
CIDAN-XE: Computing in DRAM with
Artificial Neurons
Gian Singh1, Ankit Wagle1, Sunil Khatri 2 and Sarma Vrudhula1*

1School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States, 2Department of Electrical
and Computer Engineering, Texas A&M University, College Station, TX, United States

This paper presents a DRAM-based processing-in-memory (PIM) architecture, called
CIDAN-XE. It contains a novel computing unit called the neuron processing element (NPE).
Each NPE can perform a variety of operations that include logical, arithmetic, relational, and
predicate operations on multi-bit operands. Furthermore, they can be reconfigured to
switch operations during run-time without increasing the overall latency or power of the
operation. Since NPEs consume a small area and can operate at very high frequencies,
they can be integrated inside the DRAM without disrupting its organization or timing
constraints. Simulation results on a set of operations such as AND, OR, XOR, addition,
multiplication, etc., show that CIDAN-XE achieves an average throughput improvement of
72X/5.4X and energy efficiency improvement of 244X/29X over CPU/GPU. To further
demonstrate the benefits of using CIDAN-XE, we implement several convolutional neural
networks and show that CIDAN-XE can improve upon the throughput and energy
efficiency over the latest PIM architectures.

Keywords: artificial neuron, processing in-memory, in-memory computing, DRAM, memory wall, energy efficient
architectures, data-intensive applications

1 INTRODUCTION

The continuing exponential growth in the number of electronic systems that access the internet
combined with an increasing emphasis on data analytics is giving rise to applications that
continuously process terabytes of data. The latency and energy consumption of such data-
intensive or data-centric (Gokhale et al., 2008) applications is dominated by the movement of
the data between the processor and memory. In modern systems about 60% of the total energy is
consumed by the data movement over the limited bandwidth channel between the processor and
memory (Boroumand et al., 2018).

The recent growth of data-intensive applications is due to the proliferation of machine learning
techniques which are most often implemented using convolutional/deep neural networks (CNNs/
DNNs) (Angizi et al., 2019). CNNs/DNNs are large computation graphs with huge storage
requirements. For instance even an old neural network such as VGG-19 (Simonyan and
Zisserman, 2015) consists of 19 layers, has about 144 million parameters, and performs about
19.6 billion operations. Almost all of the neural networks used today are much larger than VGG-19
(Dai et al., 2021). These large computation graphs are evaluated in massive data centers that house
millions of high-performance servers with arrays of multi-core CPUs and GPUs. For instance, to
process one image using the VGG-19 network, a TITAN X GPU takes about 2.35 s, consumes about
5 Joules of energy, and operates at about 228W of power (Li et al., 2016). Other data-intensive
applications include large scale encryption/decryption programs (Myers, 1999), large-scale graph
processing (Angizi and Fan, 2019a), bio-informatics (Huangfu et al., 2019), to name just a few. Each

Edited by:
Ram Krishnamurthy,
Intel, United States

Reviewed by:
Jae-sun Seo,

Arizona State University, United States
Xueqing Li,

Tsinghua University, China

*Correspondence:
Sarma Vrudhula

vrudhula@asu.edu

Specialty section:
This article was submitted to
Integrated Circuits and VLSI,

a section of the journal
Frontiers in Electronics

Received: 13 December 2021
Accepted: 24 January 2022

Published: 18 February 2022

Citation:
Singh G, Wagle A, Khatri S and
Vrudhula S (2022) CIDAN-XE:

Computing in DRAM with
Artificial Neurons.

Front. Electron. 3:834146.
doi: 10.3389/felec.2022.834146

Frontiers in Electronics | www.frontiersin.org February 2022 | Volume 3 | Article 8341461

ORIGINAL RESEARCH
published: 18 February 2022

doi: 10.3389/felec.2022.834146

http://crossmark.crossref.org/dialog/?doi=10.3389/felec.2022.834146&domain=pdf&date_stamp=2022-02-18
https://www.frontiersin.org/articles/10.3389/felec.2022.834146/full
https://www.frontiersin.org/articles/10.3389/felec.2022.834146/full
http://creativecommons.org/licenses/by/4.0/
mailto:vrudhula@asu.edu
https://doi.org/10.3389/felec.2022.834146
https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org/journals/electronics#editorial-board
https://doi.org/10.3389/felec.2022.834146

transaction over the memory channel consumes about three
orders magnitude greater energy than executing a floating-
point operation on the processor and requires almost two
orders of magnitude greater latency than accessing the on-chip
cache (Dally, 2015). Thus the present approach to executing data-
intensive applications using CPUs and GPUs is fast becoming
unsustainable, both in terms of their limited performance and
high energy consumption.

One approach to circumvent the processor-memory
bottleneck is known as processing-in-memory (PIM). The
dominant choice of memory in PIM is DRAM due to its large
capacity (tens to hundreds of gigabytes) and the high degree of
parallelism it offers because a single DRAM command can
operate on an entire row containing kilobytes of data. The
main idea in PIM is to perform computations within the
DRAM directly without involving the CPU. Only the control
signals are exchanged between the processor and the off-chip
memory indicating the start and the end of the operation. This
leads to a great reduction in data movement and can lead to
orders of magnitude improvement in both throughput and
energy efficiency as compared to traditional processors. For
instance, the PIM architectures such as ReDRAM (Angizi and
Fan, 2019b) are about 49X faster and consume about 21X less
energy as compared to a processor with GPUs for graph analysis
applications. Similarly, SIMDRAM (Hajinazar et al., 2021) is
about 88X/5.8X faster and 257X/31X more energy efficient than a
CPU/GPU for a set of 16 basic operations.

For the widespread adoption of the PIM using the DRAM
platform, there must be minimum disruption to the memory
array structure and the access protocol of DRAM. Being an
extremely cost-sensitive market, DRAM fabrication processes
are highly optimized to produce dense memories. The DRAM
design and optimization requires very high levels of expertise in
process technology, device physics, custom IC layout, and analog
and digital design. Consequently, a PIM architecture that is non-
intrusive—meaning that it does not interfere with the DRAM
array or its timing—is paramount.

This paper describes, CIDAN-XE, a new PIM architecture that
embeds new compute elements, which are referred to as neuron
processing elements (NPE). The NPEs are embedded in the
DRAM chip but reside outside the DRAM array. CIDAN-XE
increases the computation capability of the memory without
sacrificing its area, changing its access protocol, or violating
any timing constraints. Each NPE consists of a small
collection of artificial neurons (a.k.a. threshold logic gates
(Muroga, 1971)) enhanced with local registers. The
implementation of an artificial neuron is a mixed-signal circuit
that computes a set of threshold functions of its inputs. The
specific threshold function is selected on each cycle by enabling/
disabling a subset of the inputs associated with the artificial
neuron by control bits. This results in a negligible overhead
for providing reconfigurability. In addition to the threshold
functions, an NPE realizes some non-threshold functions by a
sequence of artificial neuron evaluations. Furthermore, artificial
neurons consume substantially less energy and are significantly
smaller than their CMOS equivalent implementations (Wagle
et al., 2019). Due to the inherent advantages of NPE in

reconfigurability, its small area footprint, and low energy
consumption, CIDAN-XE platform in this paper is shown to
achieve high throughput and energy efficiency for several
operations and CNN architectures.

The main contributions of the paper are listed below:

• This paper presents a novel integration of an artificial
neuron processing element in a DRAM architecture to
perform logic operations, arithmetic operations, relational
operations, predication, and a few other complex operations
under the timing and area constraints of the DRAM
modules.

• The proposed design can process data with different
element sizes (1-bit, 2-bits, 4-bits, 8-bits, 16-bits, and 32-
bits) which are used in popular programming languages.
This processing is enabled by using operand decomposition
computing and scheduling algorithms for the NPE.

• A case study on CNN algorithm with optimized data-
mapping on DRAM banks for improved throughput and
energy efficiency under the limitations of existing
DRAM access protocols and timing constraints is
presented.

This paper is organized as follows. Section 2 lays down the
background of DRAM organization, operations, and its timing
constraints. Prior processing in-memory architectures are also
explained in Section 2. Section 3 describes in detail the
architecture of the neuron processing element (NPE) and its
operations. Section 4 illustrates the top-level design of the
architecture and its parallel operation under DRAM timing
constraints. Section 5 presents the mapping and the
implementation of CNN on CIDAN-XE. The experimental
results and comparison with the commercial architectures and
prior PIM architectures are presented in Section 6 and Section 7
concludes the paper.

Note: A preliminary version of this paper appeared in (Singh
et al., 2021). The work reported herein extends (Singh et al., 2021)
in several significant ways. First, the processing element used in
the preliminary work could perform a very limited set of
functions, i.e. only bit-serial addition, comparison, and basic
logic operations since its structure only contained a single
neuron. However, the proposed processing element now
supports larger and more complex functions such as
accumulation, adder-tree, comparison, ReLU, etc. due to the
presence of more neurons and the addition of local registers.
While the preliminary work could only support bit-vector
calculations, the proposed work supports more complex
workloads such as CNNs.

2 BACKGROUND

2.1 DRAM: Architecture, Operation and
Timing Parameters
This subsection includes a description of the architecture,
operation, and timing specifications of a DRAM. For in-
memory computation, these specifications are needed to

Frontiers in Electronics | www.frontiersin.org February 2022 | Volume 3 | Article 8341462

Singh et al. CIDAN-XE

https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles

ensure that the area and timing of the original DRAM
architecture are preserved when computation is integrated.

The conventional organization of DRAM is shown in
Figure 1A. This organization consists of several levels of
hierarchy. The lowest level of the hierarchy, which forms the
building block of DRAM, is called a bank. A bank contains a 2D
array of memory cells, a row of sense amplifiers, a row decoder,
and a column decoder. A collection of banks is contained in a
DRAM chip. Memory banks in a chip share the I/O ports and an
output buffer, and hence, only one bank per chip can be accessed
to read or write using a shared memory bus at a given time.
DRAM chips are arranged on a circuit board module calledDual-
in-line memory module (DIMM). A DIMM has DRAM chips
arranged on its two sides (front and back). Each side is called a
rank and is connected to a chip select signal. The ranks use the
memory channel in a lockstep manner but they are independent
and can operate in parallel. When data needs to be fetched from
the DRAM, the CPU communicates with the DRAM over a
memory channel with a data bus that is generally 64 bits wide.
Multiple DIMMs can share a memory channel. Hence, a
multiplexer is used to select the DIMM to provide data to the
CPU. One rank of the DIMM provides data to fill the entire data
bus. Note that all the DRAM chips in a rank operate
simultaneously while reading or writing data. The memory
hierarchy presented above is meant to activate several parts of
the DRAM in parallel and fetch large chunks of data
simultaneously from multiple banks in a single cycle. By

extension, in-memory architectures use this hierarchy to
perform operations on large segments of data in parallel.

A DRAM memory controller controls the data transfers
between the DRAM and the CPU. Therefore, almost all the
currently available in-memory architectures (Li et al., 2017;
Seshadri et al., 2017; Deng et al., 2018; Angizi and Fan, 2019b;
Hajinazar et al., 2021) modify the technique used to access the
data and extend the functionality of the memory controller to
perform the logic operations. The controller issues a sequence of
three commands to the DRAM: Activate (ACT), Read/Write (R/
W), and precharge (PRE), along with the memory address. The
ACT command copies a row of data into the sense amplifiers
through the corresponding bitlines. Here, the array of sense
amplifiers is called a row buffer as it holds the data until
another row is activated in the bank. The READ/WRITE
command reads/writes a subset of row buffer to/from the data
bus by using a column decoder. After the data is read or
written, the PRE command charges the bitlines to its resting
voltage VDD

2 , so that the memory bank is ready for the next
operation. After issuing a command, the DRAM controller
has to wait for an adequate amount of time before it can issue
the next command. Such restrictions imposed on the timing
of issuing commands are known as timing constraints. Some
of the key timing parameters (Jacob et al., 2008) are listed in
Figure 1B.

Due to the power budget, traditional DRAM architectures
allow only four banks in a DRAM chip to stay activated
simultaneously within a time frame of tFAW. The DRAM
controller can issue two consecutive ACT commands to
different banks separated by a time period of tRRD. As a
reference, a 1 Gb DDR3-1600 RAM has tRRD = 7.5ns and
tFAW = 30 ns (Chandrasekar et al., 2021). In Section 4 the
impact of these timing parameters on the delay in executing
logic functions will be shown for the proposed processing-
in-memory (PIM) architecture.

2.2 Processing in Memory
PIM architectures are classified into two categories: mixed-signal
PIM (mPIM) and digital PIM (dPIM) architectures. The dPIM
architectures can be further classified as internal PIM (iPIM) and
external PIM (ePIM). The differences between these architectures
are described as follows.

The mPIM architectures use memory crossbar-arrays to
perform matrix-vector multiplication (MVM) and
accumulation in the analog domain. These architectures then
convert the result into a digital value using an analog to digital
converter (ADC). Thus mPIM architectures approximate the
result, and accuracy depends on the precision of the ADC. A
few representative works of mPIM are (Chi et al., 2016; Guo et al.,
2017; Yin et al., 2020). mPIM architectures are based on either
SRAMs or non-volatile memories. They are exclusively used for
machine learning applications to perform multiply and
accumulate (MAC) operations.

In contrast to the mPIM architecture, iPIM architectures (Li
et al., 2017; Seshadri et al., 2017; Deng et al., 2018; Angizi and Fan,
2019b; Xin et al., 2020; Hajinazar et al., 2021) modify the structure
of the DRAM cell, the row decoding logic and sense amplifiers in

FIGURE 1 | (A) Top-level DRAM architecture and (B) Important Timing
Constraints of DRAM.

Frontiers in Electronics | www.frontiersin.org February 2022 | Volume 3 | Article 8341463

Singh et al. CIDAN-XE

https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles

such a way that each cell can perform a one-bit or two-bit logic
operation. Thus, primitive logic operations can be carried out on
an entire row (8 KB) in parallel. Logic operations on multi-bit
operands are performed in a bit-serial manner (Judd et al., 2016;
Ali et al., 2020), which results in lower throughput for large bit-
width operands, e.g., multiplication. These architectures generally
achieve high energy efficiency on bit-wise operations as they
operate directly on memory rows and process entire rows in
parallel.

The ePIM architectures embed digital logic outside the DRAM
memory array, but on the same die. These architectures work on
the subset of the memory row and hence process fewer elements
in parallel. The logic gates used in ePIM architectures are
designed for multi-bit elements and implement a limited
number of operations. Hence, they act as hardware
accelerators with high throughput for specific applications.
Recently, the DRAM makers SK-Hynix (He et al., 2020) and
Samsung (Kwon et al., 2021) introduced 16-bit floating-point
processing units inside the DRAM. ePIM architectures have a
high area overhead and have to reduce the size of memory arrays
to accommodate the added digital logic.

For accelerating, multiplication, and other non-linear
functions at higher bit-widths of 8 and 16 bits, certain look-up
table architectures have also been proposed recently (Deng et al.,
2019; Ferreira et al., 2021; Sutradhar et al., 2022). These
architectures store small lookup tables in DRAM for
implementing complex exponential and non-linear functions
in a single clock cycle.

Though the existing PIM architectures can deliver much
higher throughput as compared to the traditional CPU/GPU
architectures (Angizi and Fan, 2019b), their disadvantages
include loss of precision (mPIM architectures), low energy
efficiency and high area overhead (ePIM architectures), and
low throughput on complex operations (iPIM
architectures).

2.3 Prior Work on Logic Operations (iPIM)
and Arithmetic Operations (ePIM) in DRAM
Currently available iPIM architectures such as AMBIT (Seshadri
et al., 2017), ReDRAM (Angizi and Fan, 2019b), DRISA (Li et al.,
2017), DrAcc (Deng et al., 2018) and SIMDRAM (Hajinazar et al.,
2021 extend the operations of a standard DRAM to perform logic
operations.

A representative diagram of AMBIT operation on three rows is
shown in Figure 2A. In a normal DRAM operation, only one of
the rows is activated and only one storage capacitor goes into the
charge sharing phase with the corresponding bitline (precharged
to VDD

2). At the end of the charge sharing phase both the bitline
and the storage capacitor, reach an equilibrium state of equal
voltage which may be greater (stored value 1) or smaller (stored
value 0) than the precharged bitline (BL) voltage. The deviation in
the voltage of the bitline at the end of the charge sharing phase is
detected and converted to a digital value by the sense amplifier. In
AMBIT, the same activation operation is carried out on three
rows simultaneously and is known as triple row activation (TRA)
operation. Hence, in this case, three capacitors enter the charge
sharing phase with the precharged bitline. With TRA a majority
operation of the stored charge in three capacitors accessed by
WLA,WLB andWLC lines can be performed. The deviation on the
BL voltage based on the charge sharing principle at the end of
TRA is given by the Eq. 1 (Seshadri et al., 2017):

δ � (2k − 3)CC

6Cc + 2Cb
VDD, (1)

where δ is bitline deviation, Cc is the cell capacitance, Cb is the
bitline capacitance, and k is the number of cells in fully charge
state. For k = 2, 3, δ will be positive and the sense amplifier
evaluates to 1, otherwise δ will be negative and the sense amplifier
evaluates to 0. In this way, TRA performs a majority operation on
three inputs. Since the rows remain connected to the BL, the

FIGURE 2 | Prior work (iPIM). Hardware architecture of (A) AMBIT (Seshadri et al., 2017) and (B) ReDRAM (Angizi and Fan, 2019b)

Frontiers in Electronics | www.frontiersin.org February 2022 | Volume 3 | Article 8341464

Singh et al. CIDAN-XE

https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles

original data in the capacitors is lost and overwritten by the result
value on BL.

In the case of ReDRAM, two rows are activated (double row
activation (DRA)) simultaneously and they undergo the same
charge sharing phase with the BL as in the case of AMBIT. To
prevent the loss of original data at the end of TRA or DRA, both
AMBIT and ReDRAM reserve some rows (referred to as compute
rows) in the memory array to exclusively perform a logic
operation. Hence, for every operation, the operands are copied
from the source rows to the compute rows by using the copying
operation described in (Seshadri et al., 2013). A copy operation is
carried out by a command sequence of ACT → ACT → PRE
which takes 82.5ns in 1 Gb DDR3-1600 (Chandrasekar et al.,
2021). In AMBIT, all the 2-input operations such as AND, OR
etc. are represented using a 3-input majority function.

ReDRAM improves upon the work by AMBIT by reducing the
number of rows that need to be activated simultaneously to two.
After the charge sharing phase between two rows, a modified
sense amplifier is used to perform the logic operation and write
back the result. The modified sense amplifier has inverters with
different threshold voltages (switching voltages) to perform the
logic operations as shown in Figure 2B. Each inverter enables the
computation of a different logic function. A multiplexer is used to
choose between one of the logic functions.

ReDRAM, AMBIT, and the related designs DRISA, DrAcc and
SIMDRAM, have a complete set of basic functions and can
exploit full internal bank data width with a minimum area
overhead. However, their shortcomings include:

• These designs rely on sharing charges between the storage
capacitors and bitlines for their operation. Due to the analog
nature of the operation, the reliability of the operation can
be effected under varying operating conditions.

• ReDRAM modifies the inverters in the sense amplifier to
shift their switching points using transistors of varying
threshold voltage at the design time. Hence, such a
structure is also vulnerable to process variations.

• All these designs overwrite the source operands, because of
which rows need to be copied before performing the logic
operations. Such an operation reduces the overall
throughput that can be achieved when performing the
logic operations on bulk data.

Existing iPIM architectures perform bitwise operations which
result in a significant latency and energy consumption for multi-
bit (4-bits, 8-bits, 16-bits, etc.) operands. Hence, their throughput
and energy benefits show a decreasing trend for higher bit
precision. To overcome this shortcoming, the architectures
with custom logic (large multipliers and accumulators) He
et al., 2020), programmable computing units (Kwon et al.,
2021), and LUT-based designs LAcc (Deng et al., 2019),
pPIM (Sutradhar et al., 2022), pLUTo (Ferreira et al., 2021)
have been proposed. These architectures embed external
logic to the DRAM outside the memory array, hence,
referred to as ePIM architectures. Such architectures are
amenable to specific applications and act as hardware
accelerators for them. The ePIM architectures have a

huge area overhead and consequently sacrifice the DRAM
storage capacity.

CIDAN-XE is designed to overcome the shortcomings of the
discussed literature and provide flexibility to perform data-
intensive applications with multi-bit operands. A comparison
of CIDAN-XE with iPIM and ePIM architectures is shown in
Table 1.

Key Advantages of CIDAN-XE: The proposed platform,
CIDAN-XE, improves the existing iPIM and ePIM
architectures in seven distinct ways.

1. Neither the memory bank nor its access protocol is modified.
2. There is no need for special sense amplifiers for its operation.
3. The NPEs are DRAM fabrication process compatible and have

a small area footprint.
4. There is no reduction in DRAM capacity.
5. CIDAN-XE adheres to the existing DRAM constraint of

having a maximum of four active banks.
6. The NPEs connected to the DRAM do not rely on charge

sharing over multiple rows and are essentially static logic
circuits.

7. The NPEs are reconfigured at run-time using control bits to
realize different functions and the cost of reconfiguration is
negligible as compared to the LUT-based designs.

Further details are discussed in Section 3.

2.4 Threshold Logic Function and Artificial
Neurons
A Boolean function f(x1, x2, . . ., xn) is called a threshold function
if there exist weights wi for i = 1, 2, . . ., n and a threshold T1 such
that

f(x1, x2,/xn) � 1 5 ∑
n

i�1
wixi ≥T, (2)

where ∑ denotes the arithmetic sum. Thus a threshold function
can be represented as (W, T) = [w1, w2, . . ., wn; T]. An example of
a threshold function is f(a, b, c, d) = ab ∨ ac ∨ ad ∨ bcd, with [w1,
w2,w3,w4; T] = [2, 1, 1, 1; 3]. An extensive body of work exploring
many theoretical and practical aspects of threshold logic can be
found in (Muroga, 1971). In the following, we will refer to a

TABLE 1 | Comparison of CIDAN-XE with iPIM and ePIM architectures.

CIDAN-XE iPIM ePIM

Operation Digital Analog Digital
Reliability High Low High
Area overhead Medium Low High
Parallelism High High Low
Application Specific No No Yes
Multi-bit precision performance High Low High

1W.L.O.G. the weights wi and threshold T can be integers (Muroga, 1971).

Frontiers in Electronics | www.frontiersin.org February 2022 | Volume 3 | Article 8341465

Singh et al. CIDAN-XE

https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles

threshold logic gate as an artificial neuron (AN) to avoid
confusion with the notion of a threshold voltage of a
transistor, which is also used in the design of the neuron.

Several implementations of ANs already exist in the literature
(Yang et al., 2014; Vrudhula et al., 2015; Kulkarni et al., 2016;
Wagle et al., 2019) and have been successfully integrated and
fabricated in ASICs (Yang et al., 2015). These gates evaluate Eq. 2
by directly comparing some electrical quantity such as charge,
voltage, or current. For this paper, a variant of the architecture
shown in (Wagle et al., 2019) is used, as it is the AN available at
the smallest technology node (40 nm).

Figure 3 shows the circuit diagram of the AN. It consists of
four components: left and right input network (LIN and RIN
respectively), a sense amplifier, and a latch. When the clock signal
is 0,N5 and N6 rise to 1 through transistor M15. This resets the
sense amplifier through transistorsM1 andM4 (N1 =N2 = 1). For
evaluation, appropriate input signals are provided to inputs xl1 to
xln and xr1 to xrn, which in turn allow current to pass through the
branches of LIN and RIN respectively. The current passing
through the branches is proportional to the width of the
transistors and threshold voltage of the flash transistors VL1 to
VLn and VR1 to VRn, which in turn serve as a proxy for the weights
of the threshold function. Additional enable signals enl1 to enln
and enr1 to enrn have been incorporated to select branches
corresponding to the inputs that are being evaluated. During
an evaluation phase, both the LIN and RIN dischargeN5 andN6.
Without the loss of generality, assuming N5 discharges faster
thanN6, M7 turns on before M8, which enables the discharge of
N1 faster than N2. N1 shuts off the transistor M6 and chokes the
discharge path of N2. In the end, N1 is at 0 and N2 is at 1. The SR
latch uses the differential output of the sense amplifier and
evaluates to 1. Since the sense amplifier compares the
conductivity of LIN and RIN, it serves as a proxy for the
inequality shown in Eq. 2. LIN represents the left side of the
equation and RIN represents the right side. Ensuring that the
inputs to LIN and RIN are applied at a clock edge turns the circuit
into a multi-input, edge-triggered flipflop, that computes the

Boolean threshold function. Note that transistors M9 and M10
are added to prevent the N5 and N6 from any potential floating
condition in case, all the branches are turned off.

3 NEURON PROCESSING ELEMENT

The processing element used in this paper is based on the design
described in (Wagle et al., 2020). It is used to operate on multi-bit
data and is referred to as Neuron Processing Element (NPE) in
this paper. The architecture of NPE is shown in Figure 4A. An
NPE consists of K (=4) fully connected ANs, denoted by Nk,
where k is the index of the neuron. Each AN has a 16-bit local
register. The neurons communicate with each other using
multiplexers. Each Nk has I (=4) inputs, denoted as xi,k, where
i is the index of the input of AN k. The output of AN k at time t is
denoted as qk,t. These ANs implement the threshold function [2,
1, 1, 1; T] such that T can take values [1, 2, 3]. The threshold value
(T) is assigned during run time using digital control signals. An
NPE can perform bitwise logical operations such as (N)AND, (N)
OR, NOT, and 3-input majority in a single clock cycle using a
single neuron inside it. It is to be noted that, since each neuron in
the NPE can process NOT and majority function, CIDAN-XE
can support all the functions as described in (Hajinazar et al.,
2021) by using majority inverter graph conversion. An NPE can
also process 4-bit operands in parallel as it consists of four ANs.
Single or multi-bit addition, comparison, pooling, and ReLU
operation can be scheduled on the NPE as described in
(Wagle et al., 2020). (Wagle et al., 2020) used the NPE to
implement binary neural networks (BNNs) with activation and
weights being single bit values. In this paper, the NPE is extended
to enable multi-bit neural network operations such as
multiplication, accumulation, pooling, and various activation
functions.

3.1 Basic Logic Operation on AN
ANs in the NPE implement the threshold function [2, 1, 1, 1; T]
which can be reconfigured to perform logic operations on binary
operands just by enabling or disabling the required inputs
and choosing the appropriate threshold value (T). AN acts as
a reconfigurable static gate where the cost of reconfiguration
is just the choice of the appropriate inputs and the selection of
the threshold value (T). This low reconfiguration cost of the
basic elements of the NPE enables the reduction in the overall
area and power cost of the processing element. Consider the
AN structure as shown in Figure 4C. The binary inputs are a,
b, c, and d and the output is y. Table 2 shows the enabled
inputs and the threshold values for different bitwise
operations on a single AN. 1 bit-addition using XOR and
majority operation scheduled on two ANs as shown in the
section 3.2.

3.2 Multi-Bit Addition and Accumulation
Operation
Two m-bit numbers X = xm−1, xm−2, . . .x1, x0 and Y = ym−1, ym−2,
. . .y1, y0 can be added by mapping a chain of neuron-based ripple

FIGURE 3 | Artificial Neuron (AN) Architecture.

Frontiers in Electronics | www.frontiersin.org February 2022 | Volume 3 | Article 8341466

Singh et al. CIDAN-XE

https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles

carry adders on the NPE. The final sum S = X + Y = {Cm−1, Sm−1,
Sm−2, . . .S1, S0} is generated as follows:

Cycles indexed 0 to m-1 are used to generate the carry bits by
mapping the compute of carry function to the third AN of the
NPE. Here, the carry function is the majority operation of two
input bits xi, yi and the previous carry Ci−1:

Ct � q3,t+1 � {xt + yt + q3,t ≥ 2} (3)
Cycles indexed 1 to m are used to generate the sum bits, by

mapping the compute of sum function to the second AN of
the NPE:

St−1 � q2,t+1 � {xt−1 + yt−1 + q3,t−1 − 2q3,t ≥ 1} (4)
Note that q3,t−1 is supplied to the sum function at time t by

using AN 4 as a buffer.
The above mapping is illustrated in Figure 5A. The bits

corresponding to X and Y are fetched from the DRAM in one
cycle and are stored in the local registers. ANs 1 and 2 then fetch
the required bits from the local registers on a cycle-by-cycle basis
to do the evaluation. Note that unused inputs of the ANs are
connected to 0.

An accumulation operation of size M is treated as repeated
addition of anm-bit number with the accumulatedM bit number.
NPE supports a maximum of 32-bit accumulation operation. An
accumulation schedule on NPE is shown in Figure 5B.

2.3 Multi-Bit Comparison and ReLU
Two m-bit numbers X = xm−1, xm−2, . . .x1, x0 and Y = ym−1, ym−2,
. . .y1, y0 can be compared (X > Y) in m cycles on the NPE as
follows:

q1,t+1 � {xt − yt + q1,t ≥ 1} (5)

FIGURE 4 | (A) Architecture of the Neuron Processing Element (NPE), (B) Artificial neuron (AN) structure and routing infrastructure around it and (C) A single AN
used in the NPE.

TABLE 2 | Inputs and Threshold selection for various bitwise operation on a single
AN. IP1, IP2 and IP3 are input operand bits.

Operation a b c d T

NOT (a) IP1 0 0 0 1
AND (a,b) IP1 IP2 0 0 2
OR (a,b) IP1 IP2 0 0 1
MAJ (a,b,c) IP1 IP2 IP3 0 2

Frontiers in Electronics | www.frontiersin.org February 2022 | Volume 3 | Article 8341467

Singh et al. CIDAN-XE

https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles

The result of X > Y is q1,m. Intuitively, in each cycle, the AN
overrides the comparison result that was generated by all the
previous lower significance bits if the value of a higher
significance bit of X is greater than the value of the respective
higher significance bit of Y. As an example, the schedule of 4-bit
comparison is shown in Figure 5C.

The ReLU operation, commonly used in neural networks is an
extension of the comparison operation. It involves the
comparison of an operand against a fixed value. The output of
ReLU is the operand itself if it is greater than the fixed value, else
the output is 0. This is realized by performing an AND operation
of the result of the comparison with the input operand.

3.4 Multi-Bit Multiplication
An NPE acts as a primitive unit for 4-bit multiplication. A
multiplication operation is broken into a series bitwise AND
and addition operations scheduled on NPE. A schedule of 4-bit
multiplication of two operands X = {x3,x2,x1,x0} and Y =
{y3,y2,y1,y0} on NPE is shown in the Figure 6A. The

multiplication is completed in four steps. Firstly, the partial
products P0, P1, P2, P3 are obtained but using four bitwise
AND operations on all the ANs in parallel. This step is
completed in four cycles. Next, the addition of P0 and 1-bit
shifted version of P1 (Sum1) is calculated in 5 clock cycles using
the multi-bit addition schedule as shown in the section 3.2. The
result Sum1 is stored in the AN N3. Similarly, in the next step
addition of P2 and 1-bit shifted version of P3 are added in 5 cycles
again with the result (Sum2) stored in the AN N2. In the last step,
Sum1 and Sum2 stored in the ANs, N2 and N3 are added in 7
clock cycles as the Sum2 is shifted by 2 bits before addition. The
final result of the multiplication (Sum3) is stored in the ANN1. In
total, it takes 21 clock cycles to perform a 4-bit multiplication in a
single NPE.

For 8 bit operands, the multiplication is broken into smaller
multiplication operations that use 4-bit operands, and a final
addition schedule is used as shown in Figure 6B. The operands X
and Y are decomposed into 4 bit segments as XH, XL, and YH, YL,
where the subscripts L and H represent the lower and the upper

FIGURE 5 | (A) 4 bit Addition operation schedule on NPE, (B) m-bit Accumulation operation schedule on NPE and (C) Comparison schedule on NPE.

FIGURE 6 | (A) 4 bit Multiplication operation schedule on NPE and (B)Multiplication schedule using partial products of decomposed operands. In 4(A) The ANs are
labeled with the final result stored in them. Computations however, involve all the four ANs.

Frontiers in Electronics | www.frontiersin.org February 2022 | Volume 3 | Article 8341468

Singh et al. CIDAN-XE

https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles

4 bits of the 8-bit operand. The partial products of the 4 bit
segments is represented as: V0 = XL*YL, V1 = XH*YL, V2 = XL*YH,
V3 = XH*YH and executed as 4 bit multiplications on the NPE.
After the partial products are obtained, a series of addition
operations are carried out as shown in Figure 6B to obtain
the final 16 bit result A. For operands of bit width 16 and 32,
multiplication can be carried out by recursively breaking up the
operands into 4-bit segments and scheduling the operation on
the NPE.

3.5 Maxpooling and Average Pooling
The max-pooling operation finds the maximum number in a set
defined by the max-pooling window of a neural network. Max-
pooling operation is carried out by a series of comparisons,
bitwise AND and bitwise OR operation. For illustration, let a
max-pooling operation be applied to four n-bit numbers A, B, C,
and D. In this case, the pooling window is 2 × 2. The max-pooling
operations are illustrated in Figure 7. Bits x, y, and z are binary
results of the comparison of different inputs. The result of the

max operation after the comparison is obtained using bitwise
AND and OR operation of inputs with the comparison result bit
as shown the Figure 7. The max-pooling operation involves m-1
comparison operations for a set of m numbers.

Average pooling is supported for limited pooling windows
which have a size in powers of 2, eg., 2 × 2, 4 × 4, 8 × 8, etc. All the
numbers in the set are added and then the right shift operation is
used to realize division.

4 TOP-LEVEL ARCHITECTURE

Figure 8A shows the logical organization of banks in a DRAM. A
group of banks shares the local I/O gating which consists of
column multiplexers and write drivers, and therefore only the
bank can be accessed for reading or writing by an external
compute unit. However, it is possible to activate multiple
banks within a group such that the data of a row can be
latched to the local bitline sense amplifiers (BLSA). The
number of banks that can be simultaneously activated is
constrained by the power budget of the DRAM chip. This
power constraint is enforced by the timing parameter tFAW,
which defines the time frame within which a maximum of
four banks can be activated. Hence, within tFAW data from
four different banks can be latched into the BLSA and
potentially can be used to perform operations. In CIDAN-XE,
the NPEs are placed between the BLSA and the local I/O gating to
directly connect to the BLSA output as shown in Figure 8B.

An NPE is connected to four BLSA outputs. Hence, if a row
buffer has N bits, there are N/4 NPEs connected to the bank. As
CIDAN-XE works on four banks in parallel, there are a total of N
NPEs in the DRAM. If there are more than four banks in the
DRAM, for example, 8 or 16, the NPEs are shared among all the
banks using multiplexers but the number of NPEs stays constant
to utilize only four banks in parallel. An NPE-array works on the
operands derived from the same bank using sequential row
activation commands. All the NPEs perform the same
operation and share the control signals generated by an
external controller. Once the operands are obtained in the
NPEs, all the active banks can be precharged together. The

FIGURE 7 | Maxpooling operation on pooling window of 2 × 2.

FIGURE 8 | (A) DRAM bank organization and (B) Integration of the NPE with a DRAM bank.

Frontiers in Electronics | www.frontiersin.org February 2022 | Volume 3 | Article 8341469

Singh et al. CIDAN-XE

https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles

latency of precharging the banks is overlapped with the compute
latency of NPEs. An NPE can write the results back to the same
bank by driving all the bitlines connected to it through BLSA. To
write data to another bank, a local shared buffer among different
banks is used. Writing an entire row-wide data to another bank is
a slower operation than writing back to the bank itself because of
the limited capacity of the shared buffer. There are eight rows
reserved per bank to write the output data generated from the
NPE-array.

4.1 System Level Integration of CIDAN-XE
CIDAN-XE is used as a memory and as an external accelerator
that is interfaced with the CPU. The design of CIDAN-XE
includes the addition of some special instructions to the CPU’s
instruction set that specifies the data and the operation to be
carried out in the CIDAN-XE. There are unused opcodes in the
CPU instruction set which can be re-purposed to define the
instructions for CIDAN-XE. A block diagram representing
system-level integration of CIDAN-XE is shown in Figure 9A.
An application is modified to include the CIDAN-XE instructions
to replace the code which can be executed on the CIDAN-XE
platform in parallel. Whenever the CPU identifies CIDAN-XE-
specific instruction in the application, it passes it to the CIDAN-
XE controller—a state machine that decodes the instruction and
generates DRAM commands and control signals to implement
the specified operation by the instruction on CIDAN-XE. Extra
bits are added to the CPU-memory bus to accommodate the
control signals from the CIDAN-XE controller.

CIDAN-XE tries to utilize a maximum of four banks in
parallel, therefore, the operands are pre-arranged across the
banks for a row address before moving on to the next row.
For every operation, to transfer the operand to the NPEs, the

activation command for a row is generated sequentially separated
by tRRD time. The operand data is latched to local registers of the
NPE from the BLSA. The activation commands are followed by a
single precharge command which precharges all the active banks.
The same set of commands is issued to get more operands or
more bits of the operands if the operand bit width is greater than
four. After the operands are obtained, the NPE operates and then
writes back the data to the reserved rows for the output in the
same bank itself or to another bank using the shared internal
buffer. An operation sequence on a single bank of DRAM to
obtain two operands to the connected NPE, perform an
operation, and write back the result is shown in the Eq. 6.
The compute on NPE is selected using the control signals
from the CIDAN-XE controller. It should be noted that in the
operation of CIDAN-XE, no existing protocol or timing
constraints of the DRAM are violated even when operating
multiple banks in parallel. Therefore, no changes to the row
decoder or memory controller are required to facilitate
complex DRAM operations as done in the prior work (Li
et al., 2017; Seshadri et al., 2017; Deng et al., 2018; Hajinazar
et al., 2021).

ACT → PRE → ACT → PRE →
(Compute onNPE) → WR

(6)

5 CASE STUDY: CONVOLUTION NEURAL
NETWORKS INFERENCE

In this section, we take convolutional neural network inference to
exemplify the use of the CIDAN-XE platform for varying bit-

FIGURE 9 | (A) System-level Integration of DRAM and (B) Activation commands to different banks within four bank activation window.

Frontiers in Electronics | www.frontiersin.org February 2022 | Volume 3 | Article 83414610

Singh et al. CIDAN-XE

https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles

precision workloads and obtaining high throughput and energy
efficiency. We show the data mapping for CNN applications to
achieve maximum throughput. It should be, however, noted that
CIDAN-XE platform is not limited to the inference of CNNs.

The accuracy of CNN inference tasks varies with the bit-
precision (McKinstry et al., 2019; Sun et al., 2020). The accuracy is
highest for floating-point representation and decreases as the bit
precision is lowered to a fixed-point representation of 8, 4, 2 bits,
and in the extreme case to 1 bit. The CNN with 1-bit precision of
inputs and weights are called Binary Neural Networks (BNN)
(Courbariaux and Bengio, 2016) and the networks with only
weights being restricted to binary values are called Binary
Weighted Networks (BWNs) (Courbariaux et al., 2015). In
BWNs the inputs may have bit-precision of 4-bits, 8-bits, or
16-bits. The lower precision networks substantially reduce the
memory requirements and computational load for the hardware
implementation and are suitable for a resource-constrained
implementation. Hence, there exists a trade-off between the
accuracy and the available hardware resources while selecting
the bit-precision of CNNs. It will be shown in Section 6 that
CIDAN-XE implements various fixed precision networks,
achieving a higher throughput and energy efficiency over the
prior work.

5.1 Data Mapping of CNNs Onto DRAM
A CNN mostly consists of three types of layers: the convolution
layer, the pooling layer, and the fully connected layer. A
convolution layer operation is depicted in the Figure 10A. In
this operation, an input of dimension I*I*C is convolved with
different kernels of size K*K*C to produce an output feature map
of size F*F. If there are M kernels, M output feature maps are
produced.

To compute one output feature (OF) a K*K*C kernel is
convolved with a section of the image of the same dimensions.
As all the NPEs are connected to different bitlines, they can work
independently on the data residing in different rows connected to
the same set of bitlines. Hence, each NPE can produce one output
feature. Since all NPEs work in parallel, they can be fully utilized
to produce several output features in parallel in the same number
of cycles for a given layer. Therefore, the required input and
kernel pixels are arranged vertically in the columns connected to
an NPE. The input pixels and kernel pixels are replicated along
the columns of a bank to support the parallel operation of all the
NPEs to generate output feature maps. Figure 10B shows data
mapping along with vertical columns in banks, where columns
act as a Single Instruction Multiple Data (SIMD) lane connected
to an NPE.

FIGURE 10 | (A) Convolution Operations with its important parameters and (B) Data mapping into DRAM banks for the Convolution layer.

Frontiers in Electronics | www.frontiersin.org February 2022 | Volume 3 | Article 83414611

Singh et al. CIDAN-XE

https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles

The pooling and the fully connected layers can be converted to
the convolution layer using the parameters I, C, K, F, M. The
input is mapped to DRAM banks such that an output value can be
produced by a single PE over multiple cycles and the maximum
NPEs can be used in parallel. A data mapping algorithm is
designed to achieve mapping to use the maximum number of
NPEs in parallel and achieve the maximum possible throughput.
The data mapping algorithm tries to avoid any movement of data
from one NPE to another in a single bank as shifting of data
through shared internal buffer using CPU instructions is
expensive in terms of latency and energy.

6 EXPERIMENTAL RESULTS

6.1 Evaluation of Processing in DRAM
Architectures
Most PIM architectures include modification to the DRAM
address decoding circuits, analog operation of the memory
array, or the addition of extra logic circuits to the DRAM. To
evaluate such changes, first, the circuit level simulations and
characterization of the building blocks of extensions/
modifications to DRAM using SPICE-like tools are carried
out. Using the circuit level characterization data, industry-
standard synthesis tools are used to design and evaluate the
entire DRAM modifications. These evaluations are carried out
at logic process technology whereas, the changes are proposed in
the DRAM technology. Hence, the area and performance
numbers from the synthesis tools are scaled to DRAM
technology using some prior established scaling factors. To
simulate the entire PIM architecture using an application, a
behavioral-level simulator is designed either independently or
with existing DRAM simulators to calculate energy and latency.

The proposed design CIDAN-XE follows the same established
evaluation methodology. The AN is designed in TSMC 40 nm LP
process technology. It was rigorously tested for functional
correctness and for robustness against process variations using
Monte-Carlo simulations in HSPICE (Wagle et al., 2019). The
neural processing elements (NPEs) are synthesized, placed, and
routed using Cadence Genus and Innovus tools. We used the
standard cell library of TSMC 40 nm LP technology and an in-
house characterized standard cell library of the AN. The area,
power, and energy numbers are extracted from the design tools
and scaled to the DRAM technology using the previous research
work (Yong-Bin and Chen, 1996). A behavioral level simulator is
developed in concert with an existing DRAM energy simulator
called DRAMPower (Chandrasekar et al., 2021) to simulate the
overall latency and the energy of various workloads on the PIM
platform. The workload description and the memory
specification are provided to this simulator as input.

6.2 Raw Performance and Energy Analysis
The proposed PIM platform CIDAN-XE can perform more basic
operations than the ones explained in the section 3. In this
section for raw throughput and energy analysis, we implement
fifteen basic operations. These operations chosen for evaluation
consists of a mix of functions from bitwise logic operations to

multiplication operation. The evaluation is done using a synthetic
workload with an operand size of 64 million elements with each
element size of 32 bits using the behavioral level simulator. The
memory specifications of the DDR4-2400 memory with the row
buffer size of 8 KB are used for the simulation.

CIDAN-XE is evaluated against a CPU (Intel Skylake, 16
cores, 4 GHz), GPU (NVIDIA Titan V, 5120 CUDA cores,
1.2 GHz) and some prior PIM architectures such as AMBIT:
1B and SIMDRAM:4B using the data from (Hajinazar et al.,
2021). Note, all the PIM architectures are evaluated on the same
memory specifications.

In SIMDRAM:4B, four banks are operated in parallel and
AMBIT:1B operates on a single bank. CIDAN-XE:4B operates on
four banks in parallel under the tFAW timing constraint.
Therefore, SIMDRAM:4B and CIDAN-XE:4B have equal
parallelism in their designs.

Figure 11A shows raw throughput comparison of CIDAN-XE
with the state-of-the-art PIM architectures, CPU, and GPU.
SIMDRAM:4B and CIDAN-XE:4B use four banks in parallel
and hence are equivalent designs for a comparison. CIDAN-XE:
4B on average over the fifteen reported functions has 6.3X higher
throughput than SIMDRAM:4B. Against the CPU/GPU,
CIDAN-XE:4B has a throughput improvement of the order of
72X/5.4X. To understand the reason for the higher throughput
that CIDAN-XE:4B achieves than AMBIT:1B, and SIMDRAM:
4B, it is necessary to look into the basic operation of these
architectures.

In the section 2.3, the majority function computation on three
rows in AMBIT is shown. The majority operation is carried out
using multi-cycle AAP/AP DRAM command primitives. In
SIMDRAM, a framework is developed to convert any desired
operation into an optimized majority/not implementation.
Thereafter, a micro-program is developed by converting the
majority/not graph to AAP/AP primitives for final execution
onto the DRAM. For example, a 1-bit addition on SIMDRAM
requires 7 AAP and 2 AP operations which takes hundreds of
cycles. On the other hand, a 1-bit addition operation in CIDAN-
XE:4B requires only to activate two rows followed by precharge to
get the operands, and only 2 cycles on NPE to perform 1-bit
addition.

Figure 11B shows the energy efficiency of the CIDAN-XE:4B
over the baseline CPU for the fifteen basic operations. CIDAN-
XE:4B achieves about 244X higher energy efficiency than CPU.
The SIMDRAM:4B design report about 257X higher energy
efficiency as compared to the baseline CPU. SIMDRAM
achieves high energy efficiency because of the involvement of
only memory rows for computation rather than having external
gates for computing. The CIDAN-XE manages to match the
energy efficiency of the SIMDRAMdesign despite having external
NPE for computing. CIDAN-XE requires a very small number of
compute cycles on NPE as compared to the total memory cycles
for computation in SIMDRAM, which reduces the proportion
of NPE in the total energy of CIDAN-XE and enables high
energy efficiency. With equivalent energy efficiency and
much higher throughput, CIDAN-XE is a more efficient
PIM platform as compared to the state-of-the-art PIM
architecture SIMDRAM.

Frontiers in Electronics | www.frontiersin.org February 2022 | Volume 3 | Article 83414612

Singh et al. CIDAN-XE

https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles

6.3 CNN Case Study Analysis
CIDAN-XE is evaluated over five different neural networks:
ALEXNET (Krizhevsky et al., 2012), RESNET-18, RESNET-50
(He et al., 2015), VGG-16, VGG-19 (Simonyan and Zisserman,
2015) for various bit-precision of inputs and weights. The input to
the network is an image of size 224 × 224 × 3 and the DRAM used
is DDR4-2400 with 4 Gb of capacity. The DRAM has 1 channel, 1
rank, 16 banks, with a row buffer of size 8 Kbits. CIDAN-XE uses
8192 NPEs for the CNN inference implementation.

6.3.1 Throughput and Energy Efficiency Analysis
The different evaluation modes based on the bit-precision of the
inputs and weights used in the CNNs implementation on
CIDAN-XE are shown in Table 3. Figure 12A shows the
throughput (Frames/s) by using a batch size of 1 on the
CIDAN-XE platform for different CNNs in all the evaluation
modes. The latency incurred for any operation on CIDAN-XE
can be divided into two parts: the latency of operands delivery to
NPE from the memory banks and the latency of computation on

the NPE itself. It is observed that the 8-bit mode has the lowest
throughput among all the evaluation modes and the 4-bit mode
has the highest throughput. This is because of two reasons based
on the analysis of the two latency components. First, the operands
are decomposed into 4 bits segments and stored in consecutive
rows sharing the same columns and the NPE. Hence, it requires
multiple sequential row activations on the same bank to read
operands into the NPE. Second, the NPE is designed as a 4-bit
compute primitive, hence, the computation for 4-bit mode is
optimized which leads to high throughput. The computation

FIGURE 11 | Throughput (A) and Energy Efficiency (B) comparison of CIDAN-XE with CPU, GPU and other PIM architectures.

TABLE 3 | Evaluation modes description of Neural Networks.

Evaluation mode Inputs (bits) Weights

8 bit 8 8 bits
16 bit BW 16 1 bit
8 bit TW 8 2 bit
4 bit 4 4 bits
8 bit BW 8 1 bit

Frontiers in Electronics | www.frontiersin.org February 2022 | Volume 3 | Article 83414613

Singh et al. CIDAN-XE

https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles

latency for the binary-weighted (BW) networks is also low as the
costly multiplication operation is reduced to AND operation and
the other operations are also simplified. Hence, the throughput is
high for binary-weighted (BW) evaluation modes as well.

The throughput is also proportional to the computational load
of the neural networks. ALEXNET with the least number of
operations has the highest throughput among all the evaluation
modes and the VGG-19 has the least throughput on account of
having themost number of operations. The throughput normalized by
area representing the area efficiency is shown in Figure 12B.

The energy efficiency represented as the Frames/joule or the
Throughput/Watt in the CNN inference application is dominated
by the energy of computation on the NPEs rather than the energy
consumption of the delivery of the operands to the NPE. This is
because the complex operations carried out on the NPE for CNN’s
takes multiple cycles and consequently consumemore energy. Hence,
it is observed that the binary-weighted evaluation mode has the
highest energy efficiency and the 8-bit mode has the lowest energy
efficiency. Figure 12C shows the energy efficiency of CIDAN-XE for
all evaluation modes for different neural networks.

6.3.2 Comparison With Other Architectures
In this section, a comparison of CIDAN-XE with other hardware
platforms and prior PIM architectures is discussed. The CNN

workload chosen for comparison is ALEXNET. The compared
designs include the state-of-the-art Von-Neumann machines
such as Intel Knights Landing (KNL) CPU Sodani, 2015) and
Nvidia Tesla P100 GPU (Awan et al., 2017); industry-standard
CNN accelerators such as Google Tensor Processing Unit (TPU)
(Sutradhar et al., 2022) and Intel Movidius Neural Compute Stick
(NCS) (Sutradhar et al., 2022); internal processing in memory (iPIM)
architectures such as Neural Cache, DRISA, DrACC, and a LUT-
based design Lacc. Neural Cache is based on SRAM cache
modifications, DRISA and DrAcc are based on logic operations
using memory arrays and custom logic, and Lacc is an LUT-based
PIM implemented on the DRAM platform. It should be noted that all
the prior PIM architectures are implemented using 28 nm or lower
process technology and CIDAN-XE is implemented in 40 nm
technology node. The results show CIDAN-XE’s improvements
over the prior PIM and other architectures without scaling and the
improvements are bound to increase if the performance and energy
efficiency of CIDAN-XE is scaled to 28 nm or lower technology node.

Figure 13A shows the throughput and Figure 13B shows the
energy efficiency of CIDAN-XE in different evaluation modes
versus the other architectures using the ALEXNET workload with
an input image size of 224 × 224 × 3. DRISA has the highest
throughput using the binary-weighted (BW) implementation of
ALEXNET. CIDAN-XE in the 8-bit BW mode has a comparable

FIGURE 12 | Throughput (A), Area-efficiency (B) and Energy efficiency (C) for CIDAN-XE, for CNN networks of varying bit-precision.

Frontiers in Electronics | www.frontiersin.org February 2022 | Volume 3 | Article 83414614

Singh et al. CIDAN-XE

https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles

throughput to DRISA with a 5.6X higher energy efficiency. DrAcc
operating in 8 bit ternary weight (TW) mode has the highest
energy efficiency among the prior PIM architectures which is
comparable to CIDAN-XE 8-bit TW mode. CIDAN-XE 8 bit
TW has about 1.2X higher throughput when DrAcc is operated
in its high throughput configuration. In this configuration, the
latency of DrAcc is 386.4 s, whereas, the latency of CIDAN-XE
8 bit TW is 9.7 ms which is three orders of magnitude less than
the DrAcc. In high-speed mode, DrAcc has a latency of 275 ms
which is still 28X more than the CIDAN-XE 8 bit TW while the
DrAcc’s throughput drops to 3.63 Frames/s. CIDAN-XE 8 bit
TW has a throughput of 102 Frames/s. Hence, CIDAN-XE is a
high throughput and highly energy-efficient architecture and
shows considerable improvements over the prior PIM
architectures.

6.3.3 Cost Analysis
An NPE consists of ANs in the form of standard cells (Wagle
et al., 2019) and some other standard cells from the TSMC 40 nm
LP library. The physical layout of the ANs uses only two metal
layers and all the other standard cells have a single metal layer.
Hence, the NPE is completely DRAM process technology
compatible which allows 3-4 metal layers in the design. The
area of each NPE is 1536 µm2. There are a total of 8192 NPEs used
in the DDR4-2400 memory with a row buffer size of 8 Kbits and a

total capacity of 4 Gbits. The total area overhead the design is
12.6 mm2at 40 nm technology node.

7 CONCLUSION

In this paper, we presented a novel artificial neuron-based
PIM architecture on a DRAM platform. Each processing
element, called neuron processing element (NPE), used in
this architecture, can perform arithmetic, logical, relational,
and a few other complex operations such as comparison,
ReLU, etc. We presented the inference task in the CNNs as a
case study to showcase the potential of the CIDAN-XE to
execute complex operations at various bit precision of its
inputs. CIDAN-XE improves upon the latest Von-Neumann
designs, industry-standard CNN accelerators, and other
PIM architectures in the throughput and energy efficiency
for an equivalent workload. Although only the CNN
application is demonstrated, the CIDAN-XE platform is
amenable to many other data-intensive applications given
the diversity of the operations that CIDAN-XE can perform
as shown in this paper. Improvements demonstrated in this
paper are attributed to the combined benefits that come
from using the local storage present in the NPE, alongside
the ability of the NPEs to be reconfigured to implement

FIGURE 13 | Throughput (A) and energy-efficiency (B) comparison of CIDAN-XE against the state of the art architectures when computing ALEXNET.

Frontiers in Electronics | www.frontiersin.org February 2022 | Volume 3 | Article 83414615

Singh et al. CIDAN-XE

https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles

various functions with very low reconfiguration cost. CIDAN-XE
platform in particular is suitable for application that operates on
large input vectors andmatrices such as encryption, graph analysis,
bioinformatics, etc.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and
intellectual contribution to the work and approved it for
publication.

FUNDING

This research was supported in part by NSF Grant #2008244, and
by the Center for Embedded Systems, NSF Grant #1361926.

REFERENCES

Ali, M. F., Jaiswal, A., and Roy, K. (2020). In-memory Low-Cost Bit-Serial Addition
Using Commodity Dram Technology. IEEE Trans. Circuits Syst. I 67 (1),
155–165. doi:10.1109/tcsi.2019.2945617

Angizi, S., and Fan, D. (2019). “GraphiDe: A Graph Processing Accelerator
Leveraging In-DRAM-Computing,” in GLSVLSI ’19: Great Lakes
Symposium on VLSI 2019, Tysons Corner, VA, United States, May 9–11,
2019, 45–50.

Angizi, S., and Fan, D. (2019). “ReDRAM: A Reconfigurable Processing-In-DRAM
Platform for Accelerating Bulk Bit-Wise Operations,” in 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD),
Westminster, CO, United States, November 4–7, 2019, 1–8. doi:10.1109/
iccad45719.2019.8942101

Angizi, S., He, Z., Reis, D., Hu, X. S., Tsai, W., Lin, S. J., et al. (2019).
“Accelerating Deep Neural Networks in Processing-In-Memory Platforms:
Analog or Digital Approach,” in 2019 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), Miami, FL, United States, July 15–17,
2019, 197–202.

Awan, A. A., Subramoni, H., and Panda, D. K. (2017). “An In-Depth Performance
Characterization of Cpu- and Gpu-Based Dnn Training on Modern
Architectures,” in Proceedings of the Machine Learning on HPC
Environments, Denver, CO, United States, November 12–17, 2017 (ACM),
1–8. doi:10.1145/3146347.3146356

Boroumand, A., Ghose, S., Kim, Y., Ausavarungnirun, R., Shiu, E., Thakur, R., et al.
(2018). Google Workloads for Consumer Devices. SIGPLAN Not. 53 (2),
316–331. doi:10.1145/3296957.3173177

Chandrasekar, K., Weis, C., Li, Y., Goossens, S., Jung, M., Naji, O., et al. (2021).
DRAMPower: Open-Source DRAM Power and Energy Estimation Tool.
Available at: http://www.drampower.info/. (Accessed May 16, 2021).

Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., et al. (2016). Prime: a Novel
Processing-In-Memory Architecture for Neural Network Computation in
Reram-Based Main Memory. SIGARCH Comput. Archit. News 44 (3),
27–39. doi:10.1145/3007787.3001140

Courbariaux, M., and Bengio, Y. (2016). Binarynet: Training Deep Neural
Networks with Weights and Activations Constrained to +1 or -1. CoRR,
abs/1602.02830.

Courbariaux, M., Bengio, Y., and David, J. (2015). “Binaryconnect: Training Deep
Neural Networks with Binary Weights during Propagations,” in Advances in
Neural Information Processing Systems (Montreal, Canada: MIT Press),
3123–3131.

Dai, Z., Liu, H., Le, Q. V., and Tan, M. (2021). Coatnet: Marrying Convolution and
Attention for All Data Sizes. arXiv.

Dally, B. (2015). Challenge for Future Computer Systems. Available at: https://
www.cs.colostate.edu/ cs575dl/Sp2015/Lectures/Dally2015.pdf. (Accessed
December 7, 2021).

Deng, Q., Jiang, L., Zhang, Y., Zhang, M., and Yang, J. (2018). “DrAcc: a DRAM
Based Accelerator for Accurate CNN Inference,” in 2018 55th ACM/ESDA/
IEEE Design Automation Conference (DAC), San Francisco, CA, United States,
June 24–28, 2018, 1–6. doi:10.1109/dac.2018.8465866

Deng, Q., Zhang, Y., Zhang, M., and Yang, J. (2019). “Lacc: Exploiting Lookup
Table-Based Fast and Accurate Vector Multiplication in Dram-Based Cnn

Accelerator,” in 2019 56th ACM/IEEE Design Automation Conference (DAC),
Las Vegas, NV, United States, June 2–6, 2019, 1–6.

Ferreira, J. D., Falcão, G., Luna, J. G., Alser, M., Orosa, L., Sadrosadati, M., et al.
(2021). Pluto: In-Dram Lookup Tables to Enable Massively Parallel General-
Purpose Computation. CoRR, abs/2104.07699.

Gokhale, M., Cohen, J., Yoo, A., Miller, W. M., Jacob, A., Ulmer, C., et al. (2008).
Hardware Technologies for High-Performance Data-Intensive Computing.
Computer 41 (4), 60–68. doi:10.1109/mc.2008.125

Guo, X., Merrikh Bayat, F., Bavandpour, M., Klachko, M., Mahmoodi, M. R.,
Prezioso, M., et al. (2017). “Fast, Energy-Efficient, Robust, and Reproducible
Mixed-Signal Neuromorphic Classifier Based on Embedded NOR Flash
Memory Technology,” in 2017 IEEE International Electron Devices Meeting
(IEDM), San Francisco, CA, United States, December 2–6, 2017, 6.5.1–6.5.4.
doi:10.1109/iedm.2017.8268341

Hajinazar, N., Oliveira, G. F., Gregorio, S., Ferreira, J. D., Ghiasi, N. M., Patel, M.,
et al. (2021). “SIMDRAM: a Framework for Bit-Serial SIMD Processing Using
DRAM,” in ASPLOS ’21: 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, April 19–23,
2021, 329–345. doi:10.1145/3445814.3446749

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for Image
Recognition. CoRR, abs/1512.03385.

He, M., Song, C., Kim, I., Jeong, C., Kim, S., Park, I., et al. (2020). “Newton: A
DRAM-Maker’s Accelerator-In-Memory (AiM) Architecture for Machine
Learning,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Athens, Greece, October 17–21, 2020, 372–385.

Huangfu, W., Li, X., Li, S., Hu, X., Gu, P., and Xie, Y. (2019). “Medal: Scalable
Dimm Based Near Data Processing Accelerator for Dna Seeding Algorithm,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’52, New York, NY, United States, October 12–16,
2019 (Association for Computing Machinery), 587–599.

Jacob, B., Ng, S. W., andWang, D. T. (2008).Memory Systems: Cache, DRAM, Disk.
Boston, United States: Morgan Kaufmann Publishers.

Judd, P., Albericio, J., Hetherington, T., Aamodt, T. M., and Moshovos, A. (2016).
“Stripes: Bit-Serial Deep Neural Network Computing,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei,
Taiwan, October 15–19, 2016 (IEEE), 1–12. doi:10.1109/micro.2016.7783722

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet Classification
with Deep Convolutional Neural Networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems-
NIPS’12, Lake Tahoe, NV, United States, December 3–6, 2012 (Red Hook,
NY, USA: Curran Associates Inc), 1097–1105.

Kulkarni, N., Yang, J., Seo, J.-S., and Vrudhula, S. (2016). Reducing Power, Leakage,
and Area of Standard-Cell ASICs Using Threshold Logic Flip-Flops. IEEE
Trans. VLSI Syst. 24 (9), 2873–2886. doi:10.1109/tvlsi.2016.2527783

Kwon, Y., Lee, S. H., Lee, J., Kwon, S., Ryu, J. M., Son, J., et al. (2021). “25.4 A 20nm
6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS
Programmable Computing Unit Using Bank-Level Parallelism, for Machine
Learning Applications,” in 2021 IEEE International Solid- State Circuits
Conference (ISSCC), San Francisco, CA, United States, February 13–22,
2021, 350–352. doi:10.1109/isscc42613.2021.9365862

Li, D., Chen, X., Becchi, M., and Zong, Z. (2016). “Evaluating the Energy Efficiency
of Deep Convolutional Neural Networks on Cpus and Gpus,” in 2016 IEEE
International Conferences on Big Data and Cloud Computing (BDCloud),

Frontiers in Electronics | www.frontiersin.org February 2022 | Volume 3 | Article 83414616

Singh et al. CIDAN-XE

https://doi.org/10.1109/tcsi.2019.2945617
https://doi.org/10.1109/iccad45719.2019.8942101
https://doi.org/10.1109/iccad45719.2019.8942101
https://doi.org/10.1145/3146347.3146356
https://doi.org/10.1145/3296957.3173177
https://doi.org/10.1145/3007787.3001140
https://doi.org/10.1109/dac.2018.8465866
https://doi.org/10.1109/mc.2008.125
https://doi.org/10.1109/iedm.2017.8268341
https://doi.org/10.1145/3445814.3446749
https://doi.org/10.1109/micro.2016.7783722
https://doi.org/10.1109/tvlsi.2016.2527783
https://doi.org/10.1109/isscc42613.2021.9365862
https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles

Social Computing and Networking (SocialCom), Sustainable Computing and
Communications (SustainCom) (BDCloud-SocialCom-SustainCom), Atlanta,
GA, United States, October 8–10, 2016, 477–484. doi:10.1109/bdcloud-
socialcom-sustaincom.2016.76

Li, S., Niu, D., Malladi, K. T., Zheng, H., Brennan, B., and Xie, Y. (2017).
“DRISA: a DRAM-Based Reconfigurable In-Situ Accelerator,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, Boston, MA, United States, October 14–17, 2017,
288–301.

McKinstry, J. L., Esser, S. K., Appuswamy, R., Bablani, D., Arthur, J. V., Yildiz, I. B.,
et al. (2019). “Discovering Low-Precision Networks Close to Full-Precision
Networks for Efficient Inference,” in 2019 Fifth Workshop on Energy Efficient
Machine Learning and Cognitive Computing - NeurIPS Edition (EMC2-NIPS),
Vancouver, BC, Canada, December 13, 2019, 6–9. doi:10.1109/emc2-
nips53020.2019.00009

Muroga, S. (1971). Threshold Logic and its Applications. New York, United States:
Wiley-Interscience.

Myers, G. (1999). A Fast Bit-Vector Algorithm for Approximate String Matching
Based on Dynamic Programming. J. ACM 46 (3), 395–415. doi:10.1145/316542.
316550

Seshadri, V., Kozuch, M. A., Mowry, T. C., Kim, Y., Fallin, C., Lee, D., et al. (2013).
“RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization,” in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture - MICRO-46, Davis, CA, United States,
December 7–11, 2019, 185–197.

Seshadri, V., Lee, D., Mullins, T., Hassan, H., Boroumand, A., Kim, J., et al. (2017).
“Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using
Commodity DRAM Technology,” in Proceedings of the 50th Annual IEEE/
ACM International Symposium on Microarchitecture, Boston, MA, United
States, October 14–17, 2017, 273–287.

Simonyan, S., and Zisserman, A. (2015). Very Deep Convolutional Networks for
Large-Scale Image Recognition. CoRR, abs/1409.1556

Singh, G., Wagle, A., Vrudhula, S., and Khatri, S. (2021). “Cidan: Computing in
Dram with Artificial Neurons,” in 2021 IEEE 39th International Conference on
Computer Design (ICCD), Storrs, CT, United States, Storrs 24–27, 2021,
349–356. doi:10.1109/iccd53106.2021.00062

Sodani, A. (2015). “Knights landing (Knl): 2nd Generation Intel® Xeon Phi
Processor,” in 2015 IEEE Hot Chips 27 Symposium (HCS), Cupertino, CA,
United States, August 22–25, 2015 (IEEE), 1–24.

Sun, X., Wang, N., Chen, C., Ni, J., Agrawal, A., Cui, X., et al. (2020). “Ultra-low
Precision 4-bit Training of Deep Neural Networks,” in Advances in Neural
Information Processing Systems (Vancouver, Canada: Curran Associates, Inc.),
Vol. 33, 1796–1807.

Sutradhar, P. R., Bavikadi, S., Connolly, M., Prajapati, S., Indovina, M. A.,
Dinakarrao, S. M. P., et al. (2022). Look-up-table Based Processing-In-
Memory Architecture with Programmable Precision-Scaling for Deep
Learning Applications. IEEE Trans. Parallel Distrib. Syst. 33 (2), 263–275.
doi:10.1109/tpds.2021.3066909

Vrudhula, S., Kulkami, N., and Yang, J. (2015). “Design of Threshold Logic gates
Using Emerging Devices,” in 2015 IEEE International Symposium on Circuits

and Systems (ISCAS), Lisbon, Portugal, May 24–27, 2015 (IEEE), 373–376.
doi:10.1109/iscas.2015.7168648

Wagle, A., Singh, G., Yang, J., Khatri, S., and Vrudhula, S. (2019). “Threshold Logic
in a Flash,” in 2019 IEEE 37th International Conference on Computer Design
(ICCD), Abu Dhabi, United Arab Emirates, November 17–20, 2019, 550–558.
doi:10.1109/iccd46524.2019.00081

Wagle, A., Khatri, S., and Vrudhula, S. (2020). “A Configurable BNN ASIC Using a
Network of Programmable Threshold Logic Standard Cells,” in 2020 IEEE 38th
International Conference on Computer Design (ICCD), Hartford, CT, United
States, October 18–21, 2020 (IEEE), 433–440. doi:10.1109/iccd50377.2020.
00079

Xin, X., Zhang, Y., and Yang, J. (2020). “Elp2im: Efficient and low power bitwise
operation processing in dram,” in 2020 IEEE International Symposium onHigh
Performance Computer Architecture (HPCA), San Diego, CA, United States,
February 22–26, 2020 (IEEE), 303–314. doi:10.1109/hpca47549.2020.00033

Yang, J., Kulkarni, N., Yu, S., and Vrudhula, S. (2014). “Integration of Threshold
Logic gates with RRAMDevices for Energy Efficient and Robust Operation,” in
2014 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH), Paris, France, July 8–10, 2014 (IEEE), 39–44. doi:10.1109/
nanoarch.2014.6880500

Yang, J., Davis, J., Kulkarni, N., Seo, J., and Vrudhula, S. (2015). “Dynamic and
Leakage Power Reduction of ASICs Using Configurable Threshold Logic gates,”
in 2015 IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA,
United States, September 28–30, 2015 (IEEE), 1–4. doi:10.1109/cicc.2015.
7338369

Yin, S., Jiang, Z., Kim, M., Gupta, T., Seok, M., and Seo, J.-S. (2020). Vesti:
Energy-Efficient In-Memory Computing Accelerator for Deep Neural
Networks. IEEE Trans. VLSI Syst. 28 (1), 48–61. doi:10.1109/tvlsi.2019.
2940649

Yong-Bin, K., and Chen, T. (1996). “Assessing Merged DRAM/logic Technology,”
in 1996 IEEE International Symposium on Circuits and Systems-ISCAS 96,
Atlanta, GA, United States, May 15, 1996, 133–136.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Singh, Wagle, Khatri and Vrudhula. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Electronics | www.frontiersin.org February 2022 | Volume 3 | Article 83414617

Singh et al. CIDAN-XE

https://doi.org/10.1109/bdcloud-socialcom-sustaincom.2016.76
https://doi.org/10.1109/bdcloud-socialcom-sustaincom.2016.76
https://doi.org/10.1109/emc2-nips53020.2019.00009
https://doi.org/10.1109/emc2-nips53020.2019.00009
https://doi.org/10.1145/316542.316550
https://doi.org/10.1145/316542.316550
https://doi.org/10.1109/iccd53106.2021.00062
https://doi.org/10.1109/tpds.2021.3066909
https://doi.org/10.1109/iscas.2015.7168648
https://doi.org/10.1109/iccd46524.2019.00081
https://doi.org/10.1109/iccd50377.2020.00079
https://doi.org/10.1109/iccd50377.2020.00079
https://doi.org/10.1109/hpca47549.2020.00033
https://doi.org/10.1109/nanoarch.2014.6880500
https://doi.org/10.1109/nanoarch.2014.6880500
https://doi.org/10.1109/cicc.2015.7338369
https://doi.org/10.1109/cicc.2015.7338369
https://doi.org/10.1109/tvlsi.2019.2940649
https://doi.org/10.1109/tvlsi.2019.2940649
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles

	CIDAN-XE: Computing in DRAM with Artificial Neurons
	1 Introduction
	2 Background
	2.1 DRAM: Architecture, Operation and Timing Parameters
	2.2 Processing in Memory
	2.3 Prior Work on Logic Operations (iPIM) and Arithmetic Operations (ePIM) in DRAM
	2.4 Threshold Logic Function and Artificial Neurons

	3 Neuron Processing Element
	3.1 Basic Logic Operation on AN
	3.2 Multi-Bit Addition and Accumulation Operation
	2.3 Multi-Bit Comparison and ReLU
	3.4 Multi-Bit Multiplication
	3.5 Maxpooling and Average Pooling

	4 Top-Level Architecture
	4.1 System Level Integration of CIDAN-XE

	5 Case Study: Convolution Neural Networks Inference
	5.1 Data Mapping of CNNs Onto DRAM

	6 Experimental Results
	6.1 Evaluation of Processing in DRAM Architectures
	6.2 Raw Performance and Energy Analysis
	6.3 CNN Case Study Analysis
	6.3.1 Throughput and Energy Efficiency Analysis
	6.3.2 Comparison With Other Architectures

	6.3.3 Cost Analysis

	7 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

