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The aim of this study was twofold. First, this study explored the potential use of
a high-stakes multiple-choice test for measuring cognitive complexity by using
Bloom's Taxonomy and applying cognitive diagnostic models. Second, it investigated
the interplay of cognitive complexity with gender and item difficulty. Data from
1,000 applicants to English PhD programs were analyzed. Six experts coded test
items based on the cognitive levels they target. Q-matrices were constructed,
one for each expert, specifying item-cognition relationships. The G-DINA model
was used to assess these relationships. Based on the best-fitting Q-matrix, 27%
of the items measured the lowest cognitive level (Remember), 50% measured
Understand, and 23% measured Analyze levels. Test takers demonstrated mastery
of these levels by 56, 39, and 28%, respectively. Findings indicated that the test
primarily assessed lower levels of Bloom's Taxonomy. In addition, the results
showed that male test takers outperformed female counterparts at higher levels.
Furthermore, the analysis showed that cognitive complexity contributed to item
difficulty. Finally, implications were discussed, and suggestions were made.

KEYWORDS
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1 Introduction

The key role that high-stakes tests play in test takers lives necessitates a critical assessment
to ensure that the tests accurately measure student abilities (Kubiszyn and Borich, 2024; French
etal,, 2023; Mason, 2007). Whereas high-stakes tests have traditionally been aligned with the
rote memorization of facts, they should ideally make a switch to being comprehensive measures
of student capability. This means shifting toward the assessment of students for their critical
thinking and problem-solving capabilities, and that is achieved through focusing on the
cognitive complexity of test items. This issue has accordingly received extensive research
attention (e.g., Ehrich et al., 2021; Noroozi and Karami, 2022), and frameworks like the one
employed in international assessments such as Trends in International Mathematics and Science
Study (TIMSS) 2019 exemplify this focus by incorporating a cognitive dimension alongside the
traditional content dimension. This dual focus ensures that in this way a more holistic evaluation
of the students’ capabilities takes place, preparing them for the demands of the 21st century
more effectively (Gorin, 2006; Shavelson, 2010).
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Bloom’s Taxonomy provides a well-established framework for
classifying and categorizing cognitive objectives in education and
assessment (Alshurafat et al., 2024; Anderson and Krathwohl, 2001;
Krathwohl, 2002, Krathwohl and Anderson, 2009; Pellegrino et al.,
2016; Ramirez, 2017). This framework subdivides the cognitive
domains into six categories of Remembering, Comprehending,
Applying, Analyzing, Evaluating, and Creating (Anderson and
Krathwohl, 2001; Das et al., 2022). These levels range from lower-order
thinking (LOT) skills to higher-order thinking (HOT) skills (Freahat
and Smadi, 2014; Krause et al., 2021). According to Muhayimana et al.
(2022), LOT skills require recalling and comprehending information
(remembering and applying knowledge), while HOT skills demand
deeper analysis, application, and evaluation (analyzing, evaluating, and
creating). Assessing HOT skills is crucial as they reflect critical
thinking, problem-solving, and innovation—capabilities essential for
preparing 21st-century learners to address complex socio-scientific
challenges (Rahayu and Alsulami, 2024). The emphasis on specific
HOT skills may vary across different subject domains, reflecting the
nature of authentic problems encountered in each discipline. A large
body of research has investigated cognitive levels in high-stakes tests
across various contexts (e.g., Baghaei et al., 2021; DeWitt et al., 2013;
Jung Lim, 2014; Ho, 2022). However, most studies focused solely on
identifying Bloom’s Taxonomy in analyzed tests rather than assessing
how effectively the tests assess the targeted cognitive skills.
Furthermore, nearly all of these studies used a qualitative method and
descriptive statistics as the means of analyzing the data of their research.

In addition, for decades, Multiple-Choice Questions (MCQs) have
been the dominant format in large-scale testing (Tractenberg et al.,
2013). While MCQs are undoubtedly effective in assessing factual
knowledge and information recall, there’s a growing body of studies
suggesting that MCQs may also measure complex capabilities beyond
simple recall (e.g., Cecilio-Fernandes et al., 2018; Crowe et al., 2008;
Douglas et al., 2012; Jensen et al., 2014; Karpen and Welch, 2016; Kim
et al,, 2012; Kiyak et al,, 2022; Thompson and O'Loughlin, 2015;
Thompson et al., 2016; Yeong et al., 2020). However, this evidence
remains inconclusive, and significant gaps in our understanding persist.

Moreover, research on the impact of gender on cognitive abilities
is complex and ongoing (e.g., Ernawati and Baharullah, 2020;
Migliaccio et al., 2009; Nasution et al., 2023; Ryan and Chiu, 2001).
However, findings are inconsistent: some studies suggest a potential
male advantage in assessments of HOT skills (e.g., Amin et al., 2024;
Lager et al, 2024; Wright et al, 2016), while others report no
significant differences or even better performance by females in
specific contexts (e.g., Aldila et al., 2013; Araiku et al., 2019; Bastick,
2002). These inconsistencies highlight the need for further exploration
considering factors beyond gender alone, such as the specific cognitive
skills assessed, subject matter, and test format.

Furthermore, recent development of Cognitive Diagnostic Models
(CDMs) provides a promising approach to analyze cognitive processes
that are measured by tests (DiBello and Stout, 2007). Unlike traditional
assessments that view measuring learning as the sole purpose of
assessment, CDMs go deep into investigating underlying knowledge
and cognitive strategies needed to do certain tasks correctly (Ravand,
2016). The rich diagnostic information provided can be used to
improve learning and instruction through pinpointing areas where
students might struggle (Leighton and Gierl, 2007). In addition,
CDMs show great potential for changing assessment practices in the
humanities by allowing the light to be shed on the hard-to-measure
cognitive skills that students acquire in these disciplines.
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This study aims to address existing gaps by integrating CDMs with
Bloom’s Taxonomy to analyze the cognitive processes assessed by the
Iranian National PhD Entrance Exam (INPEE), a high-stakes MC test
designed to evaluate the readiness of Iranian Master graduates for
PhD programs. The general English section of the INPEE,
encompassing grammar, vocabulary, and reading comprehension,
plays a pivotal role in determining candidates’ success.

By examining the types of knowledge evaluated in this section, the
study seeks to identify the cognitive levels measurable through MCQs
in the field of English Language Teaching. Additionally, it aims to
demonstrate the application of CDMs in analyzing exams in alignment
with desired learning outcomes, potentially revealing the genuine
competencies and knowledge of English students in a high-stakes
testing context. Furthermore, the research also compares the
performance of male and female applicants across different levels of
cognitive complexity and explores the relationship between item
difficulty and cognitive complexity.

2 Literature review

Analyzing cognitive levels of test items is crucial for effective
teaching, learning and testing. Measuring the complexity of thinking
processes that test takers need to answer questions can help educators to
create test items that clearly reflect the students’ abilities and inform
instructional practices. A large array of research studies supports the
importance of this approach (Bezuidenhout and Alt, 2011; Borda et al.,
2018; Das et al., 2020; Gorin, 2007; Mustafidah and Pinandita, 2022).
This approach sufficiently assists in determining students’ abilities and
weaknesses and thus makes assessment fairer and broadens the learner’s
apprehension of the subject matter. Hence, it ultimately improves
learning outcomes when assessment is aligned to the cognitive level.

2.1 Bloom'’s Taxonomy

Bloom’s Taxonomy is a framework to analyze and classify cognitive
objectives in different educational fields. Bloom et al. (1956) proposed
the framework, which according to Anderson and Krathwohl (2001)
has established itself as a necessary tool for evaluating educational and
testing objectives. To shed light on the learning process and the range
of cognitive abilities among students, researchers have thoroughly
examined its use in various educational settings (e.g., Crowe et al.,
2008; Elim, 2024; Granello, 2001; Kahn, 2012; Momen et al., 2022;
Scott, 2003; Swart, 2009). This taxonomy has been utilized to analyze
the cognitive level of textbooks (Khoy, 2025; Mizbani et al., 2023;
Razmjoo and Kazempourfard, 2012; Rena et al., 2023; Parsaei et al.,
2017; Zorluoglu et al., 2020), final exam questions (Chang and Chung,
2009; Febriyana and Harjanto, 2023; Ebadi and Shahbazian, 2015;
Khorsand, 2009; Shahbazian, 2016; Tangsakul et al., 2017), university
entrance exams (Aydin and Birgili, 2023; Han and Xiang, 2025;
Razmjoo and Madani, 2013; Rezaee and Golshan, 2016). In addition,
it has been used to enhance the development of intelligent assessment
tools (Jaramillo and Cadavid, 2015; Kosorus and Kiing, 2014; Krouska
etal,, 2018; Tijaro-Rojas et al., 2016; Ying and Yang, 2008), and finally
to improve teaching practices and student performance (e.g., Butler,
2018; Niyibizi et al., 2018; Nkhoma et al., 2017; Rentmeester, 2018).
Extending this framework to language assessment, several studies have
explored the cognitive processes involved in language exams like IELTS
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and TOEFL (e.g., Baghaei et al., 2020, 2021; Bax, 2013; Moslehi and
Razmjoo, 2021; NamazianDoost and HayaviMehr, 2017). These studies
primarily focused on the reading and listening sections, employing
methods like eye-tracking, retrospective questionnaires and
content analysis.

2.2 Multiple-choice questions for
measuring cognitive level

MCQs are a widely used assessment tool, but their ability to
measure complex thinking skills remains a topic of debate. While
some studies highlight their potential for assessing higher-order
cognition, others emphasize significant limitations. Proponents argue
that well-constructed MCQs can effectively measure Application,
Analysis, and Synthesis. Jensen et al. (2014) emphasize that with
careful construction, MCQs can assess Application, Analysis, and
even Synthesis of Knowledge—key components of HOT. Similarly,
Kiyak et al. (2022) advocate for improving MCQ design to test Critical
Thinking rather than being limited to Factual Knowledge. Kim et al.
(2012) found that 13% of MCQs in their study reached the highest
levels of Bloom’s Taxonomy, suggesting that although challenging, it
is possible to create MCQs that evaluate advanced cognitive processes.
Zaidi et al. (2018) proposed categorizing MCQs into lower and higher
cognitive levels, asserting that they can align with up to four levels of
Bloom’s Taxonomy. Ten Cate et al. (2018) further supported this view
by stating that well-crafted MCQs engage learners in Applying and
Synthesizing knowledge, which are essential higher-order
cognitive functions.

However, other studies highlight limitations in using MCQs for
higher-order assessment. Tarrant and Ware (2008) note that most
MCQs predominantly focus on Factual Recall rather than Application
or Evaluation. Tarrant et al. (2009) reinforce this idea, pointing out
that due to logistical and practical constraints, MCQs often remain
confined to testing basic knowledge. Similarly, Stanger-Hall (2012)
reported that MCQs indeed hinders Critical Thinking. Zheng et al.
(2008) conclude that MCQs are mostly effective only at the first two
levels of Bloom’s Taxonomy (‘Apply” and ‘Analyse’), falling short in
evaluating more complex skills like ‘Evaluate’ and ‘Create’. Harland
and Wald (2021), along with Scouller (1998), argue that essay-based
assessments allow for better demonstration of higher-order cognition
compared to MCQs, which often promote surface-level memorization
rather than deep understanding. Liu et al. (2024) found that while
many educators believe MCQs can effectively test middle-level
cognitive functions like Application and Analysis, there is skepticism
about their capacity to measure the highest levels of Bloom’s
Taxonomy—Evaluation and Creation.

Despite these contrasting perspectives, there appears to be agreement
on one key point: the effectiveness of MCQs in measuring higher-order
cognitive skills depends heavily on the quality of question design and
alignment with intended learning outcomes. Studies such as Ali and Ruit
(2015), Billings et al. (2016), and Kibble (2017) support the potential of
MCQs to test problem-solving and critical thinking when questions are
constructed with deliberate attention to cognitive complexity.
Choudhury and Freemont (2017) demonstrate that with proper framing,
MCQs can assess higher cognitive functions. Moreover, Zaidi et al.
(2016,2017,2018) developed frameworks at the University of Michigan
Medical School to help faculty write MCQs targeting higher-order
cognition. Santen et al. (2019) also encourage efforts to develop MCQs
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that test clinical reasoning and decision-making skills, which are
essential in medical education. On the other hand, Monrad et al. (2021)
caution that without shared understanding and training among
educators, the classification and design of higher-order MCQs remain
inconsistent and subjective and the effectiveness of this approach
remains unclear.

2.3 Cognitive level and item difficulty

Item difficulty estimation has been a central focus in educational
measurement, particularly in the context of MC items. Some studies
have investigated the connection between cognitive processing models
and the difficulty level of items. Embretson and Wetzel (1987) were
among the first to propose a cognitive processing model for paragraph
comprehension items, identifying decision processes such as
falsification and confirmation as strong predictors of item difficulty.
Similarly, Gorin and Embretson (2006) found that response-decision
processes in Graduate Record Examinations (GRE) paragraph
comprehension sections had a stronger association with item difficulty
than general text-comprehension ability, reinforcing the role of
higher-order cognitive strategies.

Kirsch et al. (2017) introduced a construct-based assessment
model that defines operationalized variables tied to task characteristics,
including “processes and strategies” These strategies involve locating,
cycling, integrating, and generating information, as well as the
abstractness or concreteness of required knowledge and the plausibility
of distractors. This model underscores how cognitive strategies and
semantic complexity directly affect item difficulty. Ferrara et al. (2011)
further defined “item demands” as the knowledge, comprehension,
and cognitive processes required for answering correctly, highlighting
the necessity of aligning item design with cognitive expectations. Hsu
etal. (2018) also supported this connection and reported that there is
a link between cognitive processing models and item difficulty.

Rush et al. (2016) found that higher cognitive skills are needed for
more difficult items in veterinary exams. They also identified pitfalls like
implausible distractors that decrease item quality and discrimination.
Their study emphasizes the importance of well-designed MCQs with
effective distractors to accurately assess HOT (Chang and Chung, 2009;
Febriyana and Harjanto, 2023; Ebadi and Shahbazian, 2015; Khorsand,
2009; Shahbazian, 2016; Tangsakul et al., 2017). Researchers also have
investigated the connection between Bloom’s Taxonomy and item quality.
Testa et al. (2018) reported that higher levels of cognitive processing
enable test developers to produce more functioning distractors. They also
reported that there is a significant relation between distractor efficiency
and item difficulty. However, contrasting with the aforementioned studies,
some research has reported no consistent relationship between cognitive
complexity levels, as specified in Bloom’s Taxonomy, and item difficulty
or discrimination. For instance, Kibble and Johnson (2011) found no
significant correlation between the cognitive level of MCQs and their
difficulty or discrimination indices. Similarly, Tan and Othman (2013)
observed that items categorized into different Bloom’s Taxonomy levels
did not exhibit a strong relationship with item difficulty.

2.4 Gender differences in cognition

The relationship between gender and cognitive abilities is a
complex and continually evolving area of research with studies often
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yielding contradictory results. While some studies report male
advantages in higher-order cognitive tasks across various domains
(Amin etal.,, 2024; Lager et al., 2024; Wright et al.,, 2016), others indicate
female advantages (Aldila et al., 2013; Bastick, 2002) or find no
significant differences (Araiku et al., 2019). The pertinent literature
reveals several lines of inquiry, each characterized by its specific
research purpose. The first comprises studies exploring how gender
influences cognitive performance at varying levels of Blooms
Taxonomy. For instance, Bastick (2002) specifically explored whether
different objective test question formats might favor males or females
and if responses to questions assessing abilities at different levels of
Bloom’s cognitive domain varied by gender. Each subtest comprised six
questions, with each question designed to target a specific level of
Bloom’s Taxonomy. A comparison of mean male and female scores
across three subtest formats revealed only one statistically significant
advantage: females excelled in matching questions. This advantage was
attributed to significant female strengths at the Analysis and Synthesis
levels within matching questions. Aldila et al. (2013) investigated the
cognitive and attitudinal outcomes of secondary school students
learning about global warming using the Student Team Achievement
Division (STAD) method, based on gender. Across all cognitive levels
(C1 to C6) of Bloom’s Taxonomy, female students consistently
outperformed male students, achieving higher N-Gain values in
Remembering, Understanding, Applying, Analyzing, Evaluating, and
Creating. In another study, Wright et al. (2016) examined how the
cognitive difficulty and format of exams affect student performance in
introductory biology courses, focusing on gender and socioeconomic
status (SES) differences. They found that male students outperformed
female students on exams that tested higher levels of Bloom’s Taxonomy;,
a difference observed even after controlling for prior academic ability.
This performance gap increased as the Bloom’s level of the exam
increased. Moreover, Araiku et al. (2019) provided further insights into
gender differences in mathematical abilities across various levels of
Bloom’s Taxonomy. Their research, involving 156 junior high school
students and analyzed using a two-way analysis of variance (ANOVA)
with post hoc tests, indicated no significant overall performance
difference between male and female students. However, male students
specifically outperformed female students at the C1 (Remember) level.
This suggests that gender might influence performance at certain
cognitive levels but not others. The study underscores the importance
of considering the interaction between gender and cognitive levels
when designing educational strategies, highlighting that while gender
can be a factor at specific Blooms Taxonomy levels, it does not
necessarily impact overall academic achievement. This nuanced
understanding is vital for educators aiming to cater to the diverse needs
of male and female students in mathematics. Amin et al. (2024) also
offered valuable insights into gender differences within Bloom’s
Taxonomy, particularly among prospective teachers in Pakistan. They
discovered that female participants demonstrated stronger mastery of
lower-level skills, such as Remembering and Understanding, whereas
male participants showed greater proficiency in HOT skills, like
Analyzing and Evaluating.

The second line of research assesses gender differences across
distinct cognitive domains (e.g., memory, spatial skills) and
consistency of performance. For example, Lager et al. (2024)‘s
comprehensive analysis of gender differences in operational and
cognitive abilities revealed that male candidates scored significantly
higher on mental spatial ability, memory retention, abstract
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problem-solving, multitasking ability, and manual spatial ability. In
contrast, female candidates scored higher on perceptual speed. The
study also highlighted that correlations between different cognitive
abilities were significantly stronger among female candidates,
indicating a more homogeneous performance profile. This implies
that females may exhibit a more consistent application of cognitive
skills across various domains, a relevant consideration when applying
Bloom’s Taxonomy in educational settings.

The third line encompasses studies examining how gender
differences manifest in social cognition, particularly attributional
complexity. While most educational assessments tend to focus on
specific cognitive skills, research in social psychology suggests that
gender differences in thinking may also stem from broader socio-
cognitive patterns. For instance, Foels and Reid (2010) found that
women tend to show higher levels of attributional complexity than
men. This concept refers to the tendency to consider multiple factors
and perspectives when interpreting social behavior. People who are
high in attributional complexity are more likely to think in nuanced
and flexible ways—they avoid oversimplifying others’ actions or
relying on stereotypes. Instead of assuming someone behaves a certain
way because that is just who they are,” they take into account the
person’s background, the situation, and even timing. Although the
focus of Foels and Reid’s study was on social dominance orientation,
their findings offer meaningful insights into gender-related patterns
in complex thinking. These insights could be relevant to understanding
how men and women approach cognitively demanding tasks, such as
those found at the higher levels of Bloom’s Taxonomy.

Despite the mentioned studies, the relationship between gender
and cognitive complexity in educational assessments remains unclear.
While research in other disciplines hints at potential variations, these
findings have not been consistently replicated in high-stakes language
testing. This underscores the need for further investigations tailored
specifically to language assessments to gain a clearer picture.

2.5 Cognitive diagnostic models

CDMs are designed to provide detailed insights into learners’
mastery of specific skills or attributes, offering a more fine-grained
perspective than traditional psychometric models such as item
response theory or classical true score theory (Rupp and Templin,
2008). One of the key distinctions among CDMs lies in how they
handle the interaction of the skills required to answer an item
correctly. Based on these assumptions, CDMs are typically divided
into specific and general models (Ravand et al., 2024).

Specific CDMs assume a single type of relationship among
attributes for all items in a test. These relationships generally fall into
three categories: conjunctive, disjunctive, and additive. In conjunctive
models, the idea is that all of the required attributes must be present for
a correct response. A well-known example is the Deterministic Inputs,
Noisy “And” gate model (DINA; Junker and Sijtsma, 2001). This model
operates on an all-or-nothing principle: if even one essential attribute is
missing, the chance of answering the item correctly is low, regardless of
how many other attributes are mastered. On the other hand, disjunctive
models assume that mastering just one of the required attributes may
be enough. The Deterministic Inputs, Noisy “Or” gate model (DINO;
Templin and Henson, 2006) falls into this category. In this case, having
any one of the relevant attributes can boost the probability of success,
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even if the others are not mastered. Additive models take a more
gradual approach. In these models, each mastered attribute contributes
independently to the probability of answering correctly. That is, the
more attributes a learner has mastered, the better their chances—
without any single skill being strictly necessary. Examples of additive
models include the Additive Cognitive Diagnosis Model (A-CDM,; de la
Torre, 2011), the Linear Logistic Test Model (LLTM; Maris, 1999), and
the Reduced Reparameterized Unified Model (RRUM; Hartz, 2002).
While specific CDMs impose the same interaction rule across all
items, general CDMs allow for more flexibility. The Generalized DINA
model (G-DINA; de la Torre, 2011), for instance, does not assume that
all items behave the same way. Instead, it allows each item to follow its
own pattern of attribute interaction—whether conjunctive, disjunctive,
or additive. This flexibility makes general CDMs especially useful when
test items are expected to involve different types of cognitive processing.

3 The present study

This study addresses several notable gaps in the existing literature
on cognitive assessment in high-stakes language testing. While CDMs
have been increasingly applied in language assessments to provide
detailed insights into learners’ cognitive processes, there remains a
paucity of research integrating CDMs with Bloom’s Taxonomy to
analyze the cognitive demands of MCQs in such contexts. Moreover,
prior studies examining the alignment of test items with Bloom’s
Taxonomy have predominantly employed qualitative and descriptive
methodologies, lacking the quantitative rigor that CDMs can offer.

This study employs the integration of CDMs with Bloom’s
Taxonomy to quantitatively assess the cognitive complexity of MCQs
in the INPEE, specifically within the English language section. By
doing so, it seeks to provide a more detailed understanding of the
cognitive skills assessed, moving beyond traditional item analysis
methods. Furthermore, the research explores the relationship between
cognitive complexity and item difficulty, as well as potential gender
differences in performance across different cognitive levels. The
research questions guiding this study are:

RQI: To what extent can MCQs in INPEE effectively assess
higher-order cognitive skills as defined by Bloom’s Taxonomy?

RQ2: How does the cognitive complexity of MCQs influence
item difficulty?

RQ3: Is there any significant difference between male and female
test takers’ performance on items tapping into different levels of

Bloom’s Taxonomy?

4 Method
4.1 Data and participants

The data for this study were obtained from the Iranian Measurement
Organization, a testing body responsible for administering the Iranian
PhD entrance examination in March 2015. It included item responses
from 1,000 Iranian Master of Arts (MA) holders in English majors. The
item responses for the General English (GE) section, comprising 30
MCQs, were used for analysis.
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Participants consisted of 653 females and 347 males, representing
65.2% and 34.7% of the sample, respectively. Their ages ranged from
23 to 62 years, with a mean age of 33.10 years. The GE section formed
part of the INPEE comprehensive assessment, which also included
sections on content knowledge and educational aptitude, totaling
150 MCQs.

In the present study, six expert judges—three researchers
specializing in Bloom’s Taxonomy and three English Language
Teaching (ELT) professors with over five years of experience in
language instruction and assessment—coded the items according to
the level of the taxonomy each measured. The panel comprised three
male and three female experts with substantial academic and
practical backgrounds in education and assessment, including
professors of neurology, science education, biology education,
and ELT.

4.2 Q-matrix construction

At the core of any CDM lies the Q-matrix (Tatsuoka, 1983), which
specifies the relationship between test items and the cognitive
attributes they are intended to measure. Accurate specification of the
Q-matrix is crucial, as it directly affects the precision of test takers’
classifications (Ravand, 2016). The Q-matrix is structured as a binary
table, with rows representing items and columns representing
attributes. A value of 1 at the intersection of an item and an attribute
indicates that the item measures that attribute; a value of 0 indicates
that it does not.

While aggregating all expert Q-matrices into a consensus matrix
was considered, we found that doing so would have led to an overly
inclusive Q-matrix in which nearly all items were linked to the first
three cognitive attributes—Remember, Understand, and Analyze. This
would have resulted in substantial attribute overlap, reducing the
model’s diagnostic precision by limiting its ability to distinguish
between latent classes (DeCarlo, 2011; Chiu et al., 2009).

Therefore, to construct and validate the Q-matrix in the present
study, a mixed-methods approach was adopted. Each expert judge was
provided with a copy of the test and a table listing items in the rows
and Bloom’s Taxonomy levels in the columns. They were asked to
examine each item, identify the highest level of the taxonomy it
targeted, and mark a 1 at the corresponding intersection. This process
resulted in six initial Q-matrices, one from each expert (see Table 1 for
a sample Q-matrix).

The initial Q-matrices were then subjected to empirical validation
using the procedure proposed by Chiu et al. (2009), de la Torre and
Chiu (2016) as implemented in the GDINA package in R (R Core
Team, 2024). This procedure suggested modifications to the
Q-matrices, either by removing an attribute from an item (changing a
1 to a 0) or by adding an attribute (changing a 0 to a 1). To ensure
validity, we required convergence from at least two sources—expert
judgment and empirical validation—for each Q-matrix entry.
Although formal inter-rater reliability statistics were not computed,
this structured approach ensured that the final Q-matrix reflected
expert consensus while preserving model identifiability and
interpretability (Madison and Bradshaw, 2015).

The modified Q-matrices were reanalyzed, and model fit indices—
AIC, BIC, and log likelihood—were compared. The Q-matrix with the
indices was selected for use in

lowest values for these

subsequent analyses.
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TABLE 1 The final Q-matrix.

Items Remember Understand Analyze
1 0 1 0
2 0 1 0
3 1 0 0
4 1 0 0
5 1 0 0
6 1 0 0
7 1 0 0
8 1 0 0
9 0 1 0
10 0 1 0
11 0 1 0
12 0 1 0
13 0 1 0
14 0 1 0
15 0 1 0
16 0 1 0
17 0 1 0
18 0 1 0
19 0 1 0
20 0 1 0
21 0 0 1
22 0 0 1
23 1 0 0
24 0 1 0
25 1 0 0
26 0 0 1
27 0 0 1
28 0 0 1
29 0 0 1
30 0 0 1

4.3 Data analysis

Data were analyzed using the GDINA package (Ma and de la
Torre, 2020) in R. To assess the appropriateness of the Q-matrices, the
analysis was conducted six times, each time using one of the six
Q-matrices developed by the expert judges. Model fit was evaluated
using two relative fit indices: Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC). In addition, for the model
based on the best-fitting Q-matrix, four absolute fit indices—MX2,
MADcor, and SRMSR—were examined. According to Ravand (2016),
non-significant MX2 values and MADcor values below 0.05 suggest a
well-fitting model. Similarly, Maydeu-Olivares (2013) indicates that
SRMSR values below 0.05 reflect a negligible degree of model misfit.

Furthermore, the average mastery level of participants on each
attribute was calculated, and the prevalence of attribute profiles was
reported. To address the second research question, a multigroup
G-DINA analysis was conducted to compare attribute mastery and
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profile prevalence between male and female participants. Additionally,
three independent-samples t-tests were performed to compare male
and female performance on the three attributes identified through the
Q-matrix specification and validation process.

5 Results
5.1 Q-matrix validation

It should be noted that the initial list of the levels of cognition
according to Bloom’s Taxonomy included six levels. However, during
their evaluation, the expert judges concurred that the Apply, Evaluate,
and Create levels had not been addressed in the exam items.
Consequently, these three levels were excluded from the initial
Q-matrices before the analysis.

Following each analysis, the software generated a proposed
Q-matrix suggesting modifications to the initial one. To accept these
software-generated changes, they needed concurrence from at least
two of the expert Q-matrices. If this agreement existed and the change
was accepted, the G-DINA analysis was repeated with the modified
Q-matrix. It should be noted that when there was substantive reason
to incorporate the modifications suggested by the program, each
modification was accommodated at a time and the log-likelihood of
the new model was compared against that of the base model, that is
the model with no modification. After an analysis, the log-likelihood
of the new Q-matrix, which differed in a single attribute from the
original one, was subjected to a likelihood ratio test (LRT) to evaluate
its impact on the overall model fit. As these changes pertained to a
single item at a time, the degrees of freedom were limited to one.
Therefore, if the result of the LRT exceeded 3.85, it indicated that the
change would deteriorate the model fit and was, therefore, rejected.
Conversely, if the result was less than 3.85, the modification was
accepted. This iterative process continued until the Q-matrix was
thoroughly refined. In this manner, each initial Q-matrix developed
by each expert judge was analyzed by the software, modified if
appropriate, evaluated via the LRT.

Then, the six final Q-matrixes were compared using AICs and BICs
to determine the best model for the final Q-matrix of the study. In the
interest of space, we do not include the details of Q-matrix validation here.

5.2 Model fit and final Q-matrix

Table 2 displays the AICs and BICs for the models with the
six modified Q-matrices in the descending order of their AIC

TABLE 2 Relative fit indices of the models with the final Q-matrices.

Experts AIC BIC

Expert 1 27867.94 28854.4
Expert 2 27505.97 28482.62
Expert 3 27388.44 28384.72
Expert 4 27073.09 29207.97
Expert 5 27011.37 28498.42
Expert 6 27170.48 28421.95
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Percentage of levels mastered by test takers.

values. The model with the smallest AIC and BIC is considered
the best-fitting model; however, no single model met both AIC
and BIC criteria. While both AIC and BIC penalize model
complexity, BIC’s penalty also considers the sample size, resulting
in a larger penalty. Therefore, the Q-matrix developed by Expert
3, with a BIC of 28384.72, was selected as the final Q-matrix for
further analyses. In addition, the absolute fit indices indicated
that the model fits the data (maxX2=12, p=0.15,
MADcor = 0.035, SRMSR = 0.0438).

As Table 1 shows, eight items measured Remember (27%), 15
items measure Understand (50%), and 7 items tap into Analyze (23%).
Thus, the answer to the first research question is that items of INPEE
mostly measure lower levels of Blooms Taxonomy, with no items
measuring the two highest levels: Evaluating and Creating.

To address the second research question, the average mastery
probabilities of the attributes were calculated. As shown in
Figure 1, Remember was the easiest attribute, with 56% of the test
takers mastering it, whereas Analyze was the most difficult, with
only 28% of the test takers mastering it.

Table 3 shows the attribute profiles, or latent classes, to which the
test takers belong. For three attributes, CDMs estimate 2* = 8 profiles.
The first profile [000] represents the percentage of test takers who have
mastered none of the attributes, while the last profile [111] represents
those who have mastered all the attributes. The third column includes
the number of test takers belonging to each attribute profile. As the
table shows, the most populated attribute profiles were [000], with
about 38% of the test takers; [111], with about 22%; [011], those who
mastered Attributes 2 and 3 but not 1, with about 14%; and [100],
those who have mastered only Attribute 1, with about 12%. Very low
probabilities of attribute profiles such as [010] indicated that the
mastery of the second attribute without mastery of the first attribute
is almost improbable. Similarly, profiles [001] and [101] suggested that
the mastery of the third attribute without mastering the first two
attributes has a low probability. This supports the hierarchical
relationships among the cognitive levels of Bloom’s Taxonomy.

Frontiers in Education

TABLE 3 Attribute profiles of the entire group.

Profiles Class.prob Class.expfreq
000 0384 383.59

100 0.122 122.15

010 0.034 34.24

110 0.072 72.32

001 0.020 19.73

101 0.007 6.60

011 0.137 137.01

111 0.224 224.35

To address the third research question, a multigroup G-DINA
model was run to estimate the mastery probabilities of the attributes
and attribute profiles separately for males and females. Two models
were compared: one assuming item parameter invariance between
males and females, and the other assuming non-invariance. Table 4
presents the relative and absolute fit indices for both models. While
the AIC of the invariant model was lower, indicating a better fit, the
BIC of the non-invariant model was lower. BIC imposes a heavier
penalty for model complexity, thus better balancing fit and parsimony
(Schwarz, 1978). Additionally, the non-invariant model had a
non-significant max X2 and smaller MADcor, and SRMSR, values,
suggesting a better overall fit. Therefore, the subsequent analyses were
based on the non-invariant model.

As shown in Figure 2, the order of attribute difficulty across
groups mirrors that of the entire sample, with attributes becoming
increasingly difficult at higher Bloom’s Taxonomy levels. Notably, at
the lowest level, the percentage of test takers mastering Remember was
almost the same for males and females. However, as we progress
through higher levels of cognition, male test takers increasingly
outperformed females.
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TABLE 4 Relative and absolute fit indices of the multigroup models.

Models Npars Nobs AIC BIC maxX2 p_maxX2 MADcor SRMSR
Model 1 210 1,000 27,258 28,289 36.4003 0.000 0.035 0.048
Model 2 398 1,000 27,369 28,122 14.4086 0.110 0.020 0.031
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TABLE 5 Independent samples t-test of gender differences across cognitive levels.

Variables t statistic Degrees of p-value Mean Mean Mean Std. error Eta
freedom (Females) (Males) difference difference squared
Remember —1.114 709.217 0.265 1.891 2.023 0.132 0.118 0.005
Understand -3.371 667.714 0.001 3538 4.063 0.526 0.153 0.050 ‘
Analyze ~10.865 569.009 0.000 2.115 4.179 2.064 0.190 0.644 ‘
Frontiers in Education 08
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TABLE 6 Regression coefficients: levels of cognition predicting item difficulty.

Coefficients?

Unstandardized coefficients

Standardized

coefficients
Std. error Beta
‘ 1 (Constant) 0.773 0.243 3.186 0.004
‘ remember —2.090 0.412 -0.739 —5.078 0.000
‘ understand 0.929 0.430 0.372 2.159 0.040
‘ analyze 0.929 0.430 0.314 2.159 0.040

“Dependent variable: item difficulty.

According to Figure 3, attribute profiles of the two groups showed
that the most populated profiles are [000] and [111]. About 32% of
males were non-masters of all attributes, compared to about 41% of
females. Conversely, for profile [111], about 29% of males mastered all
attributes, compared to about 24% of females. There is a hierarchy of
subskills for both males and females, as indicated by the low
probability of profiles such as [010], [001], and [011]. The only
exception is the profile [101], which represents test takers who have
mastered the third attribute without mastering the second attribute.

Furthermore, the performance of male and female test takers was
compared across items measuring each attribute. As Table 5 shows,
consistent with the results in Figure 3, the gap between male and
female performance widened as cognitive levels increased. At the
lowest level, Remember, the difference was not statistically significant.
For Understand items, the performance difference was statistically
significant, but the eta squared indicated a small effect size (n2 = 0.01
for small, 0.06 for medium, and 0.14 for large, per Cohen’s guidelines).
However, for Analyze items, the difference was both statistically
significant and, according to eta squared, the effect size was large.

Finally, to examine the relationship between item difficulty and
cognitive complexity, a multiple linear regression analysis was
conducted, regressing item difficulty on the three levels of cognitive
complexity specified in the Q-matrix: Remember, Understand, and
Analyze. The model accounted for approximately 45% of the
variance in item difficulty (R* = 0.45). As shown in Table 6, the
regression coeflicient for Remember was negative and statistically
significant (f = —0.739, p < 0.001), indicating that items measuring
lower-order cognitive skills (i.e., Remember) tended to be easier. In
contrast, both Understand (f = 0.372, p =0.040) and Analyze
(f=0.314, p=0.040) had positive and statistically significant
regression coefficients, suggesting that items targeting higher-order
cognitive processes were generally more difficult. These findings
support the validity of the Q-matrix classifications in terms of their
impact on item difficulty.

6 Discussion

One of the primary objectives of higher education is to cultivate
thoughtful citizens equipped with problem-solving skills. Additionally,
the nature and cognitive complexity of tests significantly impact both
what is assessed and what is taught and learned (Martinez, 1999). This
study aimed to investigate the cognitive levels addressed by the
ubiquitous MCQs in large-scale tests, specifically focusing on the
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INPEE. Furthermore, the study compared the performances of male
and female test takers on items targeting different levels of
Bloom’s Taxonomy.

The results of the study showed that 27% of the items measured
Remember, 50% measured Understand, and 23% of the items tapped
into Analyze. While this finding, in line with previous studies (Ali
and Ruit, 2015; Choudhury and Freemont, 2017; Billings et al., 2016;
Jensen et al., 2014; Kibble, 2017), suggests that MCQs can be effective
in assessing various cognitive levels, including some complex and
higher-order levels, they mostly assess lower-order cognitive levels
(about 77%). This finding agrees with some previous studies (Kim
et al., 2012; Knecht, 2001; Tarrant and Ware, 2008; Tarrant et al.,
2009). A smaller proportion of items assessed Analyze, a higher-
order cognitive skill. This finding aligns with Liu et al. (2024) who
suggested that MCQs can measure Analyze. However, this level is not
the highest level, and some other studies (Douglas et al., 2012;
Cecilio-Fernandes et al., 2018; Crowe et al., 2008; Jensen et al., 2014;
Karpen and Welch, 2016; Kim et al.,, 2012; Kiyak et al., 2022;
Thompson et al., 2016; Thompson and O'Loughlin, 2015) suggest that
MCQs can be designed to measure more complex cognitive processes.
Nevertheless, the overall pattern of results in this high-stakes
entrance exam indicates that MCQs in this context primarily
assess LOT.

The findings showed that levels of cognitive complexity
explained 45% of the variance in item difficulty. This finding aligns
with previous research linking cognitive processing models to the
level of item difficulty in MCQ tests (Embretson and Wetzel, 1987;
Gorin and Embretson, 2006; Kirsch et al., 2017). The negative
relationship between “Remember” and item difficulty supports the
notion that items requiring simple recall are generally easier. This
is consistent with the intuitive understanding of cognitive load and
item difficulty. Conversely, the positive relationship between
Understand, Analyze, and item difficulty suggests that items
demanding Comprehension are more challenging. This accords
with some studies that reported higher levels of cognitive
processing require more difficult items (Rush et al., 2016; Testa
et al,, 2018). As Rush et al. (2016) documented, items requiring
higher order level of thinking (Bloom’ Level IV) consistently
showed lower correct response rates and higher discrimination
indices than Recall-based questions (Levels I-II). This occurs
because higher order items—such as interpreting complex texts,
inferring implicit relationships, or evaluating rhetorical strategies—
demand integration of multiple information sources, increasing
cognitive load.

frontiersin.org


https://doi.org/10.3389/feduc.2025.1644811
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Ravand et al.

However, some studies reported no relationship between cognitive
complexity level and item difficulty (e.g., Kibble and Johnson, 2011;
Tan and Othman, 2013; Tractenberg et al., 2013). This discrepancy
might be attributed to several factors, including differences in subject
matter. Another finding of the study was that the percentage of test
takers mastering the Remember level was almost identical for males
and females. However, regarding Understand, while the performance
difference was statistically significant, the effect size was small. In
addition, for Analyze items, the difference was both statistically
significant and the effect size was large. These findings indicate that as
cognitive demands increased, male test takers exhibited significantly
higher performance.

In addition, the findings showed that Analyze is not the strongest
predictor of difficulty, especially since it is a higher-order skill. This
finding is somewhat unexpected. This can be explained by the nature
of the “Analyze” items. As CDM results show, the mastery of Analyze
is highly dependent on “Understand” [profile (011) =13.7% vs.
(001) =2.0%]. The Analyze items often implicitly measure
comprehension (Understand). If test takers lack foundational
comprehension, they fail Analyze items regardless of analytical ability.
This dependency artificially inflates the predictive role of Understand
in the regression model while suppressing the unique contribution of
Analyze, even though items classified as Analyze may still
be cognitively demanding.

The observed gender disparity in higher-order cognitive skills,
particularly at the Analyze level where males demonstrated
significantly stronger performance (17* = 0.644), aligns with several
studies reporting male advantages in complex thinking tasks. Our
CDM results revealing higher male representation in the full-mastery
profile [111] (29% vs. 24%) and lower representation in the
non-mastery profile [000] (32% vs. 41%) further substantiate this
pattern. These findings resonate with Wright et al. (2016), who
documented widening male advantages at higher Bloom’s levels in
biology education, and Amin et al. (2024), who reported greater male
proficiency in analytical and evaluative skills among prospective
teachers. The hierarchical attribute structure observed in both genders
(with low probabilities for profiles like [010] and [011]) parallels Lager
et al's (2024) finding of strong intercorrelations between cognitive
abilities, though their work additionally identified specific male
advantages in abstract problem-solving and spatial abilities.

However, these results contrast with research reporting female
cognitive advantages. Our null finding at the Remember level aligns
with Araiku et al. (2019), who reported no overall gender differences
in mathematics despite identifying male advantages at the Remember
level. The significant female disadvantage in our Analyze items
diverges markedly from Aldila et al. (2013) finding of consistent
female superiority across all Bloom’s levels in science education.
Similarly, while Bastick (2002) found female strengths specifically in
analysis/synthesis within matching formats, our humanities-focused
assessment revealed opposite patterns for analytical skills. These
contradictions may stem from cultural, socioeconomic, and
disciplinary factors influencing the observed outcomes.

7 Conclusion

This study investigated the cognitive demands of MCQs in the
INPEE and explored gender differences in performance across
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different cognitive levels. The results indicate that MCQs
predominantly assess lower-order cognitive skills. Moreover, the
study found a significant relationship between cognitive
difficulty. A
gender gap emerged, with males outperforming females at higher

complexity and item notable
cognitive levels.

This study has implications for researchers, test developers,
instructors, and assessment practitioners. This study provides a
methodology for empirically and objectively assessing of cognitive
complexity of MCQs. This provide a quantitative and objective
analysis by using CDM that can be adopted for other tests and
fields. In addition, this study’s findings underscore the necessity of
revising large-scale assessments to better reflect HOT skills and
recommends integrating intelligent assessment tools to achieve
these goals. The analysis of cognitive levels in assessments is crucial
for creating well-balanced evaluations that accurately measure a
broad spectrum of cognitive skills. To promote HOT, test developers
should carefully consider the cognitive demands of items and strive
for a balanced representation of cognitive levels. For doing so, they
should implement structured protocols to engineer balanced
cognitive coverage. First, they should adopt a cognitive blueprint
defining explicit target distributions aligned with the test objectives.
Second, they should revise item development through specialized
writer training focused on crafting higher-order MCQs—using
scenario-based stems, misconception-driven distractors, and multi-
step reasoning tasks—coupled with dual independent Bloom’s
classification during item review. Third, they should embed
validation mechanisms to flag cognitive imbalances in draft tests
and apply post-hoc CDMs to audit alignment between intended and
measured  attributes, mastery gaps, and complexity-
difficulty relationships.

Moreover, measurement of cognitive complexity benefits both
teaching and learning. Analyzing cognitive levels in assessments
plays a vital role in measuring educational success. These analyses
can help identify areas of both strength and weakness, informing
assessment practices to promote fairer evaluations that consider
students’ varying cognitive skill sets. Additionally, analyzing
cognitive levels can lead to more positive outcomes in problem-
based learning environments by encouraging educators to design
learning activities that promote understanding of underlying
principles. By measuring cognitive complexity in assessments,
educators gain valuable insights that can improve teaching,
learning, and assessment practices, ultimately leading to a more
well-rounded educational experience for students.

While our study highlights the need to examine different item
formats and cognitive complexity across subject domains, future
research in these areas may face challenges related to construct
comparability and the classification of cognitive skills across
disciplines. For instance, applying Bloom’s Taxonomy to fields
such as mathematics, sciences, or the humanities may yield
different interpretations of higher-order skills, complicating
cross-disciplinary comparisons. Moreover, item formats such as
better

suited to assess HOT—require subjective scoring and are prone to

essays or open-ended questions—while
inter-rater variability, calling for rigorous rater training and
rubric validation.

Another important limitation is that the current study focused

only on three levels of Bloom’s Taxonomy (Remember, Understand,
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Analyze), as the other levels (Apply, Evaluate, and Create) were not
represented in the test. This restriction narrows the cognitive scope of
the analysis and limits our ability to draw conclusions about how the
test assesses HOT skills more broadly.

In addition, the study infers a hierarchical relationship among
cognitive attributes—most notably, that successful performance on
items tapping Analyze presupposes mastery of Understand. While this
assumption aligns with theoretical expectations, it was not
independently tested through hierarchical CDMs or longitudinal
modeling. Future research should consider empirically evaluating
such hierarchical structures to avoid oversimplified interpretations of
cognitive processing.

Another methodological consideration is the operationalization
of distractor quality. Future research aiming to explore how distractor
plausibility interacts with cognitive complexity and item difficulty
must establish objective indicators for distractor functioning, which
may involve integrating psychometric analyses (e.g., distractor
discrimination) with cognitive models.

Additionally, collecting complementary qualitative data through
interviews or think-aloud protocols with students and educators can
provide deeper insights into the cognitive demands of test items.
However, these methods are resource-intensive and may limit
generalizability unless carefully sampled and triangulated with
quantitative findings.
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