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Terahertz (THz) Si-based blocked-impurity-band (BIB) detector is becoming

the overwhelming choice for applications in space-based instruments,

airborne, and imaging systems. A high-performance linear scan imaging

system based on the THz Si-based BIB detector is designed. Through the

optimized design of cryogenic Dewar and a suitable optical system, the imaging

system reduces background stray radiation, and then improves the THz imaging

performance of the detector. At the temperature of 4.2 K and the bias of 2.6V,

the blackbody peak responsivity of the Si-based BIB detector is 23.77A/W, while

the dark current is 4.72 × 10−11 A and the corresponding responsivity non-

uniformity is less than 6.8%. Moreover, the experiment results show that the

noise equivalent temperature difference (NETD) of the whole system reaches

10mK, and the spatial resolution reaches 50 µm. This work is beneficial to the

larger scale array integrated BIB imaging system.
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1 Introduction

The wave band of terahertz (THz) waves (range from 0.1 to 10 THz) is between

microwave and infrared, so it combines many characteristics of microwave and infrared

(Ferguson and Zhang, 2002). The blocked-impurity-band (BIB) detector is a new type of

THz detector, which uses low-frequency breakthrough technology from infrared to

achieve THz detection. With its high sensitivity, large array scale, and wide detection

spectrum advantages (Iglesias et al., 2008; Woods et al., 2011), the BIB detector stands out

among the THz detectors and has been widely used in space target detection (Reynolds

et al., 1989; Werner, 2005), atmospheric monitoring (Hogue et al., 2008), astronomical

observation (Hanaoka et al., 2016; Xiao et al., 2022) and other fields (Kaplan et al., 2021;

Meng et al., 2022).

Imaging technology for THz waves is an important direction of THz research (Jepsen

et al., 2010; Kanda et al., 2017; Guerboukha et al., 2018; Chapdelaine et al., 2022).

Compared to microwaves, THz imaging offers superior spatial resolution due to its
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shorter wavelength (Baxter and Guglietta, 2011; Hübers et al.,

2013). Compared with infrared, THz imaging has a higher

temperature resolution when detecting low-temperature

targets due to its longer wavelength (according to Wien

displacement law). In the cryogenic environment (≤6 K), the
dark current of the BIB detector will be better suppressed, and the

signal-to-noise ratio of the BIB detector will be greatly improved

(Liao et al., 2014;Wang et al., 2018;Wang et al., 2019). Therefore,

the BIB detector is more conducive to the detection of weak

radiation targets.

This work introduces the BIB detector and establishes a

high-performance linear scan imaging system. Through the

optimized design of cryogenic Dewar and a suitable optical

system, the background stray radiation of the imaging system

is reduced and the THz imaging performance of the detector is

improved. The system realizes the real-time imaging of room-

temperature objects and shows an overwhelming advantage

over single-pixel point-by-point imaging system in the time

dimension. The results indicate that the BIB detector has a

clear resolution on the room or low temperature objects

detecting.

2 Experimental

2.1 Setup of the THz linear scan imaging
system

The diagram of the whole system is shown in

Figure 1.The temperature control system keeps the

cryogenic Dewar in a cryogenic environment suitable for

the detector operation, and the object is placed on a two-

dimensional translation stage. The radiation generated by

the object is reflected by two off-axis parabolic mirrors and

reaches the Si-based BIB detector in the cryogenic Dewar.

The detector generates a tiny current signal after absorbing

the radiation, and then the current signal is transmitted to

the signal acquisition unit through the transmission line in

the cryogenic Dewar. The signal acquisition unit amplifies

and converts the tiny current signal from the detector into a

voltage signal that can be collected and quantified by the

ADC (Analog to Digital Converter) module. The collected

data is transmitted to the image processing program through

the Ethernet, and is displayed on the screen in real-time after

image processing.

2.2 THz Si-based BIB detector

The diagram of Si-based BIB detector is shown in Figure 2A,

including high-conductivity Si substrate, absorption layer,

blocking layer, passivation layer, anode and cathode formed

by mesa etching and metal deposition. Si-based BIB detectors

use epitaxial growth technology to deposit a heavily doped

absorption layer and a high-purity intrinsic blocking layer on

the high-conductivity substrate to form a BIB structure.

The heavily doped elements (P) of the absorption layer

form an impurity band between the conduction and valence

bands, as shown in Figure 2B. When the THz radiation is

irradiated on the detector and absorbed by the absorption

layer, the generated electrons will transition from the impurity

band to the conduction band, and the electrons after the

transition are collected by the positive electrode through

the curved conduction band, thereby realizing the

transformation of the detector signal from an optical signal

to electrical signal.

The BIB detector uses the heavily doped absorption layer to

absorb THz radiation, and uses the intrinsic blocking layer to

suppress the dark current and noise of the device. This design

makes the BIB detector a high-speed, high-sensitivity and wide-

spectrum THz detector.

The characteristics of the Si-based BIB detector used in this

work are shown in Figure 3.

The results are measured at the cryogenic environment

(4.2 K) and the chopper frequency is 35.97 Hz. The

responsivity of the Si-based BIB detector is expressed as

(Tao et al., 2021)

Rbb � IPC
σ·t· T4

2−T4
1( )·Ab ·Ad

2
�
2

√
πL2

(1)

where Ipc is the response current value, t (0.7) is the transmittance

of cryogenic Dewar filter, σ is the Stepan-Boltzmann constant, L

(10 cm) is the distance between the device and the blackbody. Ab

(0.01 mm2), Ad (0.01 mm2), T1 (300K), and T2 (800K) represent

the blackbody radiation area, pixel area, room temperature and

blackbody temperature, respectively.

The responsivity non-uniformity is expressed as (Yin et al.,

2020).

FIGURE 1
The diagram of Linear Scan Imaging System.
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FIGURE 2
(A) The diagram of Si-based BIB detector. (B) The band gap structure of silicon-based BIB detector.

FIGURE 3
(A) The I-V curve of Si-based BIB detector different pixels under different biases. (B) The responsivity of the Si-based BIB detector different pixels
under different biases. (C) The spectral responsivity of Si-based BIB detector measured by Fourier Transform Infrared Spectrometer (D) The dark
current of the Si-based BIB detector under different biases.
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R i( ) − �R[ ]2√√
× 100% (2)

Where M is the total number of pixels, d is the number of death

pixels, �R is the average responsivity of the detector.

Different pixels are tested to study the non-uniformity of Si-

based BIB detector. Figures 3A, B shows the responsivity of the

detector is around 2.22 A/W and the responsivity non-

uniformity is less than 6.8% when the bias is 2.6 V.

Due to the good responsivity uniformity of detector pixels, this

work randomly selects a pixel (D6) for further testing. Figure 3C shows

that the spectral responsivity range of the detector is 7.18 ~ 46.3μm

and the peakwavelength is λp � 28.65μmwhen the bias is 2.6 V. That

is, the detector response covers the frequency band of 6.48 ~ 10THz.

The blackbody peak responsivity R(λP) of the Si-based BIB

detector is expressed as

G � Rbb

R λP( ) �
∫∞

0
R′
t λ( ) M λ, T2( ) −M λ, T1( )[ ]dλ

σ T4
2 − T4

1( )
M λ, T( ) � 2πhc2

λ5 e
hc
λKT − 1( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(3)

Where R′
t(λ) is the normalized spectral responsivity shown in

Figure 3C.

The blackbody peak responsivity of the Si-based BIB detector

is 23.77A/W. Figure 3D shows the dark current of the detector is

4.72 × 10−11 A when the bias is 2.6 V.

2.3 Cryogenic dewar

Background stray radiation is an important factor limiting

the performance of the device. Reducing the background stray

radiation can effectively improve the signal-to-noise ratio (SNR)

of the device and the performance of the detector. In order to

verify the imaging effect of the Si-based BIB detector in the THz

band, we optimized the design of the cryogenic Dewar. The

structure of the cryogenic Dewar is shown in Figure 4.

To avoid the influence of visible light, a KRS5 filter is installed

on the Dewar window, which has 70% transmittance in the

spectral range of 500 nm to 35 µm. However, the KRS5 filter is

placed at room-temperature and is facing the detector, so the

stray radiation emitted by itself has a great influence on the

background noise of the detector. In addition, since the detector

is placed directly in the Dewar, the stray radiation emitted by the

inner wall of the Dewar will also affect the background noise of

the detector.

In order to solve the influence of stray radiation, another low-

pass filter is added outside the cold aperture to filter the radiation

from the KRS5. In addition, the conical surface of the inner wall

of the cold aperture and the inner wall surface of the connecting

cylinder are designed to cover with metal oxides with high

absorption and high ignition point. This design can achieve

more than two absorption reflections, effectively attenuate the

stray radiation energy to the detection surface and improve the

SNR of the detector.

2.4 Optical system

The optical system is mainly composed of two off-axis

parabolic mirrors, two-dimensional translation stage, object

and Si-based BIB detector.

In order to improve the energy of the light signal received by

the detector, off-axis parabolic mirrors are used to realize the

light path convergence in this work. The surface of the mirrors

has a gold coating to minimize the scattering loss in the light

focusing application. The reflectivity in the Si-based BIB detector

band can reach 99%. And it has the advantages of simple

structure, easy processing, adjustment and high spatial

resolution. Figure 5 shows the diagram of the optical imaging

system. The specifications of two off-axis parabolic mirrors are

shown in Table 1.

The modulation transfer function (MTF) expresses the

relationship between the degree of modulation and the

number of line pairs per millimeter within the image, and is

the most comprehensive criterion for judging the performance of

any optical system, especially for imaging systems. The MTF is

usually given as a plot of amplitude response versus frequency in

cycles per millimeter. The spatial resolution of the imaging

system can be obtained from the MTF diagram. In this work,

the linear Si-based BIB detector is used, and the MTF of the

center pixel and the edge pixels are studied through ZEMAX

simulation.

Figure 6 shows theMTF curves of pixels at different positions

of the linear Si-based BIB detector. It can be seen that the spatial

cutoff frequency of the imaging system is about 21.6lp/mm,

FIGURE 4
The structure of cryogenic Dewar.
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indicating that the optical system can produce 21.6 pairs of line

pairs with the same size in the range of 1 mm. So the spatial

resolution of the optical system is 1mm
21.6 � 46.3μm.

3 Results

The object imaging verification uses a metal resolution

plate for imaging at room temperature. The metal resolution

plate has metal hollows designed according to specifications,

which can be used to observe the resolution of the imaging

system.

The temperature variations on the surface of the metal

plate in Figure 7A are less than 2 K. The size of the metal

resolution plate is 50 mm × 50 mm, and there are five rows of

10 small holes on the plate, increasing at intervals of 10 µm

from right to left. The minimum aperture is 50 µm and the

FIGURE 5
The diagram of the optical imaging system.

TABLE 1 The specifications of two off-axis parabolic mirrors.

Parameters Object-space Image-space

Diameter (mm) 101.6 101.6

Focal length (mm) 152.4 152.4

Off-Set angle (°) 90 90

Coating Protected Gold Protected Gold

FIGURE 6
The MTF simulation results of optical imaging system.
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maximum aperture is 540 µm. The fine stripe structures of

the metal plate vary from 50 µm to 300 μm, distributed both

vertically and horizontally. The details and textures on the

plate are clearly visible in the imaging results (Figure 7B),

indicating the good imaging capability of the imaging

system. The blackbody is placed at the focal point of the

object-space mirror, and the NTED of the entire system is

about 10 mK by calibrating the blackbody at different

temperatures.

4 Discussion

Based on the THz Si-based BIB detector, a high-

performance linear scan imaging system is designed.

The experimental results show that the NETD of the whole

system reaches 10 mK, and the spatial resolution reaches

50 µm. Image overlap is due to the use of open-loop control

of the stepper motor and its impact can be eliminated by using

closed-loop control or changing the motor type. This work is

beneficial to the further research of Si-based BIB detectors in

the fields of space target detection and astronomical

observation.
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