However, this evidence 
remains inconclusive, and significant gaps in our understanding persist.

Moreover, research on the impact of gender on cognitive abilities 
is complex and ongoing (e.g., Ernawati and Baharullah, 2020; 
Migliaccio et al., 2009; Nasution et al., 2023; Ryan and Chiu, 2001). 
However, findings are inconsistent: some studies suggest a potential 
male advantage in assessments of HOT skills (e.g., Amin et al., 2024; 
Lager et  al., 2024; Wright et  al., 2016), while others report no 
significant differences or even better performance by females in 
specific contexts (e.g., Aldila et al., 2013; Araiku et al., 2019; Bastick, 
2002). These inconsistencies highlight the need for further exploration 
considering factors beyond gender alone, such as the specific cognitive 
skills assessed, subject matter, and test format.

Furthermore, recent development of Cognitive Diagnostic Models 
(CDMs) provides a promising approach to analyze cognitive processes 
that are measured by tests (DiBello and Stout, 2007). Unlike traditional 
assessments that view measuring learning as the sole purpose of 
assessment, CDMs go deep into investigating underlying knowledge 
and cognitive strategies needed to do certain tasks correctly (Ravand, 
2016). The rich diagnostic information provided can be  used to 
improve learning and instruction through pinpointing areas where 
students might struggle (Leighton and Gierl, 2007). In addition, 
CDMs show great potential for changing assessment practices in the 
humanities by allowing the light to be shed on the hard-to-measure 
cognitive skills that students acquire in these disciplines.

This study aims to address existing gaps by integrating CDMs with 
Bloom’s Taxonomy to analyze the cognitive processes assessed by the 
Iranian National PhD Entrance Exam (INPEE), a high-stakes MC test 
designed to evaluate the readiness of Iranian Master graduates for 
PhD programs. The general English section of the INPEE, 
encompassing grammar, vocabulary, and reading comprehension, 
plays a pivotal role in determining candidates’ success.

By examining the types of knowledge evaluated in this section, the 
study seeks to identify the cognitive levels measurable through MCQs 
in the field of English Language Teaching. Additionally, it aims to 
demonstrate the application of CDMs in analyzing exams in alignment 
with desired learning outcomes, potentially revealing the genuine 
competencies and knowledge of English students in a high-stakes 
testing context. Furthermore, the research also compares the 
performance of male and female applicants across different levels of 
cognitive complexity and explores the relationship between item 
difficulty and cognitive complexity.

2 Literature review

Analyzing cognitive levels of test items is crucial for effective 
teaching, learning and testing. Measuring the complexity of thinking 
processes that test takers need to answer questions can help educators to 
create test items that clearly reflect the students’ abilities and inform 
instructional practices. A large array of research studies supports the 
importance of this approach (Bezuidenhout and Alt, 2011; Borda et al., 
2018; Das et al., 2020; Gorin, 2007; Mustafidah and Pinandita, 2022). 
This approach sufficiently assists in determining students’ abilities and 
weaknesses and thus makes assessment fairer and broadens the learner’s 
apprehension of the subject matter. Hence, it ultimately improves 
learning outcomes when assessment is aligned to the cognitive level.

2.1 Bloom’s Taxonomy

Bloom’s Taxonomy is a framework to analyze and classify cognitive 
objectives in different educational fields. Bloom et al. (1956) proposed 
the framework, which according to Anderson and Krathwohl (2001) 
has established itself as a necessary tool for evaluating educational and 
testing objectives. To shed light on the learning process and the range 
of cognitive abilities among students, researchers have thoroughly 
examined its use in various educational settings (e.g., Crowe et al., 
2008; Elim, 2024; Granello, 2001; Kahn, 2012; Momen et al., 2022; 
Scott, 2003; Swart, 2009). This taxonomy has been utilized to analyze 
the cognitive level of textbooks (Khoy, 2025; Mizbani et  al., 2023; 
Razmjoo and Kazempourfard, 2012; Rena et al., 2023; Parsaei et al., 
2017; Zorluoglu et al., 2020), final exam questions (Chang and Chung, 
2009; Febriyana and Harjanto, 2023; Ebadi and Shahbazian, 2015; 
Khorsand, 2009; Shahbazian, 2016; Tangsakul et al., 2017), university 
entrance exams (Aydin and Birgili, 2023; Han and Xiang, 2025; 
Razmjoo and Madani, 2013; Rezaee and Golshan, 2016). In addition, 
it has been used to enhance the development of intelligent assessment 
tools (Jaramillo and Cadavid, 2015; Kosorus and Küng, 2014; Krouska 
et al., 2018; Tíjaro-Rojas et al., 2016; Ying and Yang, 2008), and finally 
to improve teaching practices and student performance (e.g., Butler, 
2018; Niyibizi et al., 2018; Nkhoma et al., 2017; Rentmeester, 2018). 
Extending this framework to language assessment, several studies have 
explored the cognitive processes involved in language exams like IELTS 
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and TOEFL (e.g., Baghaei et al., 2020, 2021; Bax, 2013; Moslehi and 
Razmjoo, 2021; NamazianDoost and HayaviMehr, 2017). These studies 
primarily focused on the reading and listening sections, employing 
methods like eye-tracking, retrospective questionnaires and 
content analysis.

2.2 Multiple-choice questions for 
measuring cognitive level

MCQs are a widely used assessment tool, but their ability to 
measure complex thinking skills remains a topic of debate. While 
some studies highlight their potential for assessing higher-order 
cognition, others emphasize significant limitations. Proponents argue 
that well-constructed MCQs can effectively measure Application, 
Analysis, and Synthesis. Jensen et  al. (2014) emphasize that with 
careful construction, MCQs can assess Application, Analysis, and 
even Synthesis of Knowledge—key components of HOT. Similarly, 
Kıyak et al. (2022) advocate for improving MCQ design to test Critical 
Thinking rather than being limited to Factual Knowledge. Kim et al. 
(2012) found that 13% of MCQs in their study reached the highest 
levels of Bloom’s Taxonomy, suggesting that although challenging, it 
is possible to create MCQs that evaluate advanced cognitive processes. 
Zaidi et al. (2018) proposed categorizing MCQs into lower and higher 
cognitive levels, asserting that they can align with up to four levels of 
Bloom’s Taxonomy. Ten Cate et al. (2018) further supported this view 
by stating that well-crafted MCQs engage learners in Applying and 
Synthesizing knowledge, which are essential higher-order 
cognitive functions.

However, other studies highlight limitations in using MCQs for 
higher-order assessment. Tarrant and Ware (2008) note that most 
MCQs predominantly focus on Factual Recall rather than Application 
or Evaluation. Tarrant et al. (2009) reinforce this idea, pointing out 
that due to logistical and practical constraints, MCQs often remain 
confined to testing basic knowledge. Similarly, Stanger-Hall (2012) 
reported that MCQs indeed hinders Critical Thinking. Zheng et al. 
(2008) conclude that MCQs are mostly effective only at the first two 
levels of Bloom’s Taxonomy (‘Apply’ and ‘Analyse’), falling short in 
evaluating more complex skills like ‘Evaluate’ and ‘Create’. Harland 
and Wald (2021), along with Scouller (1998), argue that essay-based 
assessments allow for better demonstration of higher-order cognition 
compared to MCQs, which often promote surface-level memorization 
rather than deep understanding. Liu et al. (2024) found that while 
many educators believe MCQs can effectively test middle-level 
cognitive functions like Application and Analysis, there is skepticism 
about their capacity to measure the highest levels of Bloom’s 
Taxonomy—Evaluation and Creation.

Despite these contrasting perspectives, there appears to be agreement 
on one key point: the effectiveness of MCQs in measuring higher-order 
cognitive skills depends heavily on the quality of question design and 
alignment with intended learning outcomes. Studies such as Ali and Ruit 
(2015), Billings et al. (2016), and Kibble (2017) support the potential of 
MCQs to test problem-solving and critical thinking when questions are 
constructed with deliberate attention to cognitive complexity. 
Choudhury and Freemont (2017) demonstrate that with proper framing, 
MCQs can assess higher cognitive functions. Moreover, Zaidi et  al. 
(2016, 2017, 2018) developed frameworks at the University of Michigan 
Medical School to help faculty write MCQs targeting higher-order 
cognition. Santen et al. (2019) also encourage efforts to develop MCQs 

that test clinical reasoning and decision-making skills, which are 
essential in medical education. On the other hand, Monrad et al. (2021) 
caution that without shared understanding and training among 
educators, the classification and design of higher-order MCQs remain 
inconsistent and subjective and the effectiveness of this approach 
remains unclear.

2.3 Cognitive level and item difficulty

Item difficulty estimation has been a central focus in educational 
measurement, particularly in the context of MC items. Some studies 
have investigated the connection between cognitive processing models 
and the difficulty level of items. Embretson and Wetzel (1987) were 
among the first to propose a cognitive processing model for paragraph 
comprehension items, identifying decision processes such as 
falsification and confirmation as strong predictors of item difficulty. 
Similarly, Gorin and Embretson (2006) found that response-decision 
processes in Graduate Record Examinations (GRE) paragraph 
comprehension sections had a stronger association with item difficulty 
than general text-comprehension ability, reinforcing the role of 
higher-order cognitive strategies.

Kirsch et  al. (2017) introduced a construct-based assessment 
model that defines operationalized variables tied to task characteristics, 
including “processes and strategies.” These strategies involve locating, 
cycling, integrating, and generating information, as well as the 
abstractness or concreteness of required knowledge and the plausibility 
of distractors. This model underscores how cognitive strategies and 
semantic complexity directly affect item difficulty. Ferrara et al. (2011) 
further defined “item demands” as the knowledge, comprehension, 
and cognitive processes required for answering correctly, highlighting 
the necessity of aligning item design with cognitive expectations. Hsu 
et al. (2018) also supported this connection and reported that there is 
a link between cognitive processing models and item difficulty.

Rush et al. (2016) found that higher cognitive skills are needed for 
more difficult items in veterinary exams. They also identified pitfalls like 
implausible distractors that decrease item quality and discrimination. 
Their study emphasizes the importance of well-designed MCQs with 
effective distractors to accurately assess HOT (Chang and Chung, 2009; 
Febriyana and Harjanto, 2023; Ebadi and Shahbazian, 2015; Khorsand, 
2009; Shahbazian, 2016; Tangsakul et al., 2017). Researchers also have 
investigated the connection between Bloom’s Taxonomy and item quality. 
Testa et al. (2018) reported that higher levels of cognitive processing 
enable test developers to produce more functioning distractors. They also 
reported that there is a significant relation between distractor efficiency 
and item difficulty. However, contrasting with the aforementioned studies, 
some research has reported no consistent relationship between cognitive 
complexity levels, as specified in Bloom’s Taxonomy, and item difficulty 
or discrimination. For instance, Kibble and Johnson (2011) found no 
significant correlation between the cognitive level of MCQs and their 
difficulty or discrimination indices. Similarly, Tan and Othman (2013) 
observed that items categorized into different Bloom’s Taxonomy levels 
did not exhibit a strong relationship with item difficulty.

2.4 Gender differences in cognition

The relationship between gender and cognitive abilities is a 
complex and continually evolving area of research with studies often 
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yielding contradictory results. While some studies report male 
advantages in higher-order cognitive tasks across various domains 
(Amin et al., 2024; Lager et al., 2024; Wright et al., 2016), others indicate 
female advantages (Aldila et  al., 2013; Bastick, 2002) or find no 
significant differences (Araiku et al., 2019). The pertinent literature 
reveals several lines of inquiry, each characterized by its specific 
research purpose. The first comprises studies exploring how gender 
influences cognitive performance at varying levels of Bloom’s 
Taxonomy. For instance, Bastick (2002) specifically explored whether 
different objective test question formats might favor males or females 
and if responses to questions assessing abilities at different levels of 
Bloom’s cognitive domain varied by gender. Each subtest comprised six 
questions, with each question designed to target a specific level of 
Bloom’s Taxonomy. A comparison of mean male and female scores 
across three subtest formats revealed only one statistically significant 
advantage: females excelled in matching questions. This advantage was 
attributed to significant female strengths at the Analysis and Synthesis 
levels within matching questions. Aldila et al. (2013) investigated the 
cognitive and attitudinal outcomes of secondary school students 
learning about global warming using the Student Team Achievement 
Division (STAD) method, based on gender. Across all cognitive levels 
(C1 to C6) of Bloom’s Taxonomy, female students consistently 
outperformed male students, achieving higher N-Gain values in 
Remembering, Understanding, Applying, Analyzing, Evaluating, and 
Creating. In another study, Wright et al. (2016) examined how the 
cognitive difficulty and format of exams affect student performance in 
introductory biology courses, focusing on gender and socioeconomic 
status (SES) differences. They found that male students outperformed 
female students on exams that tested higher levels of Bloom’s Taxonomy, 
a difference observed even after controlling for prior academic ability. 
This performance gap increased as the Bloom’s level of the exam 
increased. Moreover, Araiku et al. (2019) provided further insights into 
gender differences in mathematical abilities across various levels of 
Bloom’s Taxonomy. Their research, involving 156 junior high school 
students and analyzed using a two-way analysis of variance (ANOVA) 
with post hoc tests, indicated no significant overall performance 
difference between male and female students. However, male students 
specifically outperformed female students at the C1 (Remember) level. 
This suggests that gender might influence performance at certain 
cognitive levels but not others. The study underscores the importance 
of considering the interaction between gender and cognitive levels 
when designing educational strategies, highlighting that while gender 
can be  a factor at specific Bloom’s Taxonomy levels, it does not 
necessarily impact overall academic achievement. This nuanced 
understanding is vital for educators aiming to cater to the diverse needs 
of male and female students in mathematics. Amin et al. (2024) also 
offered valuable insights into gender differences within Bloom’s 
Taxonomy, particularly among prospective teachers in Pakistan. They 
discovered that female participants demonstrated stronger mastery of 
lower-level skills, such as Remembering and Understanding, whereas 
male participants showed greater proficiency in HOT skills, like 
Analyzing and Evaluating.

The second line of research assesses gender differences across 
distinct cognitive domains (e.g., memory, spatial skills) and 
consistency of performance. For example, Lager et  al. (2024)‘s 
comprehensive analysis of gender differences in operational and 
cognitive abilities revealed that male candidates scored significantly 
higher on mental spatial ability, memory retention, abstract 

problem-solving, multitasking ability, and manual spatial ability. In 
contrast, female candidates scored higher on perceptual speed. The 
study also highlighted that correlations between different cognitive 
abilities were significantly stronger among female candidates, 
indicating a more homogeneous performance profile. This implies 
that females may exhibit a more consistent application of cognitive 
skills across various domains, a relevant consideration when applying 
Bloom’s Taxonomy in educational settings.

The third line encompasses studies examining how gender 
differences manifest in social cognition, particularly attributional 
complexity. While most educational assessments tend to focus on 
specific cognitive skills, research in social psychology suggests that 
gender differences in thinking may also stem from broader socio-
cognitive patterns. For instance, Foels and Reid (2010) found that 
women tend to show higher levels of attributional complexity than 
men. This concept refers to the tendency to consider multiple factors 
and perspectives when interpreting social behavior. People who are 
high in attributional complexity are more likely to think in nuanced 
and flexible ways—they avoid oversimplifying others’ actions or 
relying on stereotypes. Instead of assuming someone behaves a certain 
way because that is just who they are,” they take into account the 
person’s background, the situation, and even timing. Although the 
focus of Foels and Reid’s study was on social dominance orientation, 
their findings offer meaningful insights into gender-related patterns 
in complex thinking. These insights could be relevant to understanding 
how men and women approach cognitively demanding tasks, such as 
those found at the higher levels of Bloom’s Taxonomy.

Despite the mentioned studies, the relationship between gender 
and cognitive complexity in educational assessments remains unclear. 
While research in other disciplines hints at potential variations, these 
findings have not been consistently replicated in high-stakes language 
testing. This underscores the need for further investigations tailored 
specifically to language assessments to gain a clearer picture.

2.5 Cognitive diagnostic models

CDMs are designed to provide detailed insights into learners’ 
mastery of specific skills or attributes, offering a more fine-grained 
perspective than traditional psychometric models such as item 
response theory or classical true score theory (Rupp and Templin, 
2008). One of the key distinctions among CDMs lies in how they 
handle the interaction of the skills required to answer an item 
correctly. Based on these assumptions, CDMs are typically divided 
into specific and general models (Ravand et al., 2024).

Specific CDMs assume a single type of relationship among 
attributes for all items in a test. These relationships generally fall into 
three categories: conjunctive, disjunctive, and additive. In conjunctive 
models, the idea is that all of the required attributes must be present for 
a correct response. A well-known example is the Deterministic Inputs, 
Noisy “And” gate model (DINA; Junker and Sijtsma, 2001). This model 
operates on an all-or-nothing principle: if even one essential attribute is 
missing, the chance of answering the item correctly is low, regardless of 
how many other attributes are mastered. On the other hand, disjunctive 
models assume that mastering just one of the required attributes may 
be enough. The Deterministic Inputs, Noisy “Or” gate model (DINO; 
Templin and Henson, 2006) falls into this category. In this case, having 
any one of the relevant attributes can boost the probability of success, 
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even if the others are not mastered. Additive models take a more 
gradual approach. In these models, each mastered attribute contributes 
independently to the probability of answering correctly. That is, the 
more attributes a learner has mastered, the better their chances—
without any single skill being strictly necessary. Examples of additive 
models include the Additive Cognitive Diagnosis Model (A-CDM; de la 
Torre, 2011), the Linear Logistic Test Model (LLTM; Maris, 1999), and 
the Reduced Reparameterized Unified Model (RRUM; Hartz, 2002).

While specific CDMs impose the same interaction rule across all 
items, general CDMs allow for more flexibility. The Generalized DINA 
model (G-DINA; de la Torre, 2011), for instance, does not assume that 
all items behave the same way. Instead, it allows each item to follow its 
own pattern of attribute interaction—whether conjunctive, disjunctive, 
or additive. This flexibility makes general CDMs especially useful when 
test items are expected to involve different types of cognitive processing.

3 The present study

This study addresses several notable gaps in the existing literature 
on cognitive assessment in high-stakes language testing. While CDMs 
have been increasingly applied in language assessments to provide 
detailed insights into learners’ cognitive processes, there remains a 
paucity of research integrating CDMs with Bloom’s Taxonomy to 
analyze the cognitive demands of MCQs in such contexts. Moreover, 
prior studies examining the alignment of test items with Bloom’s 
Taxonomy have predominantly employed qualitative and descriptive 
methodologies, lacking the quantitative rigor that CDMs can offer.

This study employs the integration of CDMs with Bloom’s 
Taxonomy to quantitatively assess the cognitive complexity of MCQs 
in the INPEE, specifically within the English language section. By 
doing so, it seeks to provide a more detailed understanding of the 
cognitive skills assessed, moving beyond traditional item analysis 
methods. Furthermore, the research explores the relationship between 
cognitive complexity and item difficulty, as well as potential gender 
differences in performance across different cognitive levels. The 
research questions guiding this study are:

RQ1: To what extent can MCQs in INPEE effectively assess 
higher-order cognitive skills as defined by Bloom’s Taxonomy?

RQ2: How does the cognitive complexity of MCQs influence 
item difficulty?

RQ3: Is there any significant difference between male and female 
test takers’ performance on items tapping into different levels of 
Bloom’s Taxonomy?

4 Method

4.1 Data and participants

The data for this study were obtained from the Iranian Measurement 
Organization, a testing body responsible for administering the Iranian 
PhD entrance examination in March 2015. It included item responses 
from 1,000 Iranian Master of Arts (MA) holders in English majors. The 
item responses for the General English (GE) section, comprising 30 
MCQs, were used for analysis.

Participants consisted of 653 females and 347 males, representing 
65.2% and 34.7% of the sample, respectively. Their ages ranged from 
23 to 62 years, with a mean age of 33.10 years. The GE section formed 
part of the INPEE comprehensive assessment, which also included 
sections on content knowledge and educational aptitude, totaling 
150 MCQs.

In the present study, six expert judges—three researchers 
specializing in Bloom’s Taxonomy and three English Language 
Teaching (ELT) professors with over five years of experience in 
language instruction and assessment—coded the items according to 
the level of the taxonomy each measured. The panel comprised three 
male and three female experts with substantial academic and 
practical backgrounds in education and assessment, including 
professors of neurology, science education, biology education, 
and ELT.

4.2 Q-matrix construction

At the core of any CDM lies the Q-matrix (Tatsuoka, 1983), which 
specifies the relationship between test items and the cognitive 
attributes they are intended to measure. Accurate specification of the 
Q-matrix is crucial, as it directly affects the precision of test takers’ 
classifications (Ravand, 2016). The Q-matrix is structured as a binary 
table, with rows representing items and columns representing 
attributes. A value of 1 at the intersection of an item and an attribute 
indicates that the item measures that attribute; a value of 0 indicates 
that it does not.

While aggregating all expert Q-matrices into a consensus matrix 
was considered, we found that doing so would have led to an overly 
inclusive Q-matrix in which nearly all items were linked to the first 
three cognitive attributes—Remember, Understand, and Analyze. This 
would have resulted in substantial attribute overlap, reducing the 
model’s diagnostic precision by limiting its ability to distinguish 
between latent classes (DeCarlo, 2011; Chiu et al., 2009).

Therefore, to construct and validate the Q-matrix in the present 
study, a mixed-methods approach was adopted. Each expert judge was 
provided with a copy of the test and a table listing items in the rows 
and Bloom’s Taxonomy levels in the columns. They were asked to 
examine each item, identify the highest level of the taxonomy it 
targeted, and mark a 1 at the corresponding intersection. This process 
resulted in six initial Q-matrices, one from each expert (see Table 1 for 
a sample Q-matrix).

The initial Q-matrices were then subjected to empirical validation 
using the procedure proposed by Chiu et al. (2009), de la Torre and 
Chiu (2016) as implemented in the GDINA package in R (R Core 
Team, 2024). This procedure suggested modifications to the 
Q-matrices, either by removing an attribute from an item (changing a 
1 to a 0) or by adding an attribute (changing a 0 to a 1). To ensure 
validity, we required convergence from at least two sources—expert 
judgment and empirical validation—for each Q-matrix entry. 
Although formal inter-rater reliability statistics were not computed, 
this structured approach ensured that the final Q-matrix reflected 
expert consensus while preserving model identifiability and 
interpretability (Madison and Bradshaw, 2015).

The modified Q-matrices were reanalyzed, and model fit indices—
AIC, BIC, and log likelihood—were compared. The Q-matrix with the 
lowest values for these indices was selected for use in 
subsequent analyses.
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4.3 Data analysis

Data were analyzed using the GDINA package (Ma and de la 
Torre, 2020) in R. To assess the appropriateness of the Q-matrices, the 
analysis was conducted six times, each time using one of the six 
Q-matrices developed by the expert judges. Model fit was evaluated 
using two relative fit indices: Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC). In addition, for the model 
based on the best-fitting Q-matrix, four absolute fit indices—MX2, 
MADcor, and SRMSR—were examined. According to Ravand (2016), 
non-significant MX2 values and MADcor values below 0.05 suggest a 
well-fitting model. Similarly, Maydeu-Olivares (2013) indicates that 
SRMSR values below 0.05 reflect a negligible degree of model misfit.

Furthermore, the average mastery level of participants on each 
attribute was calculated, and the prevalence of attribute profiles was 
reported. To address the second research question, a multigroup 
G-DINA analysis was conducted to compare attribute mastery and 

profile prevalence between male and female participants. Additionally, 
three independent-samples t-tests were performed to compare male 
and female performance on the three attributes identified through the 
Q-matrix specification and validation process.

5 Results

5.1 Q-matrix validation

It should be noted that the initial list of the levels of cognition 
according to Bloom’s Taxonomy included six levels. However, during 
their evaluation, the expert judges concurred that the Apply, Evaluate, 
and Create levels had not been addressed in the exam items. 
Consequently, these three levels were excluded from the initial 
Q-matrices before the analysis.

Following each analysis, the software generated a proposed 
Q-matrix suggesting modifications to the initial one. To accept these 
software-generated changes, they needed concurrence from at least 
two of the expert Q-matrices. If this agreement existed and the change 
was accepted, the G-DINA analysis was repeated with the modified 
Q-matrix. It should be noted that when there was substantive reason 
to incorporate the modifications suggested by the program, each 
modification was accommodated at a time and the log-likelihood of 
the new model was compared against that of the base model, that is 
the model with no modification. After an analysis, the log-likelihood 
of the new Q-matrix, which differed in a single attribute from the 
original one, was subjected to a likelihood ratio test (LRT) to evaluate 
its impact on the overall model fit. As these changes pertained to a 
single item at a time, the degrees of freedom were limited to one. 
Therefore, if the result of the LRT exceeded 3.85, it indicated that the 
change would deteriorate the model fit and was, therefore, rejected. 
Conversely, if the result was less than 3.85, the modification was 
accepted. This iterative process continued until the Q-matrix was 
thoroughly refined. In this manner, each initial Q-matrix developed 
by each expert judge was analyzed by the software, modified if 
appropriate, evaluated via the LRT.

Then, the six final Q-matrixes were compared using AICs and BICs 
to determine the best model for the final Q-matrix of the study. In the 
interest of space, we do not include the details of Q-matrix validation here.

5.2 Model fit and final Q-matrix

Table 2 displays the AICs and BICs for the models with the 
six modified Q-matrices in the descending order of their AIC 

TABLE 2  Relative fit indices of the models with the final Q-matrices.

Experts AIC BIC

Expert 1 27867.94 28854.4

Expert 2 27505.97 28482.62

Expert 3 27388.44 28384.72

Expert 4 27073.09 29207.97

Expert 5 27011.37 28498.42

Expert 6 27170.48 28421.95

TABLE 1  The final Q-matrix.

Items Remember Understand Analyze

1 0 1 0

2 0 1 0

3 1 0 0

4 1 0 0

5 1 0 0

6 1 0 0

7 1 0 0

8 1 0 0

9 0 1 0

10 0 1 0

11 0 1 0

12 0 1 0

13 0 1 0

14 0 1 0

15 0 1 0

16 0 1 0

17 0 1 0

18 0 1 0

19 0 1 0

20 0 1 0

21 0 0 1

22 0 0 1

23 1 0 0

24 0 1 0

25 1 0 0

26 0 0 1

27 0 0 1

28 0 0 1

29 0 0 1

30 0 0 1
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values. The model with the smallest AIC and BIC is considered 
the best-fitting model; however, no single model met both AIC 
and BIC criteria. While both AIC and BIC penalize model 
complexity, BIC’s penalty also considers the sample size, resulting 
in a larger penalty. Therefore, the Q-matrix developed by Expert 
3, with a BIC of 28384.72, was selected as the final Q-matrix for 
further analyses. In addition, the absolute fit indices indicated 
that the model fits the data (maxX2 = 12, p = 0.15, 
MADcor = 0.035, SRMSR = 0.048).

As Table 1 shows, eight items measured Remember (27%), 15 
items measure Understand (50%), and 7 items tap into Analyze (23%). 
Thus, the answer to the first research question is that items of INPEE 
mostly measure lower levels of Bloom’s Taxonomy, with no items 
measuring the two highest levels: Evaluating and Creating.

To address the second research question, the average mastery 
probabilities of the attributes were calculated. As shown in 
Figure 1, Remember was the easiest attribute, with 56% of the test 
takers mastering it, whereas Analyze was the most difficult, with 
only 28% of the test takers mastering it.

Table 3 shows the attribute profiles, or latent classes, to which the 
test takers belong. For three attributes, CDMs estimate 23 = 8 profiles. 
The first profile [000] represents the percentage of test takers who have 
mastered none of the attributes, while the last profile [111] represents 
those who have mastered all the attributes. The third column includes 
the number of test takers belonging to each attribute profile. As the 
table shows, the most populated attribute profiles were [000], with 
about 38% of the test takers; [111], with about 22%; [011], those who 
mastered Attributes 2 and 3 but not 1, with about 14%; and [100], 
those who have mastered only Attribute 1, with about 12%. Very low 
probabilities of attribute profiles such as [010] indicated that the 
mastery of the second attribute without mastery of the first attribute 
is almost improbable. Similarly, profiles [001] and [101] suggested that 
the mastery of the third attribute without mastering the first two 
attributes has a low probability. This supports the hierarchical 
relationships among the cognitive levels of Bloom’s Taxonomy.

To address the third research question, a multigroup G-DINA 
model was run to estimate the mastery probabilities of the attributes 
and attribute profiles separately for males and females. Two models 
were compared: one assuming item parameter invariance between 
males and females, and the other assuming non-invariance. Table 4 
presents the relative and absolute fit indices for both models. While 
the AIC of the invariant model was lower, indicating a better fit, the 
BIC of the non-invariant model was lower. BIC imposes a heavier 
penalty for model complexity, thus better balancing fit and parsimony 
(Schwarz, 1978). Additionally, the non-invariant model had a 
non-significant max X2 and smaller MADcor, and SRMSR, values, 
suggesting a better overall fit. Therefore, the subsequent analyses were 
based on the non-invariant model.

As shown in Figure  2, the order of attribute difficulty across 
groups mirrors that of the entire sample, with attributes becoming 
increasingly difficult at higher Bloom’s Taxonomy levels. Notably, at 
the lowest level, the percentage of test takers mastering Remember was 
almost the same for males and females. However, as we  progress 
through higher levels of cognition, male test takers increasingly 
outperformed females.

FIGURE 1

Percentage of levels mastered by test takers.

TABLE 3  Attribute profiles of the entire group.

Profiles Class.prob Class.expfreq

000 0.384 383.59

100 0.122 122.15

010 0.034 34.24

110 0.072 72.32

001 0.020 19.73

101 0.007 6.60

011 0.137 137.01

111 0.224 224.35
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TABLE 4  Relative and absolute fit indices of the multigroup models.

Models Npars Nobs AIC BIC maxX2 p_maxX2 MADcor SRMSR

Model 1 210 1,000 27,258 28,289 36.4003 0.000 0.035 0.048

Model 2 398 1,000 27,369 28,122 14.4086 0.110 0.020 0.031

FIGURE 2

Attribute profiles of the entire group.

FIGURE 3

Mastery probabilities by group.

TABLE 5  Independent samples t-test of gender differences across cognitive levels.

Variables t statistic Degrees of 
freedom

p-value Mean 
(Females)

Mean 
(Males)

Mean 
difference

Std. error 
difference

Eta 
squared

Remember −1.114 709.217 0.265 1.891 2.023 0.132 0.118 0.005

Understand −3.371 667.714 0.001 3.538 4.063 0.526 0.153 0.050

Analyze −10.865 569.009 0.000 2.115 4.179 2.064 0.190 0.644
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According to Figure 3, attribute profiles of the two groups showed 
that the most populated profiles are [000] and [111]. About 32% of 
males were non-masters of all attributes, compared to about 41% of 
females. Conversely, for profile [111], about 29% of males mastered all 
attributes, compared to about 24% of females. There is a hierarchy of 
subskills for both males and females, as indicated by the low 
probability of profiles such as [010], [001], and [011]. The only 
exception is the profile [101], which represents test takers who have 
mastered the third attribute without mastering the second attribute.

Furthermore, the performance of male and female test takers was 
compared across items measuring each attribute. As Table 5 shows, 
consistent with the results in Figure 3, the gap between male and 
female performance widened as cognitive levels increased. At the 
lowest level, Remember, the difference was not statistically significant. 
For Understand items, the performance difference was statistically 
significant, but the eta squared indicated a small effect size (η2 = 0.01 
for small, 0.06 for medium, and 0.14 for large, per Cohen’s guidelines). 
However, for Analyze items, the difference was both statistically 
significant and, according to eta squared, the effect size was large.

Finally, to examine the relationship between item difficulty and 
cognitive complexity, a multiple linear regression analysis was 
conducted, regressing item difficulty on the three levels of cognitive 
complexity specified in the Q-matrix: Remember, Understand, and 
Analyze. The model accounted for approximately 45% of the 
variance in item difficulty (R2 = 0.45). As shown in Table 6, the 
regression coefficient for Remember was negative and statistically 
significant (β = −0.739, p < 0.001), indicating that items measuring 
lower-order cognitive skills (i.e., Remember) tended to be easier. In 
contrast, both Understand (β = 0.372, p = 0.040) and Analyze 
(β = 0.314, p = 0.040) had positive and statistically significant 
regression coefficients, suggesting that items targeting higher-order 
cognitive processes were generally more difficult. These findings 
support the validity of the Q-matrix classifications in terms of their 
impact on item difficulty.

6 Discussion

One of the primary objectives of higher education is to cultivate 
thoughtful citizens equipped with problem-solving skills. Additionally, 
the nature and cognitive complexity of tests significantly impact both 
what is assessed and what is taught and learned (Martinez, 1999). This 
study aimed to investigate the cognitive levels addressed by the 
ubiquitous MCQs in large-scale tests, specifically focusing on the 

INPEE. Furthermore, the study compared the performances of male 
and female test takers on items targeting different levels of 
Bloom’s Taxonomy.

The results of the study showed that 27% of the items measured 
Remember, 50% measured Understand, and 23% of the items tapped 
into Analyze. While this finding, in line with previous studies (Ali 
and Ruit, 2015; Choudhury and Freemont, 2017; Billings et al., 2016; 
Jensen et al., 2014; Kibble, 2017), suggests that MCQs can be effective 
in assessing various cognitive levels, including some complex and 
higher-order levels, they mostly assess lower-order cognitive levels 
(about 77%). This finding agrees with some previous studies (Kim 
et al., 2012; Knecht, 2001; Tarrant and Ware, 2008; Tarrant et al., 
2009). A smaller proportion of items assessed Analyze, a higher-
order cognitive skill. This finding aligns with Liu et al. (2024) who 
suggested that MCQs can measure Analyze. However, this level is not 
the highest level, and some other studies (Douglas et  al., 2012; 
Cecilio-Fernandes et al., 2018; Crowe et al., 2008; Jensen et al., 2014; 
Karpen and Welch, 2016; Kim et  al., 2012; Kıyak et  al., 2022; 
Thompson et al., 2016; Thompson and O'Loughlin, 2015) suggest that 
MCQs can be designed to measure more complex cognitive processes. 
Nevertheless, the overall pattern of results in this high-stakes 
entrance exam indicates that MCQs in this context primarily 
assess LOT.

The findings showed that levels of cognitive complexity 
explained 45% of the variance in item difficulty. This finding aligns 
with previous research linking cognitive processing models to the 
level of item difficulty in MCQ tests (Embretson and Wetzel, 1987; 
Gorin and Embretson, 2006; Kirsch et  al., 2017). The negative 
relationship between “Remember” and item difficulty supports the 
notion that items requiring simple recall are generally easier. This 
is consistent with the intuitive understanding of cognitive load and 
item difficulty. Conversely, the positive relationship between 
Understand, Analyze, and item difficulty suggests that items 
demanding Comprehension are more challenging. This accords 
with some studies that reported higher levels of cognitive 
processing require more difficult items (Rush et al., 2016; Testa 
et al., 2018). As Rush et al. (2016) documented, items requiring 
higher order level of thinking (Bloom’s Level IV) consistently 
showed lower correct response rates and higher discrimination 
indices than Recall-based questions (Levels I–II). This occurs 
because higher order items—such as interpreting complex texts, 
inferring implicit relationships, or evaluating rhetorical strategies—
demand integration of multiple information sources, increasing 
cognitive load.

TABLE 6  Regression coefficients: levels of cognition predicting item difficulty.

Coefficientsa

Model Unstandardized coefficients Standardized 
coefficients

t Sig.

B Std. error Beta

1 (Constant) 0.773 0.243 3.186 0.004

remember −2.090 0.412 −0.739 −5.078 0.000

understand 0.929 0.430 0.372 2.159 0.040

analyze 0.929 0.430 0.314 2.159 0.040

aDependent variable: item difficulty.
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However, some studies reported no relationship between cognitive 
complexity level and item difficulty (e.g., Kibble and Johnson, 2011; 
Tan and Othman, 2013; Tractenberg et al., 2013). This discrepancy 
might be attributed to several factors, including differences in subject 
matter. Another finding of the study was that the percentage of test 
takers mastering the Remember level was almost identical for males 
and females. However, regarding Understand, while the performance 
difference was statistically significant, the effect size was small. In 
addition, for Analyze items, the difference was both statistically 
significant and the effect size was large. These findings indicate that as 
cognitive demands increased, male test takers exhibited significantly 
higher performance.

In addition, the findings showed that Analyze is not the strongest 
predictor of difficulty, especially since it is a higher-order skill. This 
finding is somewhat unexpected. This can be explained by the nature 
of the “Analyze” items. As CDM results show, the mastery of Analyze 
is highly dependent on “Understand” [profile (011) = 13.7% vs. 
(001) = 2.0%]. The Analyze items often implicitly measure 
comprehension (Understand). If test takers lack foundational 
comprehension, they fail Analyze items regardless of analytical ability. 
This dependency artificially inflates the predictive role of Understand 
in the regression model while suppressing the unique contribution of 
Analyze, even though items classified as Analyze may still 
be cognitively demanding.

The observed gender disparity in higher-order cognitive skills, 
particularly at the Analyze level where males demonstrated 
significantly stronger performance (η2 = 0.644), aligns with several 
studies reporting male advantages in complex thinking tasks. Our 
CDM results revealing higher male representation in the full-mastery 
profile [111] (29% vs. 24%) and lower representation in the 
non-mastery profile [000] (32% vs. 41%) further substantiate this 
pattern. These findings resonate with Wright et  al. (2016), who 
documented widening male advantages at higher Bloom’s levels in 
biology education, and Amin et al. (2024), who reported greater male 
proficiency in analytical and evaluative skills among prospective 
teachers. The hierarchical attribute structure observed in both genders 
(with low probabilities for profiles like [010] and [011]) parallels Lager 
et al.'s (2024) finding of strong intercorrelations between cognitive 
abilities, though their work additionally identified specific male 
advantages in abstract problem-solving and spatial abilities.

However, these results contrast with research reporting female 
cognitive advantages. Our null finding at the Remember level aligns 
with Araiku et al. (2019), who reported no overall gender differences 
in mathematics despite identifying male advantages at the Remember 
level. The significant female disadvantage in our Analyze items 
diverges markedly from Aldila et  al. (2013) finding of consistent 
female superiority across all Bloom’s levels in science education. 
Similarly, while Bastick (2002) found female strengths specifically in 
analysis/synthesis within matching formats, our humanities-focused 
assessment revealed opposite patterns for analytical skills. These 
contradictions may stem from cultural, socioeconomic, and 
disciplinary factors influencing the observed outcomes.

7 Conclusion

This study investigated the cognitive demands of MCQs in the 
INPEE and explored gender differences in performance across 

different cognitive levels. The results indicate that MCQs 
predominantly assess lower-order cognitive skills. Moreover, the 
study found a significant relationship between cognitive 
complexity and item difficulty. A notable 
gender gap emerged, with males outperforming females at higher 
cognitive levels.

This study has implications for researchers, test developers, 
instructors, and assessment practitioners. This study provides a 
methodology for empirically and objectively assessing of cognitive 
complexity of MCQs. This provide a quantitative and objective 
analysis by using CDM that can be  adopted for other tests and 
fields. In addition, this study’s findings underscore the necessity of 
revising large-scale assessments to better reflect HOT skills and 
recommends integrating intelligent assessment tools to achieve 
these goals. The analysis of cognitive levels in assessments is crucial 
for creating well-balanced evaluations that accurately measure a 
broad spectrum of cognitive skills. To promote HOT, test developers 
should carefully consider the cognitive demands of items and strive 
for a balanced representation of cognitive levels. For doing so, they 
should implement structured protocols to engineer balanced 
cognitive coverage. First, they should adopt a cognitive blueprint 
defining explicit target distributions aligned with the test objectives. 
Second, they should revise item development through specialized 
writer training focused on crafting higher-order MCQs—using 
scenario-based stems, misconception-driven distractors, and multi-
step reasoning tasks—coupled with dual independent Bloom’s 
classification during item review. Third, they should embed 
validation mechanisms to flag cognitive imbalances in draft tests 
and apply post-hoc CDMs to audit alignment between intended and 
measured attributes, mastery gaps, and complexity-
difficulty relationships.

Moreover, measurement of cognitive complexity benefits both 
teaching and learning. Analyzing cognitive levels in assessments 
plays a vital role in measuring educational success. These analyses 
can help identify areas of both strength and weakness, informing 
assessment practices to promote fairer evaluations that consider 
students’ varying cognitive skill sets. Additionally, analyzing 
cognitive levels can lead to more positive outcomes in problem-
based learning environments by encouraging educators to design 
learning activities that promote understanding of underlying 
principles. By measuring cognitive complexity in assessments, 
educators gain valuable insights that can improve teaching, 
learning, and assessment practices, ultimately leading to a more 
well-rounded educational experience for students.

While our study highlights the need to examine different item 
formats and cognitive complexity across subject domains, future 
research in these areas may face challenges related to construct 
comparability and the classification of cognitive skills across 
disciplines. For instance, applying Bloom’s Taxonomy to fields 
such as mathematics, sciences, or the humanities may yield 
different interpretations of higher-order skills, complicating 
cross-disciplinary comparisons. Moreover, item formats such as 
essays or open-ended questions—while better 
suited to assess HOT—require subjective scoring and are prone to 
inter-rater variability, calling for rigorous rater training and 
rubric validation.

Another important limitation is that the current study focused 
only on three levels of Bloom’s Taxonomy (Remember, Understand, 
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Analyze), as the other levels (Apply, Evaluate, and Create) were not 
represented in the test. This restriction narrows the cognitive scope of 
the analysis and limits our ability to draw conclusions about how the 
test assesses HOT skills more broadly.

In addition, the study infers a hierarchical relationship among 
cognitive attributes—most notably, that successful performance on 
items tapping Analyze presupposes mastery of Understand. While this 
assumption aligns with theoretical expectations, it was not 
independently tested through hierarchical CDMs or longitudinal 
modeling. Future research should consider empirically evaluating 
such hierarchical structures to avoid oversimplified interpretations of 
cognitive processing.

Another methodological consideration is the operationalization 
of distractor quality. Future research aiming to explore how distractor 
plausibility interacts with cognitive complexity and item difficulty 
must establish objective indicators for distractor functioning, which 
may involve integrating psychometric analyses (e.g., distractor 
discrimination) with cognitive models.

Additionally, collecting complementary qualitative data through 
interviews or think-aloud protocols with students and educators can 
provide deeper insights into the cognitive demands of test items. 
However, these methods are resource-intensive and may limit 
generalizability unless carefully sampled and triangulated with 
quantitative findings.
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