
Wearable System to Guide Crosswalk
Navigation for People With Visual
Impairment
Hojun Son* and James Weiland

BioElectronic Vision Lab, University of Michigan, Ann Arbor, MI, United States

Independent travelling is a significant challenge for visually impaired people in urban
settings. Traditional and widely used aids such as guide dogs and long canes provide
basic guidance and obstacle avoidance but are not sufficient for complex situations such
as street crossing. We propose a new wearable system that can safely guide a user with
visual impairment at a signalized crosswalk. Safe street crossing is an important element of
fully independent travelling for people who are blind or visually impaired (BVI), but street
crossing is challenging for BVI because it involves several steps reliant on vision, including
scene understanding, localization, object detection, path planning, and path following.
Street crossing also requires timely completion. Prior solutions for guiding BVI in
crosswalks have focused on either detection of crosswalks or classifying crosswalks
signs. In this paper, we demonstrate a system that performs all the functions necessary to
safely guide BVI at a signalized crosswalk. Our system utilizes prior maps, similar to how
autonomous vehicles are guided. The hardware components are lightweight such that
they can be wearable and mobile, and all are commercially available. The system operates
in real-time. Computer vision algorithms (Orbslam2) localize the user in the map and orient
them to the crosswalk. The state of the crosswalk signal (don’t walk or walk) is detected
(using a convolutional neural network), the user is notified (via verbal instructions) when it is
safe to cross, and the user is guided (via verbal instructions) along a path towards a
destination on the prior map. The system continually updates user position relative to the
path and corrects the user’s trajectory with simple verbal commands. We demonstrate the
system functionality in three BVI participants. With brief training, all three were able to use
the system to successfully navigate a crosswalk in a safe manner.

Keywords: wearable system, human-machine interaction, independent travelling, wayfinding, visual impairment,
image segmentation, AI for health care

1 INTRODUCTION

Vision loss is a significant health issue worldwide. It is estimated that 82.7 million people around the
world are considered blind or severely visually impaired (Bourne et al., 2020). Those who are blind or
visually impaired (BVI) will increase with a growing ageing population, with one study estimating
703 million people will have moderate to severe visual impairment by the year 2050 despite emerging
clinical treatments (Ackland et al., 2017). Loss of vision can cause reduced quality of life regarding
emotional well-being, activity, and social relationships (Lamoureux and Pesudovs, 2011; Duncan
et al., 2017; Lange et al., 2021) as well as mobility (National Academies of Sciences, 2017). Vision loss
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significantly and negatively impacts the ability to travel with
confidence and safety due to the inability to obtain proper
information about the nearby environment. Difficulty with
mobility has been linked to deficits in visual acuity, visual
field, contrast sensitivity, or depth perception (Marron and
Bailey, 1982; Lord and Dayhew, 2001; Bibby et al., 2007).

Recently, wearable systems to aid wayfinding for BVI have
been evaluated in humans. Brainport is a sensory substitution
device that provides sensation related to vision (patterned
electrical stimulation of the tongue based on images captured
by a camera), but mobility is slower than what can be achieved
with a guide dog or long cane (Nau et al., 2015; Grant et al., 2016).
Mobile technology, such as smartphones, tablets, and augmented
reality headsets, provide an off-the-shelf, programmable platform
to support wayfinding. Many experimental and commercial
systems exist with varying degrees of functionality. See
Kuriakose et al. (2020) for a recent review of this field. Some
examples include Navcog3 (Sato et al., 2017), which is a
navigation system based on smartphones and beacons to
localize users in a shopping-mall. “AIRA” is a commercial
smartphone-based aid tool to connect users with VI to trained
live agents who provide instructions to AIRA users. ISANA (Li
et al., 2018) is a chest-worn navigation system using Google
Tango that can stream RGB-D image data. AR headset
technology (or smart glasses) offers the benefit of a headworn
camera, which may aid in exploring a scene and see through
displays, which will allow highlight important areas, but will
require a BVI user to have enough remaining vision to see the
display. The wearable systems use computer vision algorithms to
perform functions such as facial or object recognition and
character reading. To guide mobility, these mobile systems cue
the user with verbal, vibrational, and simplified visual signals (Lee
and Medioni, 2011; Coughlan and Shen, 2013; Adebiyi et al.,
2017; Wang et al., 2017).

In this paper, we select street crossing as a specific scenario
since this demands a series of tasks typically guided by vision, and
thus represents a major challenge for BVI. Tasks involved with
street crossing include orientation towards the correct crosswalk,
determining the crosswalk signal state, beginning to walk at the
appropriate time, maintaining a proper path, and completing the
task within a limited amount of time.

Several crosswalk navigation systems have been reported.
CrossNavi can recognize white stripes of crosswalks using a
smartphone camera attached on a customized cane. The
system provides proper feedback to maintain user trajectory
on the crosswalk while crossing a street (Shangguan et al.,
2014). However, CrossNavi does not detect the state of the
crosswalk signal. Cross-safe utilizes a commercial stereo vision
device to detect crosswalk signs in images and determine the state
of crosswalk signs by deep neural network (Li et al., 2019). The
system does not provide proper feedback cues for mobility and
Cross-safe was not tested in BVI users. Our earlier crosswalk
navigation system used ODG R7 smart-glasses and included
signal detection and guidance across the street. It was tested in
2 blind participants. The limited field of view of the system
camera (30°) made it extremely challenging for blind users to
maintain camera orientation on the crosswalk signal and the

limited computational power forced the use of rudimentary
algorithms for guidance (Son et al., 2020). The wearable
system we report here estimates the global location of users on
a prior map and updates the user’s location throughout the
process of crossing the street. A convolutional neural network
detects the state of the crosswalk sign. Simplified verbal cues
provide feedback. We tested our device with three blind users,
demonstrated it at two different crosswalks, and suggest advanced
design considerations to integrate future systems with pre-built
infrastructures for autonomous vehicles.

2 MATERIALS AND METHODS

The navigation system consists of custom software running in real-
time on a commercially available, mobile computer (Jetson Xavier
AGX, NVidia). Additional hardware components include a RGB-
D camera (Realseanse D435i, Intel and BNO055 Imu sensor,
Bosch) and bone conduction headphones for user interface
(Marsboy Bone Conduction Wireless Sports Bluetooth Stereo
Headphones). Finally, a prior map of the crosswalks is a critical
component of the system that enables localization. We first
describe the system architecture (software), then provide more
details on hardware and human subjects testing methods.

2.1 System Architecture Overview
Each component of the software works on the ROS [Robot
Operating System (Quigley et al., 2009)] and the ROS
messaging system provides communication among the nodes.
Figure 1 shows the entire system architecture composed of five
nodes, which we describe briefly here and in greater detail below.
(1) Sensing Node. A sensing node streams color (RGB) images,
depth images, and inertial measurement unit (IMU) values to other
nodes. RGB-D and IMU data are obtained by the Realsense D435i
camera and BNOO55 sensor respectively. (2a) Perception—Scene
Understanding. Based on real-time camera data, this node detects a
crosswalk, the end of the crosswalk (a red texture plate), and the
crosswalk signal using a convolutional neural network. (2b)
Perception—Global Pose Estimation. Based on the prior map of
the crosswalks, camera data, and IMU data, the user’s position in
the map is estimated. The map includes a point cloud with
semantic labels of the crosswalks and texture plates at both
ends of the crosswalks. (3) Perception—Local Pose Estimation.
During navigation, user pose is updated based on camera data by
comparing to the previous frame. (4) Planning and
Feedback—Position and Heading. The user’s position is
compared to the desired position along a path between the
starting and target end point (the texture plate). (5) Planning
and Feedback—Verbal Cues. Based on the estimated position and
the desired position, the user is instructed verbally to either
continue “forward” or correct their motion by veering left or right.

2.2 Sensing Node
The sensing node streams RGB-D and IMU data to nodes. The
size of RGB-D images is 848 × 480 at 60 Hz and IMU
(acceleration and angular velocity) at 60 and 200 Hz,
respectively. Two internal threads are assigned to stream data.
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2.3 Perception—Scene Understanding
Semantic information (location of a crosswalk end plate) can
provide a critical link between a saved prior map, collected
with LiDAR (Light Detection and Ranging), and real-time
RGB-D streaming data. Stability and reliability are important
to the navigation system, thus relying only on raw and noisy
depth data can lead to inaccuracy and poor performance.
Further, semantic features can be a supplement for
guidance and path planning, since a destination (a door, for
example) can be labeled as a semantic feature on a map.
Finally, this information is included in publicly available
prior maps that are being created for autonomous vehicles.
Therefore, designing a system that uses a prior map with
semantic information increases performance and anticipates
the availability of such information in autonomous systems
infrastructure. We created a new architecture for scene
understanding that balances prediction quality of
segmentation with inference processing time, due to the
requirement for real-time processing. We focus on fusing
different scale resolution without degeneration of accuracy
and real-time inference, based on Bisenet_v2 (Yu et al., 2020)
and HarDNet (Chao et al., 2019). Bisenet has two pathways:
semantic branch and detail branch. Taking two inputs can
cause a bottleneck because of many operations at the initial
layers. The network eventually reduces input resolution (512 ×
1024) resulting in vulnerability to segment small objects.
HarDNet architectures based on DenseNet (Iandola et al.,
2014) resolved computational efficiency by a harmonic
based constructions without accuracy penalty. Our
architecture in Figure 2 manages a large size input (1,024 ×
1,024) and understanding semantic features with double
fusion from different branches. Inspired by the HardNet
structure, the Concat blocks extract contextual information
with understanding in different scales through the fusions into
the main branch and the down branch by a modified U-net
structure. Table 1 describes the details of network about input
features size, the number of layers, and network parameters.

2.3.1 Dataset
To train and validate our network, we used two sources: online
data sets (Cordts et al., 2016) and images acquired from 16
crosswalks near our research lab. Cityscapes is an open-source
dataset of urban scenes that has a large image resolution (1,024 ×
2,048) and contains 19 labels. This resolution is widely used by
self-driving cars, but for wearable technology with less computing
power, real-time image segmentation at this resolution is a
challenge. The Cityscapes includes 2,975 annotated images
used for training, 500 images for validation, and 1,525 images
for test. This verified our network’s capability on a general dataset
to ensure against overfitting. The custom training dataset was
collected from 16 different crosswalks including four labels
(crosswalks, texture plates, “safe-to-cross,” and “do-not-cross”).
From this custom dataset, the total number of seed images
is 4,541.

2.3.2 Training
The number of epochs is 800 and Stochastic gradient descent
(SGD) is used with the initial learning rate 0.01, momentum of
0.9, and weight decay of 0.000 5. SGD method was used
because, compared to Adam, SGD can escape from local
minima and converge to a flatter basin indicating a more
generalized region (Zhou et al. 2020). The poly learning
policy was used with power of 0.9 to decrease the learning
rate and data augmentation adopted with random scaling from
0.5 to 1.6 in 0.1 resolution, random horizontal flip, and
brightness change for the Cityscapes dataset. Meanwhile
random brightness, translation, and rotation augmentation
are applied to the custom crosswalks dataset. The input
image is resized as 1,024 × 1,024. The batch size was 5 for
each graphic card and syncBN was utilized. The loss was online
hard example mining (OHEM) (Shrivastava et al., 2016).

2.4 Perception—Global Pose Estimation
There are two types of localization in the navigation system: one is
global position in a prior map and the other is local pose

FIGURE 1 | The navigation system contains several ROS nodes. Five different nodes are running on a Jetson machine simultaneously, and each node
communicates through the message system provided by ROS. Sensing is one node. Perception has two nodes, and Planning and Feedback has two nodes.
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estimation relative to the first frame. Finding initial global pose in
a prior map is associated with crossing a street safely and
efficiently, since the user must be pointed in the proper

direction for the camera to detect the crosswalk signal. The
global position indicates the current location of users on the
prior map.

FIGURE 2 | Network architecture. Each color block represents a different module and each module schematic is shown below the architecture diagram.
Red—simple convolution layer; Blue—basic block; Green—concat block; Hexagon—up and down fusion; Purple—global average pooling; Beige—final and extra layer.
DW conv, depthwise convolution. BN, batch normalization. Auxillary prediction is solely for training.

TABLE 1 | Description of the dimensions of the Network.

Network parameters

Input size Down branch Main branch

[1024,1024,3] conv2d (s � 2) x 2
[256,256,32] conv2d (s � 2)
[128,128,32] downsample, concat block basic block
[64,64,64]//[128,128,64] up fusion (s � 2), upsampling down fusion (s � 2)
[32,32,96]//[128,128,64] concat block basic block
[16,16,128]//[128,128,64] concat block basic block
[32,32,96]//[128,128,64] up fusion (s � 4), upsampling down fusion (s � 4)
[64,64,64]//[128,128,64] up fusion (s � 2), upsampling basic block
[128,128,64]//[128,128,64] Sum

“s” means scale to up and stride to down for branch fusion. All kernel size of convolution layers are 3 × 3.
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2.4.1 Prior Map
Prior maps are essential for self-driving vehicles to accurately position
themselves in 3D space and support decision-making. Such priormaps
are built by a Light Detection and Ranging (LIDAR) with
corresponding RGB camera frames for detailed image features. The
priormapwe generated for our system includes geometric information,
the intensity of each point, normal vectors, landmarks, and other
sensor data such as magnetic field value. This information is similar to
maps used by modern self-driving cars. Point cloud maps were
generated by a hand-held Velodyne-32E(Lidar). The registered 3D
point cloud is made by Fast slam (Montemerlo et al., 2002), loop
closure detection, optimization, and filters which are built-in functions
in the Velo-Viewer. Different modalities (LIDAR and RGB) to collect
map data must be co-registered to make the system practical. With
2D—3D matching problem, semantic features can resolve issues
related to insufficient camera capability. Figures 3, 4 are the prior
maps used during the experiments; specifically, Figure 4Awas utilized.
The global pose is evaluated for each particle that is sampled on a prior
map based on the result of scene understanding (Figure 5). Each
particle has 6 degrees of freedom of pose (x, y, z, roll, pitch, yaw) and
sampled visible point cloud within the viewing frustum from the prior
map. Several projections of point cloud images (from the prior map)
are compared with the predictions of segmentation network from the
scene understanding node via mean Intersection of Union (mIOU)
metric. The mean of filtered particles poses will be selected as the
estimate of the user’s global position on the prior map.

2.5 Perception—Local Pose Estimation
Local pose means the relative location from the first frame after
global pose estimation is complete. We use local pose estimation

as an alternative to evaluating global pose because particle-based
global pose optimization in real-time is computationally
expensive. After global location is evaluated while waiting for
the “safe-to-cross” signal, the local pose is integrated to the global
location. The local pose estimation is based on ORB-SLAM2
(Mur-Artal and Tardós, 2017). For real-time processing, feature-
based ORB-SLAM2 is utilized in the system (Figure 6). Our
SLAM adds semantic information of features in an additional
thread. The original ORB-SLAM2 has three different threads to
process the local mapping, tracking, and global pose
optimization. The additional thread matches predicted
semantic information to each key feature. The semantic
information helps remove outliers of feature matching,
weighted to reliable feature matching, and path planning. Eq.
1 is for pose optimization and to estimate landmarks (features).
x ∈ R2 are key points in images X ∈ R3 are 3d points in world
coordinates. A camera pose has rotation (R) and translation (t).

argmin
R,t

∑
i∈X

xi − proj RXi + t( )( )���� ����2Σ (1)

The Σ is a covariance matrix indicating each pair’s uncertainty.
The semantic information for the network can reduce or enhance
the uncertainty if each pair has same labels with probability from
the deep network.

2.6 Planning and Feedback—Position and
Heading
Path planning provides suitable feedback to users. Aligning the
users toward target destination can significantly increase the
success of street crossing. The system guides users to align

FIGURE 3 | The prior map is annotated with semantic information with matched points. “Start” and “End” are texture plates which are helpful to visually impaired
people providing tactile information. It can be reversed depending on direction of crossing.
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correctly from the segmented results, based on the end side
edges of crosswalks. It can help to detect a crosswalk sign in a
scene because crosswalk signs are near to crosswalks. While
waiting for the “safe-to-cross” sign, the system guided the

participant to “stay” if alignment is correct (within ± 13°) or
“rotate body left/right” if alignment is incorrect. When the
system detects a “safe-to-cross” signal, the system instructs
the participant to move “forward.” As long as the participant

FIGURE 4 | Example of point cloud at our test intersection. (B) is registered point cloud obtained with a lidar sensor. (A) is a registered point cloud by a ZED stereo
camera. Overlaying these two points clouds provides a prior map with the accuracy of lidar and the color image information of RGB-D.

FIGURE 5 | The figure shows the process of global pose estimation. (A)means sampled particles, (B) is the segmentation results, and (C) shows the actual image
and how it was segmented. (D) is an example of the frustum of a particle (a possible pose for the user). (E) is the corresponding projected image for that pose. (F) shows
the estimated pose on the prior map as the green camera symbol.
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stays on the correct path, the system repeats “forward” every 5 s.
Deviation from the path by more than 18° that is variable with
the distance toward the texture plate or outside the crosswalk
stripes triggers a “veer left/right” command, which is repeated
every 5 s until the path is corrected. The table shows the types of
feedback and expected motion. Obstacles such as pedestrians
and riders are disregarded from the current navigation system
so that the path planning focuses on heading and distance of
trajectory.

2.7 Planning and Feedback—Verbal Cues
The guidance cues (Table 2) are transferred via bone conduction
headphones, since over the ear or in-ear headphones would block
the user’s hearing and BVI utilize hearing to understand their
surroundings. Each cue has time interval of about 4 s to avoid
confusion from frequently repeated feedback except for “rotate
body left” and “rotate body right.”

2.8 Hardware Configuration
The hardware consists of Intel Realsense D435i camera, a
Compass Sensor (BNO055 Bosch), a Jetson Xavier AGX, and
a prior map (as described above). The user wears a headband with
the camera mounted on it and holds a small bag to carry a Jetson
computer and battery. The total weight of the device is about
5.5 lbs. Figure 7 shows how a user wears the system.

2.9 Human Participants Experiments
The study was approved by the University of Michigan
Institutional Review Board. Three participants with severe
visual impairment (legally blind) consented to enroll in the
study. The participants reported that they could not use their
vision to see a crosswalk or guide their trajectory while walking.
Training was done indoors in a large conference room. The
participants wore the system and guiding cues were provided. The
participants were trained on how to respond to “rotate” and
“veer” cues. Training emphasized the need to avoid moving too
abruptly, since in prior work overreacting to a guiding cue has led
to oscillatory walking. All participants were experienced with
long cane guided walking. Once trained, experimenters led the
participant to the crosswalk texture plate and aligned them so the

FIGURE 6 | The figure shows semantic associated features in different colors. The blue dots mean crosswalk and the yellow is target destination (texture plates).
The green dots are keypoints not associated with semantic information. The green dots in panel (A) are keypoints not associated with semantic information. Panel (B) is
zoomed view of trajectory. The small blue rectangles are earlier keyframes, and the green small rectangle means current estimated camera pose.

TABLE 2 | Verbal cues provided to guide alignment and motion.

Feedback Required motion

Rotate body left Rotate body left not move your steps
Rotate body right Rotate body right not move your steps
Stay Stay until detecting “safe-to-cross” sign
Veer left Move slightly left as forwarding
Veer right Move slightly right as forwarding
Forward Move forward
Stop Stop
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crosswalk signal and zebra stripes were in the field of view of the
camera. Real-time display of the headworn camera on a laptop
allowed confirmation of the alignment. Once aligned, the
experimenter was no longer in physical contact with the
participant. For safety purposes, one of the experimenters
walked aside and slightly behind the participant during the
street crossing portion of the trial. If the participant veered
too much from the crosswalk, the experimenter grabbed their
arm and led them to the other side of the crosswalk. Video from
the headworn camera and a hand-held camera recorded each
trial. The guiding cues provided were logged and timestamped in
data file. Participants were interviewed after the experiment to
obtain their impressions of the system.

3 RESULTS

We describe results in three parts: benchmarking our real time
image segmentation network against state-of-the-art networks,
system performance in detection and global localization, and
testing in blind study participants.

3.1 Real Time Image Segmentation
To compare to other real-time segmentation networks for a
practical scenario, we use a Net score (Wong, 2019) that is a
common metric to analyze the performance of networks
considering several factors. The score includes the number of
parameters(γ), the number of multiply-accumulate (GMacs) (ρ)
indicating the overall architectural and computational
complexity, and mIOU(μ). We add FPS(θ) to the original Net
score equation as another parameter because in practical
scenarios with a mobile device, FPS can be important and the
GMacs and the number of parameters are not correlated to FPS
linearly. The κ, ϵ are 2 and β and α are set to 0.5 (Wong, 2019).

Ω N( ) � 20 p log
μ N( )κ p θ N( )ϵ
γ N( )β p ρ N( )α( ) (2)

It can be modified, through adjusting exponents, to match the
scenario to which the network is applied. We trained each
network (except for Bisenet v2) on our desktop (Intel i5-6600k

and 48 GB memory) to remove performance variation due to
library version, cpu, gpu, and training strategy with Pytorch 1.8.0,
Cuda 11.1, and 2 Geforce 1,080 gpus. On top of that, an extra
dataset was not used to compare only architecture’s leverage even
though the original networks basically used additional dataset
such as Mapillary (Neuhold et al., 2017) or ImageNet (Deng et al.,
2009). Table 3 indicates our network is slightly superior in the
Net score even though each network shows higher performance
in the individual metrics.

3.2 System Verification
The Ddrnet_23_slim is ranked first in the Cityscapes web page. It
shows the fastest FPS even though the number of parameters and the
GMacs are not fewest. The HardNet’s highest resolution is 256 × 256
resulting in slower FPS to process multiplication internally
compared to other networks. The number of parameters of
Bisenet_v2 is unmentioned in the paper and the model is
relatively outdated so implementation was not conducted.
However, we included Bisenet_v2 in Table 3 since it was ranked
at the first in real-time segmentation before the Ddrnet_23_slim
emerged and several proposed networks that are high ranked are
based on the Bisenet_v2. The system uses our network (labeled Ours
in the table) due to the network balance for this scenario. Ours v2
shows the highest quality of segmentation and the details of its
implementation are in the supplementary material. The system was
verified at crosswalks before BVI participant experiments, to
investigate its robustness, stability, and suitability to the crosswalk
scenario. Four different crosswalks are visualized in Figure 3.
Table 4 describes the results of initial global pose estimation with
the prior map and classification of signs. The acceptable criteria is
mentioned in Section 3.2. The number of classifications per frames
is not counted because the important metric is the detection of the
crosswalk signal as it changes to “safe-to-cross” symbol. The trials
were performed through 2�months and variable day time. The
failure of initial pose estimation was caused due to ambiguity of 2D
and 3D matching. Table 4 reports processing time of each node.

3.3 Crossing Tests
All three study participants completed the study. Each separate
crossing was considered a trial. We define a successful trial as
when the participant (1) begins crossing the street with “safe-to-

FIGURE 7 | A test participant with the wearable system. The yellow region is a bag carrying a Jetson Computer and battery. The blue region is head-mounted
camera, and the red means a bone-conducted headphone.
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cross” signal and (2) reaches the final destination (near the
texture plate) without assistance from the experimenters.
Successful initial global pose estimation was defined as within
80 cm radius of ground truth. The individuals’ walking speed is
estimated from recorded videos based on the shortest path to
cross the street from the center of start plates and to center of
end destination, which is 14.57 m measured by google map
distance. Results from the crosswalk trial are summarized in
Table 5 and exemplary crosswalk trial trajectories are shown in
Figure 9. S009 and S010 successfully completed 6/6 trials, so we
stopped testing at this point, since these participants
demonstrated their ability to use the system. S008 had two
failed trials. In one case, the local pose estimation failed while
the participant was in the crosswalk due to interruption by a
moving object (a car). The obstacle blocked a large portion of
the camera field of view causing loss of landmarks used by
SLAM and inaccurate localization. In the second failed trial, the
participant responded incorrectly to “veer left” by veering right
instead. An experimenter directed her to the end of the
crosswalk. Both of these failures occurred within the first
four trials. She successfully completed her last four trials. We
added two additional trials for this participant (vs. S009 and
S010) due to the failed trials. PPWS was obtained by dividing
their speed walking during the crosswalk trial by their preferred
walking speed, which we measured indoors after the crosswalk
testing.

3.4 Visualization of Trajectory
We roughly aligned participants initially and this resulted in
incorrect initial headings in 5, 4, 3 times for participant s008,
s009, s010, respectively. Figure 8 shows an example of user
response when feedback related to aligning based on
segmentation results is provided. The left two images in
Figure 9 are results of S010. The two in the middle of

Figure 9 are results of S009 and the last two are from
S008. The first trial was failed due to incorrect responses.
Each annotated feedback is essential motion to get to the
destination. The pink triangle is approximated initial
orientation and location on the start plate. The
misalignment of trajectory and the triangle is intended.
With guidance cues for correct alignment, the individuals
could begin their crossing. The red circles mean individual
incorrect responses of individuals and the blue indicates
corrected responses. After testing, we interviewed the
participants to get their impressions of the system. All
three agreed that the system did not require significant
mental effort to use. Two of the three agreed that verbal
instructions were easy to understand. All participants
thought that a system like this would help them cross a
street more safely.

4 DISCUSSION

We validated a complete system for guiding crosswalk
navigation in people with severe visual impairment. Our
system localizes a user on a prior map and aligns them
correctly towards the other end of the crosswalk. The signal
state is classified and once “safe-to-cross” is detected, the user
follows verbal commands to safely cross the street. Three blind
test participants demonstrated the ease of use of the system at a
real crosswalk. Other crosswalk systems only aided part of the
process by detecting stripes or detecting the signal. Thus, our
system, validated in blind participants, advances the state of
the art.

We use off-the-shelf hardware to create the system. While still
mobile, the system is not yet at the stage of a feasible product, due
its size and weight. Advances in extended reality headsets provide
a technology road map that can support similar functionality in
robust commercial platform. Direct connection via wireless to the
emerging transportation infrastructure may allow the system to
off-load some tasks to computational resources that will be placed
at intersections to manage auto traffic. For example, an
intersection management system can provide the crosswalk
signal status directly to the wearable system, eliminating the
need for detection algorithms on the wearable hardware. We
used a prior map which significantly improves localization. A
system design that assumes availability of prior maps is
reasonable given the up-to-date maps that will support
autonomous systems. These maps include semantic labels.

TABLE 3 | The compared networks are high ranked in the Cityscape real-time benchmark. The mIOU results are with validation dataset. The FPS of Bisenet_v2 is on a 1,080
ti but our network is on a 1,080 which has less powerful resources than a 1,080 ti. Ours v2 is described in the Supplementary Material.

Network # Parameters GMacs mIOU FPS Net score

Ddrnet_23_slim 5.7 M 18.9 74.8 46 121.11
Bisenet_v2 — 22 73.4 156 (tensorrt) with 1,080 ti —

HarDNET 4.1M 17.8 75.12 35 118.15
Ours 5.4 M 17.2 74.5 45/95 (tensorrt) 121.34
Ours v2 4.7 M 27.63 75.9 30 113.13

The bold numbers indicates better performance regarding each category.

TABLE 4 | Four different crosswalks were used to test the system. Each trial had
different start position and heading on texture plates.

Crosswalk Global pose estimation Signal
classification accuracy

1 24/25 25/25
2 21/21 21/21
3 20/20 20/20
4 18/19 19/19
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This means that such maps do not need to be created solely to
support our navigation system.

For guiding cues, we focused on a method to significantly
reduce the user requirement of active participation and

mental fatigue while using the system. Assistive
technology for BVI wayfinding includes some systems that
can detect objects or patterns, but do not perform scene
understanding. Brainport is a sensory substitution system

TABLE 5 | C1 and C2 mean the different crosswalk. IP means initial pose estimation. C is success of classification of signs. The PPWS is the percentage preferred walking
speed of mean of trials. IV is the number of intervention in the entire tests by assistants. The ICR indicates the number of incorrect responses by users.

ID C1-
IP

C1-
C

PPWS
(%)

Success C2-
IP

C2-
C

PPWS
(%)

Success IV ICR

S008 4/4 4/4 86.5 2/4 4/4 4/4 104.25 4/4 3 7
S009 3/3 3/3 89.6 3/3 3/3 3/3 91.6 3/3 0 0
S010 3/3 3/3 101.6 3/3 3/3 3/3 95 3/3 0 0

FIGURE 8 | Point of view from head mounted camera while the user waits to for the “safe-to-cross” signal. (A) is when the user was aligned incorrectly. (B) is the
result of reaction from “rotate body left.” (C) is when they were properly aligned.

FIGURE 9 | Visualized sampled and simplified results of participants. Two different crosswalks are symbolized and two of each are assigned to each subject in
order of S010, S009, and S008.
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that converts camera data into a pattern of electrical
stimulation applied to the tongue. Mobility tests with
Brainport showed an inordinate amount of time to
navigate a hallway (Grant et al., 2016). In contrast, our
system uses easily understood commands, and the users
were able to maintain their preferred walking speed while
crossing the street, which indicates that they were not slowed
by decision making on how to respond. “Sunu band” is a
smart band that can make users aware of obstacles on their
path using a sonar sensor up to 5.5 m away. While this is
helpful to avoid collisions, the user is still required to actively
interpret this sparse information to understand their
situation and how they should respond.

Our system used a simple approach to path planning
because the desired route was a straight line and we
disregarded dynamic objects. More sophisticated path
planning algorithms, such as Ap (Hart et al., 1968; Stentz,
1997), Dynamic Window Approach (Fox et al., 1997), and
Reinforcement learning based planning (Wang et al., 2020),
are examples of path planning algorithms that can improve
the performance. A network bottleneck occurs at initial
global pose estimation (Table 6). Each particle estimation
takes about 0.004 s but we used about 891 particles, resulting
in global post estimation requiring 3–4 s. While this time can
be reduced by using fewer particles, it comes at the cost of
reduced accuracy. We solve this problem by only performing
global pose estimation at the beginning of our process while
the user is waiting at the crosswalk starting point. However,
global pose optimization in real-time (Levinson et al., 2007;
Li et al., 2016) can be helpful in re-localization situation. It
can reduce inevitable drift error of SLAM algorithms or it can
replace SLAM.

During the experiments, the participants were satisfied
with their performance using the navigation system. They
were guided with simple cues without curtailing their
preferred walking speed. The training for each command
consumed about 10 min and the participants quickly learned
the proper amount of movement for each
command. However, S008 failed two cases. The first
failure case was due to broken SLAM system caused by
features occlusion. The current navigation system is based
on relative poses from SLAM. It can be unstable when
tracked features are changed or occluded by moving
obstacles. To address this problem, global position based
on real-time mapping and estimation is required with
understanding and predicting other objects’ motion. The

other failure case was resulted from S008 reacting incorrectly
to verbal cues. The system provided “veer left” but S008
continuously moved to the right. It can be possible because
the outdoors is usually noisy and distracting. The
combination of vibrotactile and verbal feedback may
diminish the confusion.

In our experiments, we guided the participants to the
crosswalk texture plate and aligned them towards the
crosswalk. Eventually, the system will need additional
capability to provide this guidance. A combination of GPS
and compass information can provide adequate pose
estimation to allow the system to align the user towards
the start of the crosswalk such that the camera and network
can detect the crosswalk starting point and guide the user to
this point. To simulate GPS/Compass, our prototype
included a magnetic sensor for alignment and an Aptiltag
(Olson, 2011) detector to simulate GPS. However, when we
tested this function on ourselves, the requirement for
magnetic sensor calibration was judged to be too
demanding for participants. Therefore, this part of the
system was not evaluated by BVI participants. Global
orientation evaluation must be considered to navigate in
the real world. The drift error of relative localization can
cause incorrect feedback generation when long travelling is
required. Improving depth perception and real-time global
position estimation on a prior map can be a suitable strategy
to avoid accumulated errors in localization. We are focusing
on 3-D global localization with improved depth inference
and decreased inference time on mobile device to expand
their independent travelling range. The current navigation
system does not consider moving obstacles, which must be
added to future versions of the system for more reliable path
planning.

We propose a new navigation system dealing with different
modality problems using semantic information and anticipating
integration with smart transportation infrastructure. To be
useful, such a system must be easy to use. We demonstrate
that simple verbal commands can effectively convey guidance
instructions, but that other sensory inputs, like vibration, may
be needed to ensure against critical mistakes by the user.
Emerging wearable technology will allow implementation of
our system on a practical, robust system, to allow realization of
useful wayfinding technology for people with visual
impairment.
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