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Due to the diverse andmobile nature of the deployment environment, smart commodity devices
are vulnerable to various spoofing attacks which can allow a rogue device to get access to a
large network. The vulnerability of the traditional digital signature-based authentication system
lies in the fact that it uses only a key/pin, ignoring the device fingerprint. To circumvent the
inherent weakness of the traditional system, various physical signature-based RF fingerprinting
methods have been proposed in literature and RF-PUF is a promising choice among them. RF-
PUF utilizes the inherent nonidealities of the traditional RF communication system as features at
the receiver to uniquely identify a transmitter. It is resilient to key-hacking methods due to the
absence of secret key requirements and does not require any additional circuitry on the
transmitter end (no additional power, area, and computational burden). However, the
concept of RF-PUF was proposed using MATLAB-generated data, which cannot ensure
the presence of device entropy mapped to the system-level nonidealities. Hence, an
experimental validation using commercial devices is necessary to prove its efficacy. In this
work, for the first time, we analyze the effectiveness of RF-PUF on commodity devices,
purchased off-the-shelf, without any modifications whatsoever. We have collected data from
30 Xbee S2Cmodules used as transmitters and released as a public dataset. A new feature has
been engineered through PCA and statistical property analysis. With a new and robust feature
set, it has been shown that 95% accuracy can be achieved using only ~1.8ms of test data fed
into a neural network of 10 neurons in 1 layer, reaching > 99.8% accuracy with a network of
higher model capacity, for the first time in literature without any assisting digital preamble. The
design space has been explored in detail and the effect of the wireless channel has been
investigated. The performance of some popular machine learning algorithms has been tested
and compared with the neural network approach. A thorough investigation of various PUF
properties has been done. With extensive testing of 41238000 cases, the detection probability
for RF-PUF for our data is found to be 0.9987,which, for the first time, experimentally establishes
RF-PUF as a strong authentication method. Finally, the potential attack models and the
robustness of RF-PUF against them have been discussed.
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1 INTRODUCTION

The fourth industrial revolution, fueled by low-power, high-speed
modern communication systems has ushered in a new era of
immersive and unprecedented user experience through smart
devices. These devices are connected not only with each other but
also to the cloud and are popularly known as the Internet of
Things (IoT). The global IoT market is experiencing a rapid boost
and according to a prediction by Norton, there will be around 21
billion connected devices by 2025 (Symanovich 2019).
Researchers are already talking about the Internet of
Everything (IoE) which essentially refers to people, data, and
smart things connected to form an ecosystem that ensures a better
and smarter lifestyle. The diverse application environment of the
smart devices has rendered them vulnerable to a wide attacking
surface. The weakest point in a network defines its overall
security. The resource-limited, user-end devices are the
weakest nodes of the IoT networks where a security
compromise can provide access to a rogue device that can
pose a massive threat to all the connected nodes and user
data. So, the question of secure authentication before granting
access to a large network is of increasing importance.

Traditional methods such as symmetric-key cryptography and
asymmetric-key cryptography use secret private keys or public/
private key pairs respectively, for encryption/decryption. Key-
based methods require the storage of a secret key in a nonvolatile
memory (NVM) or SRAM. However, they are vulnerable to
different invasive/semi-invasive key-hacking attacks and side-
channel attacks (Kocher et al., 1999; Quisquater and Samyde
2001; Hospodar et al., 2011). Multi-factor authentication (MFA)
(Ting et al., 2015; Ometov et al., 2018) requires one or more
verification factors (e.g., biometric factor, two-factor code from
authentication app, etc.) along with the secret key. The widely-
used open authentication (OAuth 2.0) protocol (OAuth 2.0 and
OAuth 2022) for current IoT networks suffers from cross-site
request forgery (CSRF) attacks (Barth et al., 2008; Siddiqui and
Verma 2011). Both OAuth and MFA are inconvenient for large
networks as they require manual verification. In addition to these
vulnerabilities, the use of digital signatures also puts additional
power and area burden which are typically small but could be
significant for extremely energy and resource constraint edge
devices.

To circumvent this, the idea of radio frequency physical
unclonable function (RF-PUF) has been recently proposed
(Chatterjee et al., 2019) using physical signature instead of or
in addition to the digital signature. The concept of RF-PUF is
explained in Figure 1. RF-PUF exploits the inherent device
imperfections due to manufacturing process variation and
other system-level nonidealities (e.g., LO frequency offset, I-Q
mismatch, DC offset, attenuation, fading, Doppler shift, etc.) as
unique physical signatures. These signatures are used as features
and fed to a neural network at the receiver to train it. Once
trained, this network can be employed at the receiver for
authentication. RF-PUF does not demand any additional
preamble, digital keys, or assistive communication medium for
authentication purposes. The absence of an external security key
or preamble makes RF-PUF highly resilient to different types of

key-hacking attacks and alleviates the need for preamble
obfuscation (Chacko 2017). Also, it does not require any
secured memory block for key storage. Thus, both power and
area overhead is reduced on the resource-constrained edge-node
side of an asymmetric IoT network.

In (Chatterjee et al., 2019), the idea of RF-PUF was presented
primarily based on simulation data using I-Q samples as
features. However, the PUF output is stochastic in nature
and it is very hard to accurately capture the device
nonidealities in simulation. This calls for addressing the open
research needs of experimental validation of RF-PUF and
demonstration of high-accuracy on devices found ‘in-the-
wild’. In this work, we address both these research problems
by 1) analyzing the efficacy of RF-PUF on unmodified
commodity devices and 2) introducing effective feature
selection to increase RF-PUF accuracy > 99.8%. To achieve
this, an improved and robust feature set is necessary to provide a
reliable authentication method. We purchased commercially
available 30 Xbee S2C devices and used them as unmodified
commodity COTS (Components off-the-self) devices to
experimentally validate RF-PUF. 155.4 GB of data have been
collected from the Xbee transceiver systems and 2.5 GB of data
have been used for experimentation. This dataset has also been
made public on GitHub along with this paper, for further
development and validation by the RF-Security community.

It has been shown that 95% accuracy can be achieved even
with a lightweight, single-layer neural network with 10 neurons
and ~ 1.8 ms (30 kB) of test data, which ensures the feasibility of
RF-PUF in a low-latency network. With statistical analysis, a new
feature has been augmented that massively boosts the
performance of the network. The impact of the variation in
neural network model capacity and the amount of training
data on detection accuracy has been explored. Along with
artificial neural networks, experiments have been performed
with multiple traditional machine learning algorithms, and
their performance is compared in terms of the number of
devices. A detailed analysis of the PUF properties has been
done to evaluate the eligibility of RF-PUF as a PUF. Inter-
PUF and intra-PUF hamming distances have been calculated
and it has been proved that for commodity COTS (Components
off-the-self) devices without any modification, RF-PUF shows
strong identifiability with a very high (99.87%) detection
probability. As an authentication method, possible
vulnerabilities and attack models for RF-PUF have been
investigated and the robustness of RF-PUF against them has
been proved. The insights gathered from these analyses and
experiments may prove to be extremely important for the
design and implementation of RF-PUF in the future in
realistic application scenarios with “in-the-wild” devices.

1.1 Our Contribution
In this work, through thorough statistical analysis of unmodified
commodity devices, we have found an optimum feature that
improves the accuracy of RF-PUF significantly on a suite of
commodity hardware devices leading to > 99.8% accuracy, along
with PUF property analysis and security vulnerability analysis.
Detailed contributions are as follows:
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(1) Feature engineering: Principal component analysis has been
performed on the existing feature set found in the literature
to find the dominant feature. Through moment analysis on
the dominant feature (i.e. carrier frequency offset) we
demonstrate that the addition of a feature called COV
(ratio of standard deviation and mean of carrier frequency
offset) significantly helps in achieving high (> 99.8%)
accuracy (Section 4.3).

(2) Highest accuracy achieved with unmodified COTS devices:
30 Xbee S2C modules have been used without the help of any
assisting communication preamble or any modification to
the devices whatsoever. Using data received over a wireless
channel with a suitable feature set and a lightweight neural
network, 99.8% accuracy can be achieved which, to our best
knowledge, is the highest accuracy using this many
commodity COTS devices considering the wireless channel
(Section 4.4).

(3) RF-PUF established as a strong PUF: Any distinct PUF class
is identified through some properties that make it a separate
class. They include constructability, evaluability, uniqueness,
reliability, and identifiability. We have explored these
properties for RF-PUF in detail, calculated intra-PUF and
inter-PUF hamming distances and in an extensive test of
41238000 cases, we have shown that the probability of proper
identification of an RF-PUF instance is 0.9987. This is the
first time analysis of RF-PUF as a PUF class which
experimentally demonstrates RF-PUF as a strong and
unique PUF class by itself (Section 6).

(4) Performance evaluation using popular machine learning
algorithms and comparison with neural network (NN)
based approach. It has been shown that even a
lightweight NN with a single hidden layer can handle
> 300 devices with 99.9% accuracy, unlike ML algorithms
(Section 5.4).

(5) Wireless channel variability analysis on the accuracy of RF-
PUF and the effect of network depth on accuracy with and
without a wireless channel has been presented. Discussion on
possible important attack models and the robustness of RF-
PUF against such attacks (Section 5.5).

(6) Public Dataset: Our collected data have been released as a
public dataset for the whole community to explore and
experiment with (Section 3.3).

The rest of the paper is structured as follows: Section 2
provides relevant works on RF fingerprinting and device
authentication. Section 3 provides an overview of our
experimental setup, data collection, and data processing
method. Section 4 presents a new feature set development
using statistical analysis and corresponding performance
enhancement. Section 5 explores the design space in detail.
Section 6 analyzes various PUF properties in the context of
RF-PUF. Section 7 discusses possible attack models and the
resilience of RF-PUF against them. Finally, section 8
concludes this paper.

2 RELATED WORKS

Traditional RF fingerprinting approaches use modulation
domain metrics, statistical parameters, transient properties,
wavelet-based approaches, etc. In (Brik et al., 2008), authors
used various modulation domain metrics such as frequency
and IQ offset, magnitude and phase error, sync correlation,
etc. to propose a radio device identification method called
PARADIS (PAssive RAdiometic Device Identification System).
They collected data from 138 Atheros network interface cards
(NIC) and tested their proposed methods (SVM-based and kNN-
based) on the ORBIT testbed facility (ORBIT 2022). They
achieved an error rate of 3% for 138 NIC classification. In
(Zhuo et al., 2017) authors have used IQ imbalance-based
features for device fingerprinting. Based on simulation data
from 5 transmitters and 400 signals from each of them, they
have shown that they can achieve > 90% accuracy for SNR ≥
15 dB and > 99% accuracy for SNR ≥ 20 dB. Authors in (Danev
et al., 2009) have used modulation shape and spectral features to
identify RFIDs (Radio Frequency Identification Devices). They
collected data from 50 JCOP NXP 4.1 smart cards and
8 e-passports and matched the extracted fingerprints with the

FIGURE 1 | The concept of RF-PUF exploits the inherent physical signature embedded in the device which manifests itself as different imperfections, which are
used as features to train a neural network at the receiver end for authentication. The challenges involve developing a proper feature set, choosing a proper neural network
architecture, and evaluating the concept in real, commodity devices.
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reference using standardized Euclidean distances. For 50 RFIDs,
they achieved 95% accuracy when spectral features are used
standalone and 97.5% accuracy when the features are
combined. In (Huang and Zheng 2012), authors have used
constellation deviation from ideal constellation as features.
This work is similar to previously mentioned works in the
sense that constellation error contains information about IQ
imbalances, magnitude and phase error, etc. They collected
data from 7 TDMA satellites for testing and achieved an
accuracy of > 95%.

Several fingerprinting methods use transients during device start-
up and extract features from them. But before feature extraction,
proper detection of the transients is a major challenge and several
approaches for that are described in (Shaw and Kinsner 1997; Hall
et al., 2003). Authors in (Danev and Capkun 2009) have used data
from 50 COTS devices (Tmote Sky sensor) and FFT-based Fisher
features to show an accuracy of > 99%. An interesting approach was
described in (Yuan et al., 2014) where authors calculated energy
distribution of transients in time and frequency domain using
Hilbert-Huang Transform (Huang 2014) which uses IMFs in
EMD (Bari and Anowarul Fattah 2020) with Hilbert transform.
However, their dataset was very small, consisting of 8 GSM mobile
phones used as transmitters. Similar work was proposed in (Ur
Rehman et al., 2012), where authors calculated energy envelopes for
Bluetooth devices. Their dataset was also small, containing only 7
Bluetooth devices. In this small dataset, they could achieve 99.9%
accuracy. Some wavelet-based approaches have also been used in
literature. For example, authors in (Klein et al., 2009) have used DT-
CWT (dual-tree complex wavelet transform) based features to
fingerprint RF devices. At low SNR (8dB), they could achieve
80% accuracy. Authors in (Bertoncini et al., 2012) have used
dynamic wavelet fingerprints to classify 146 RFID devices. They
used four types of classifiers (LDC, QDC, k-NN, and SVM) and
achieved 99% accuracy. Another work (Kennedy et al., 2008)
involved frequency domain analysis with a k-NN classifier which
achieved 97% accuracy at 30 dB SNR.

There are other works that have used various time and
frequency domain properties of individual transmitters for RF
fingerprinting (Rasmussen and Capkun 2007; Scanlon et al., 2010;
Nguyen et al., 2011; Bihl et al., 2016; Vo-Huu et al., 2016; Peng
et al., 2018; Xie et al., 2018). However, both time and frequency
domain analysis have their limitations in the form of detecting the
start and end of the transients, high oversampling ratios, and the
need for fixed preambles to avoid data dependency. MAC layer
and other upper layers of the communication protocol have also
been used for RF-fingerprinting (Xu et al., 2016a). However,
device identifiers in upper layers like IMEI number, IP address,
MAC address, etc. can be spoofed (Chomsiri 2007; Kumar et al.,
2015; Alotaibi and Elleithy 2016; Wang and Yang 2017). Several
statistical parameter-based approaches have also been proposed.
For example, authors in (Patel 2015) have used various statistical
features to identify 4 Xbee devices. Using a Random Forrest
classifier (Pal 2005), they could achieve 97% accuracy for SNR ≥
10 dB. Another work (Lukacs et al., 2015) has used RF-DNA
(Radio Frequency Distinct Native Attribute) dependent RF
fingerprinting. RF-DNA uses various statistical features. For a
7 class dataset, authors have achieved an average accuracy of 81%

for the MDA/ML classifier. For real-time device authentication,
authors in (Bari et al., 2021a) have used a dynamic irregular
clustering approach. One attractive feature here is that this
algorithm learns incrementally with more input data.

Recently deep learning-based RF fingerprinting has gained
popularity. Different types of deep networks (convolutional
neural networks or CNN (Albawi et al., 2017; Kim 2017),
recurrent neural network or RNN (Medsker and Jain 2001; Liu
et al., 2016), generative adversarial networks or GAN (Mao et al.,
2017; Creswell et al., 2018), etc.) are being used extensively for RF
device identification and authentication. Hanna et al. utilized power
amplifier nonlinearity with deep learning to fingerprint RF devices
(Hanna and Cabric 2019) using simulation data. In (Sankhe et al.,
2020), authors proposed a newmethod called ORACLE (Optimized
Radio clAssification through Convolutional neuraL nEtworks)
using the AlexNet-like CNN framework. With data from 16
USRP X310 transmitters, they could achieve 87.13 and 99%
accuracy for the static and quasi-static channels respectively.
However, wireless data are contaminated with noise and
interference, any use of the RF data without processing always
posits a risk of huge performance drop in scenarios where
environmental nonidealities can go beyond the estimation that
was used while designing the network. Processing data, extracting a
proper feature set, and unraveling the mystery of the design space
can render a robust authentication method that is less vulnerable to
environmental factors and provides more flexibility to the designer.
That is whyRF-PUF performs better than the CNN-based approach
as shown in (Bari et al., 2021b). In (Soltani et al., 2020), authors have
used multiple deep networks and integrated their outputs to make a
final prediction. They collected data from 7 UAVs or drones (DJI
M100) and got maximum accuracy of 99%with data augmentation.
Using data from 5 USRP devices and bispectrum of the received
signal as the feature, authors in (Ding et al., 2018) have achieved
75% accuracy with a customCNN. Another work (Peng et al., 2020)
also used custom CNN with DCTF (Differential Constellation
Trace Figure) as features to fingerprint 16 Xbee devices. For
SNR ≥ 15 dB, they achieved 90% accuracy. In (Zong et al.,
2020), authors have used CNN to identify 5 transmitter devices.
Although they achieved 99% accuracy, their dataset is quite small.

A much bigger and more extensive dataset is the DARPA
RFMLS dataset, containing data from 10000 devices (Jian et al.,
2020). The authors have presented two architecture based on
AlexNet and ResNet-50 to perform multiple learning tasks. On
this dataset, another group of researchers has used a modified
CNN called ADCC (augmented dilated causal convolution
network) (Robinson et al., 2020). Apart from these traditional
or modified CNN-based methods, there are some works reported
in the literature that use GAN. For example, AC-WGAN
(Auxiliary Classifier Wasserstein Generative Adversarial
Networks) achieves 95% accuracy for UAV classification
(Zhao et al., 2018). For a low number of devices (8 USRP
B210), authors have achieved 99.9% accuracy using GAN (Roy
et al., 2019). Some other prominent works for RF fingerprinting
using deep learning are mentioned in (O’Shea and Hoydis 2017;
Wang et al., 2017; Wang et al., 2018; Zhang et al., 2019). A
detailed review of RF fingerprinting methods can be found in (Xu
et al., 2016b; Guo et al., 2019; Jagannath et al., 2022). Our
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experimental study in this work shows > 99.8% detection
accuracy which is better than almost all the studies mentioned
above. Only a few have achieved 99.9% accuracy, but with a much
smaller dataset (containing less than 10 devices) compared to our
dataset of 30 devices.

3 EXPERIMENTAL SETUP

3.1 Physical Device Setup
For experimental validation, 30 XBee S2Cmodules are chosen (IEEE
802.15.4 standard) which is designed for industrial and commercial
use. Figure 2A shows the Xbee devices whereas Figure 2B, and
Figure 2C show the block diagram and the actual setup. The TX and
RX are kept 1 m apart. Using SMA cable, a HackRF One software-
defined radio (SDR) module has been connected either to the TX
(case 1) or to the RX (case 2) to extract data excluding (case 1) or
including (case 2) wireless channel.

3.2 Data Collection and Filtering Noise
A 31-bit pseudo-random bit sequence (PRBS) is generated in
MATLAB and fed to each TX which transmits this data for 60 s
with QPSK modulation at 2.465 GHz and 230,400 bps baud rate.
These data were captured in a Xbee RX module. Simultaneously,
data were also captured by a HackRF one software-defined radio
(SDR) module, sampled at 6MSps, and stored by GNU Radio. The
captured data are divided into several frames, each containing a
number of samples. From the constellation diagram of the frame
data (Figure 3), it is found that some frames have no significant data
points and contain only noise as the Xbee devices transmit data
intermittently due to their buffer limitation. These blank frames
containing only noise were discarded.

3.3 Public Dataset
This dataset contains raw data collected from 30 Xbee S2C
transmitters for both cases (excluding and including the
channel) in binary format. The total size of the dataset is
155.4 GB (each transmitter data is ~2.5 GB). It can be
downloaded from Sparclab RF-PUF Dataset (Bari and Sen 2022).

4 FEATURE EXTRACTION

4.1 Initial Feature Set
In our work, CFO and I-Q data are taken as features just as in the
original RF-PUF paper (Chatterjee et al., 2019). The previously
generated frames are filtered using matched filtering, frequency
compensated (both fine and coarse), and finally synchronized

FIGURE 2 | (A) Commodity off-the-shelf devices (30 Xbee S2C modules) used as transmitters for data collection. (B) Conceptual experimental setup. (C) Actual
experimental setup in the lab. The TX and RX are placed 1 m apart (they are close here for image capturing purposes only) and a HackRFmodule was used to collect data
either from the TX (case 1) or RX (case 2). GNU Radio records the collected data and shows a live constellation (visible on-screen). The rotating constellation is later
processed in MATLAB through coarse and fine frequency compensation.

FIGURE 3 | Grouping collected data in a number of frames and filtering
of data for acceptable frames. This step is required as the Xbee module
transmits data on an interval.
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using timing recovery. In this process, CFO is found as a
byproduct. Along with CFO, the compensated in-phase and
quadrature-phase components in four quadrants are used as
features. The 9 features (CFO + 4 I-components + 4
Q-components) from each frame and 1,000 frames from each
TX lead to a feature set of 9 × 1000. The final feature matrix is a
combination of these feature sets from all 30 devices and has a size
of 9 × 30000.

4.2 Accuracy With Carrier Frequency Offset
and I-Q Features
The whole feature data are divided into 70%, 15%, and 15%
respectively for training, validation, and test purposes and fed
into a neural network (NN). The performance of the neural
network is tested by varying the number of neurons and hidden
layers. Figure 4A shows the accuracy of the trained model for

different neural networks. The accuracy is less than 75% in all test
cases. Since exploring different NN configurations does not
provide expected accuracy, our choice here is to: 1) form an
improved feature set to be used with the NN 2) use different
machine learning (ML) algorithms 3) use more data. We first
search for an improved feature set for better accuracy. Later, the
effect of more data is shown in subsection 5.1, 5.2 and a
comparison of different ML algorithms and NN is discussed
in subsection 5.4.

4.3 Statistical Analysis
4.3.1 Principal Component Analysis
We start the investigation by performing Principal Component
Analysis (PCA) with feature matrix as input (each feature
represents one input dimension). Figure 4B shows the
principal components and their contribution to the variances.
The first principal component (PC) contributes to most of the

FIGURE 4 | (A) Accuracy vs. the number of neurons in each hidden layer. Even after increasing the number of hidden layers, the accuracy remains <75%. (B)
Principal Component Analysis (PCA) reveals that the first principal component (PC) causes most variation, which in turn depends mostly on the carrier frequency offset,
CFO. (C) Mean (μ) and standard deviation (σ) of the dominant feature (CFO) were analyzed in search of a new feature. It reveals that these statistical parameters vary
significantly among transmitters. So, their ratio or coefficient of frequency offset variation, COV = standard deviation (σ) of CFO

mean (μ) of CFO is taken as the 10th feature. (D) The inclusion
of COV shows significant improvement in the detection accuracy. Using a single hidden layer with only 10 neurons, 95% accuracy is achieved, and >99.8% accuracy is
reached for > 50 neurons.
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variances and the input to PCmapping reveals that the CFO is the
most dominant feature. So, an in-depth statistical property
analysis of the CFO can help in deriving a new feature.

4.3.2 Moment Analysis
Since CFO varies from frame to frame (i.e., with time), it is
intuitive to look at the moments of their distribution. Specifically,
we want to look at first and second-order moments (mean and
variance). Figure 4C shows the absolute values of mean and
standard deviation (square root of variance) of CFO. These
parameters vary significantly from TX to TX in most cases.
And even if for any two TX, the mean is similar, the standard
deviation is different, and vice versa. If they can be combined to
form a new feature, that can provide significant discrimination
among transmitters and lead to much better accuracy. In
statistics, the ratio of standard deviation and mean is known
as the coefficient of variation. So, using this statistical parameter,
we form a new feature named the coefficient of frequency offset
variation (COV) which is defined as:

COV � Standard deviation of CFO

Mean of CFO

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

4.4 Performance Using Coefficient of
Frequency Offset Variation Feature
COV is included as the 10th feature in our existing feature matrix.
From PCA analysis, it is already revealed that the I-Q features
contribute to much fewer variances and can be discarded by
trading some accuracy. Since our goal is to achieve maximum
possible accuracy, we still keep them as features. Also, I-Q values
contain channel information, which will help the NN to
compensate for the wireless channel (channel effect is
explained in subsection 5.5).

After including COV as the 10th feature, our neural network
was trained, validated, and tested again with the new feature
matrix. Figure 4D shows that the performance of the network has
improved drastically. With just a single hidden layer, > 95%
accuracy can be achieved using 10 neurons and can hit up to
99.9% accuracy by increasing the number of neurons.

5 EVALUATION OF DESIGN PARAMETERS

5.1 Effect of Number of Samples
Figure 5A shows the plot of detection accuracy versus the
number of samples in each frame for different neural
networks. The general trend (Bold red arrow) is that, for each
NN configuration, detection accuracy improves with the increase
in the number of samples (along the x-axis). This is expected
because a higher number of samples provide more information
and hence better performance. We want to mention that there
might be some temporary sporadic drops in accuracy (as in the
red line where accuracy slightly drops from 50 to 100 samples),
but that does not represent the general trend which clearly shows
that more samples translate to better accuracy. Also, > 95%
accuracy point is reached at around 150 samples per frame

which is equivalent to 12.5 ms of total data (or 1.8 ms test
data). Hence, we can reach the 95% accuracy bar using quite
small test data.

5.2 Effect of the Number of Frames in
Feature Set
Figure 5B shows accuracy versus the number of neurons per layer
for two different frame numbers, 500 and 1000. With a higher
frame number, the information content of each transmitter
device increases. As the NN gets more information about the
device, its performance improves and the detection accuracy gets
better as shown by the blue (1000 frames) and red lines (500
frames) respectively. We can generalize the previous subsection
(sample number effect) and this subsection as this: more data
render better performance.

5.3 Effect of the Neural Network Parameters
Figure 5C shows the plots of accuracy versus the number of
neurons in each hidden layer. As the number of neurons increases
along the x-axis, accuracy, in general, gets better (there might be
sporadic peaks or drops as in the case of the blue line with an
outlier peak at 30 neurons, but this does not represent a general
trend). Also, as the number of hidden layers increases, the
network performs better initially (from blue to red line), but
later it creates an overfitting problem (the green line) where the
model capacity is too large compared to data. This phenomenon
directly manifests itself as a degradation in performance. Hence,
there is an optimum model capacity up to which accuracy
increases, and beyond that accuracy drops.

5.4 Using Simple Machine Learning
Algorithm
It has been observed that the COV values vary significantly
among different transmitters. When a simple feature displays a
significant separation among different classes, it can be modeled
with a complex if-else ladder structure. This implies that even
simple ML algorithms (e.g. Tree) can show good results.
Figure 6A shows that some popular ML algorithm achieves
> 95% accuracy.

The true power of the neural network comes into play when
the number of TX increases as shown in Figure 6B. For this,
features are generated for 300 TX devices following a Gaussian
distribution (as in (Chatterjee et al., 2019)) with the same mean
and variance as that of the original 30 TX devices, for both inter
and intra-class variations. Figure 6B shows that as the number of
TX increases, accuracy falls after a certain point (~ 100 TX) even
for support vector machines (SVM), and it fails to converge
for > 150 TX.

5.5 Effect of Wireless Channel
So far, nonidealities due to TX were considered and the wireless
channel was ignored (TX and RX are connected via SMA cable).
But the channel itself adds some nonidealities. Here, the effect of a
static wireless channel (1 m of fixed TX-RX separation) has been
analyzed. Figure 7 shows accuracy versus neuron number in a
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single layer, with and without the wireless channel. For iso-
accuracy of 95%, wireless channel demands slightly higher
model capacity (10 vs. 15 neurons). But when the number of
neurons increases (> 50), both curves merge and render similar
accuracy.

In one of our recent works (Bari et al., 2021b), we applied RF-
PUF on the ORACLE dataset which contains data for 16 USRP
X310 TX for both static and quasi-static (variable TX-RX
separation) cases with a channel length varying from 2 to
62 ft. We have shown that RF-PUF achieves 100% accuracy up
to 38 ft and > 95% accuracy even at 62 ft channel length. This
result confirms that the RF-PUF approach can make the channel
compensation with the help of NN and render high performance
even in a long wireless channel. On a side note, that work
combined with current work, also confirms that RF-PUF
achieves high accuracy on experimental data in different

platforms (XBee vs. USRP radios using WiFi) for different
devices.

5.6 Computational Complexity of RF-PUF
RF-PUF does not add any additional circuitry on the TX side.
Hence there is no extra computational burden at the TX end. On
the receiver side, it employs just a multilayer perceptron (MLP) or
NN along with the standard receiver. The standard receiver
corrects the received signal and in the process discards various
system-level nonidealities which are used as features to the NN.
Hence, the computational complexity of RF-PUF is that of a
neural network. For an n-dimensional input (n = 10 for our case),
the training phase (done only once) has a computational
complexity on the order of O(n5), whereas the inference
phase has a computational complexity on the order of O(n4)
(a derivation of the orders can be found at (Fredenslund 2022)).

FIGURE 5 | (A) Detection accuracy vs. the number of samples per frame for different neural networks which shows a trend of accuracy improvement (indicated by
red arrow) with the increase in sample number. (B) Detection accuracy for different frame numbers shows higher frame number renders better performance. (C)
Detection accuracy versus the number of neurons per layer. The general trend shows that accuracy improves with the increase in the number of neurons in each layer.
Also, accuracy typically improves with more hidden layers until the higher model order causes overfitting and degrades performance.

FIGURE 6 | (A) Popular ML algorithms show high accuracy for 30 Xbee devices. (B) The accuracy of simple ML networks drops when the number of TX is large,
wherein the neural network still holds up with > 99.9% accuracy.
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Also, the statistical feature formation requires mean and standard
deviation calculation which has computational complexity in the
order of O(n2), which is negligible compared to the
inference order.

6 ANALYSIS OF PUF PROPERTIES

PUF response to a particular challenge is a probabilistic function. In
this section, we will determine intra-PUF hamming distance and
inter-PUF hamming distance and discuss various PUF properties
((Maes 2013; Plusquellic 2018)) in light of those distances.

6.1 Constructability
A PUF class P is constructible if we can create a new PUF instance
pufm ∈ P through a process, P.Create: pufm ← P.Create, where
pufm has entropy that makes it distinct from other PUF instances
pufn,n≠m. In the case of RF-PUF, the source of entropy is the
manufacturing process variation. During fabrication of ICs, we
have within die and die-to-die variation which is due to the
limitation of the manufacturing process. In contrast to many
other PUF classes where we need a separate mechanism for PUF
instance creation, the manufacturing process of the integrated

circuit itself serves as the creation process for RF-PUF which is
one of its advantages.

6.2 Evaluability
A PUF class P is evaluable if for a random PUF instance
pufm ∈ P and a random challenge (x), we can evaluate a
response y: y ← pufm(x). In our case, the challenge is a
randomly generated bitstream in MATLAB that is fed into the
transmitter and the corresponding response is the analog signal
that contains the unique physical signature of the transmitter.

6.3 Inter PUF Distance - Uniqueness
Uniqueness refers to how different each instance of a PUF class P
is from each other. A measurement metric that is used to
represent PUF uniqueness is called inter-PUF hamming
distance and is defined as:

HDinter � distance Yα
m x( ), Yα

n x( )[ ]

Here, Yα
m(x) and Yα

n(x) are the responses from pufm and pufn
(two instances of PUF class P) under the same environmental
condition α and same challenge x. Ideally, these inter-chip
hamming distances should be much greater than any intra-
chip hamming distances to distinguish them separately. In our
experiment, our PUF class P = RF-PUF and pufi, (where i = 1, 2,
. . ., 30) are the instances of that class (30 Xbee devices).

To calculate HDinter, the first 1000 frames from each of the
transmitters are taken. Each frame contains 3600 samples. Our
features remain unchanged: CFO, eight I-Q component values,
and COV. But after taking 10 features from each of 1000 frames,
instead of using them as a feature matrix for each transmitter, the
mean values of the features are taken across all the frames. This
means that instead of representing each transmitter as a 10 × 1000
feature matrix, it is represented as a 10 × 1 feature vector. The
reason for taking the average value across the frames is that the
frames have an associated timestamp with them i.e., each frame
data are collected from time to time. So, each frame faces slightly
different environmental conditions such as heating of the
transmitter due to data transmission for a long time, external
interference, noise, etc. Averaging the feature values across a large
number of frames mitigates the environmental factors, especially
noise. Also, taking the first 1000 frames from each transmitter
ensures the same initial heating pattern across devices. So the final
outcome is that the feature vector for each transmitter has a very
similar environmental factor α, which is one of the conditions of
inter-chip hamming distance calculation.

After taking the feature vector from each transmitter, the
Euclidean distance was calculated in ten-dimensional feature
space as hamming distance. For pufm, let us denote CFOm =
carrier frequency offset, COVm = coefficient of frequency offset
variation, Ik,m = in-phase component in the kth quadrant, and
Qk,m = quadrature-phase component in the kth quadrant. Then
distance dm,n between pufm and pufn instances is given by:

d2
m,n � CFOm − CFOn( )2 + COVm − COVn( )2+

∑
4

k�1
Ik,m − Ik,n( )2 +∑

4

k�1
Qk,m − Qk,n( )2 (1)

FIGURE 7 | Comparison of the network performance in the cases of
including and excluding the wireless channel data. The network needs 15
neurons compared to 10 neurons in a hidden layer to achieve 95% accuracy
for the case where the channel is considered. But with higher model
capacity, both lines converge and the network learns the channel effect on
data. d the network learns the channel effect on data. The light red box shows
the region where the network fails to learn transmitter variation, light yellow box
shows the region where the network learns transmitter variation but fails to
learn the variation due to the wireless channel. The light green box shows the
region where the network learns both the transmitter and channel variation
properly.
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The inter-chip distances were calculated for each transmitter
with respect to all 30 transmitters (including the chip under test),
which leads to a 30 × 30 symmetric matrix (upper and lower
triangular matrices with same values since dm,n = dn,m = inter-
chip distance between pufm and pufn) with a principal diagonal of
zeros (self-distance). It is found that the worst-case scenario with
minimum distance, HDinter,min = 0.2307, and the best-case
scenario with maximum distance, HDinter,max = 10.149.

In literature, often a mean inter-puf distance, μinter, is reported
which is the average of all HDinter. The formula is:

μinter � HDinter

� 2

Npuf × Npuf − 1( ) × Nchal

∑HDinter

Where Npuf is the number of puf instances (Npuf = 30 for us), and
Nchal is the number of challenges (Nchal = 1, since we are not
varying our challenge). Using this formula, we find that μinter
= 3.703.

Figure 8C shows the probability mass function distribution of
435 (� 30 × 29

2 ) inter-PUF distances. The density function is right-
skewed, that’s why Weibull fitting (which is exponential in nature)
fits it more accurately than normal distribution fitting. This fitting
shows that on the right side the curve is more sparse but on the left
side it is more centered instead of being sparse, which is good
because that will ensure that the inter-PUF values don’t go to
overlap intra-PUF distances which should ideally be at zero.

6.4 Intra PUF Distance–Reliability
PUF responses are in general dependent on various
environmental factors that render any PUF instance response

as a probabilistic function. This means that a particular PUF
instance can provide slightly different values of features based on
varying environmental conditions. For authentication purposes,
this poses an issue. Reliability refers to how resilient a PUF
instance is against environmental factors e.g. noise,
interference, temperature, supply voltage, etc.

A measurement metric that is used to represent how reliable a
particular instance of a PUF class P is intra-puf hamming
distance and is defined as:

HDintra � distance Yα
m x( ), Yβ

m x( )[ ]

Here, Yα
m(x) and Yβ

m(x) are the responses from pufm under two
distinct environmental conditions α and β and same challenge x.
Many HDintra distances are calculated at different environmental
conditions. Ideally, these intra-chip hamming distances should
be zero.

To calculate HDintra, we follow two steps. Let us consider one
particular PUF instance pufm. In step 1, the first 1000 frames (frame
number 1 to frame number 1000) were taken from pufm, each frame
containing 3600 samples. Then mean values of the previously
mentioned ten features were taken just as before to represent it as
a 10 × 1 feature vector. Let us represent this vector as fv,1. Then in step
2, the first 5 frames are skipped and the next 1000 frames are taken
from frame number = 6 to frame number = 1005. Step 1 is repeated
here to get the next feature vector fv,2. Then next 1000 frames are taken
from frame number = 11 to frame number = 1010 and a feature vector
fv,3 is formed. This process is repeated 80 times to form 80 different
feature vectors fv,α; α = 1, 2, . . . , 80. These 10 × 1 feature vectors are
stacked together to form a feature vector set fset,m of size 10 × 80 for
pufm. The whole process is then repeated for all 30 devices.

FIGURE 8 | Data distribution of (A) intra-PUF hamming distances and (C) inter-PUF hamming distances. Due to skewness, Weibull distribution fitting is a more
accurate representation in these cases. (B) The two Weibull curves are superimposed on top of each other. It is seen that there is a very slight overlap (yellow region)
between the curves which is shown in a zoomed inset. Although trivial, this overlapping is the source of the detection error.
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The purpose of taking frame-shifted or time-shifted frame
groups is to consider the time factor. Each frame has a duration of
0.6ms, so 5 frames gap in between two frame groups renders a
time difference of at least 3ms (in reality the difference is much
larger since the transmitter transmits data for a small time and
most of the frames are just noise which are filtered in data pre-
processing step). The 80 time-spaced frames, in reality, cover
almost half a minute. Our 2.4 GHz clock will have LO drift cycle
time in the nanoseconds range. Hence, half-minute data can
incorporate significant environmental factors into frame data. So,
it can be assumed that the feature vectors fv,α; α = 1, 2, . . . , 80 in
feature vector set fset,m of pufm represents α = 80 different
environmental conditions.

Now, for each instance pufm, Euclidean distance is calculated
in 10-dimensional feature space among the feature vectors in the
feature vector set using Eq. 1. This results in a symmetric matrix
of size 80 × 80 with a principal diagonal of zeros. This process is
repeated for other transmitters as well. Essentially it gives us 30
matrices of size 80 × 80 for intra-PUF distances. In the best-case
scenario, the minimum distance isHDintra,min = 7.23 × 10–5 and in
the worst case scenario, the maximum distance is
HDintra,max = 0.73.

Figure 8A shows the probability mass function distribution of
94800 (� 30 × 80 × 79

2 ) intra-PUF distances. The density function is
right-skewed and Weibull distribution gives better fitting for it
just like inter-PUF cases. This fitting shows that on the left side
the curve is strongly centered towards zero, but has a diminishing
trail on the right. this trail goes on to overlap inter-puf distances
slightly and causes a few detection errors. Detection probability is
discussed in the next subsection.

Finally, a mean intra-PUF distance, μintra, is calculated which
is the average of all HDintra. The formula is:

μintra � HDintra

� 2
Npuf × Nchal × α × α − 1( )∑HDintra

WhereNpuf is the number of puf instances (Npuf = 30 for us),Nchal is
the number of challenges (Nchal = 1, since we are not varying our
challenge) and α is the number of environmental conditions (α = 80
in our study). Using this formula, it is found that μintra = 0.136.

6.5 Identifiability
In the previous two subsections, both inter-PUF and intra-PUF
hamming distances and their mean values: μinter = 3.703 and μintra
= 0.136 are calculated. Their comparison shows that μinter > μintra,
which establishes that on average the PUF instances can be
distinguished from each other. But the mean value does not
depict the full story. Figure 8B shows the fitted distribution
curves superimposed on each other. The brown curve (intra-PUF
distribution) is skewed to the left and the blue curve (inter-PUF
distribution) is skewed to the right and they mostly cover
different regions. However, there is slight overlapping between
them which is shown in the inset as a zoomed version of the
overlapping area. Ideally, there should be no overlapping. But in a
practical scenario, this overlapping region is the source of
detection error.

From the definition of identifiability, a PUF class P is
identifiable if it is reliable as well as unique, and if the
probability of inter-PUF variation being greater than intra-
PUF variation is very high. Mathematically:

Probability HDinter >HDintra( ) ≈ 1

In the previous two subsections, 94800 (� 30 × 80 × 79
2 ) intra-

PUF distances and 435 (� 30 × 29
2 inter-PUF distances have been

calculated. Now, each of these inter-puf distances is compared
with each of the intra-PUF distances that leads us to 435 ×
94800 = 41238000 cases, among which,HDinter >HDintra is found
in 41184206 cases.

Probability HDinter >HDintra( ) � 0.9987

This is a very high probability and close to 1. This proves that
RF-PUF has strong identifiability and this property along with
reliability, uniqueness, constructability, and evaluability
manifests RF-PUF as a distinct PUF class. This is the first-ever
experimental validation of RF-PUF as a distinct and strong PUF
class by itself.

7 POSSIBLE ATTACK MODELS ON RF-PUF

RF-PUF does not store any digital key and hence, is not
susceptible to malicious PUF models which assume that the
adversary can have access to all the challenge-response pairs
through a built-in logger software/implanted Trojan. However,
there is a possibility of a machine learning-based attack that needs
to be discussed (Figure 10). For RF-PUF, ML attack is a two-step
process:

• Step 1: model/profile the victim TX (Unsupervised)
• Step 2: use that model for spoofing/replay attacks

In step 1, the rogue device tries to learn the feature/parameter
values of the victim TX. Unlike the intended RX, this is an
unsupervised problem for the attacker. We have utilized k-means
clustering to divide the feature map into 30 clusters and compare
the predicted and true labels (Figure 9). The process was repeated
1,000 times as k-means isn’t unique without specific conditions.
Our analysis shows that clustering achieves ~ 3.63% accuracy on
average, which is very close to the probability of random
detection ( 1

30 � 3.3%). So, practically it is almost impossible to
get the right feature value and label.

If somehow the attacker succeeds in step 1, then in step 2,
the attacker needs to produce an RF signal that contains the
same imperfections as the victim TX with high accuracy. This
requires a high speed and high-resolution circuitry. Figure 10
shows that the physical signature of the transmitter, S, goes
through transformation TTX at TX and TRX at RX. The
transformations in the attacker are TA, TML1, TML2, and TD

respectively. Full transformation for the original device is TRX

(TTX(S)) and for the adversary is TRX (TD (TML2 (TML1 (TA

(TTX(S)))))). The adversary ML2 framework needs to make
these two transformations equal by undoing the effect of its
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ADC/DAC which requires almost infinite resolution,
rendering it practically impossible (typical ADC/DAC are 8/
16-bit). This Resolution limitation in ADC/DAC and
bandwidth limitation in filters and other RF components
also prevent replay attack, which requires the attacker to
convert the TX signal in the digital domain, incorporate
malicious contents and then transform it back into the RF
domain with very high precision. Further analysis of precision
requirements for a practical attack will be included in future
work. The robustness of RF-PUF against malicious PUF
model, ML attack, and replay attack proves its strong
candidacy of employment for RF security.

8 CONCLUSION

In this work, data collected from off-the-shelf commodity
components (30 Xbee modules) were used to develop a new
feature called the coefficient of frequency offset variation
(COV) through PCA and moment analysis. The new feature
leads to 95% accuracy for a single hidden layer with 10 neurons
and > 99.8% accuracy for a single hidden layer with > 50
neurons, for the first time in literature without any assisting
digital preamble. The dataset containing 155.4 GB of data has
also been released for public use. The design space has been
explored and the effect of the wireless channel is analyzed to
provide design insights. The scalability issue of simple ML
algorithms for high accuracy has also been explored. The PUF
properties of RF-PUF have been explored in detail. The inter-
PUF and intra-PUF hamming distances are calculated and
with their distribution, it has been shown that they have trivial
overlapping. A detailed analysis reveals that the probability of
HDinter > HDintra = 0.9987, which resonates with the claim that
RF-PUF has a very high device authentication probability.

Finally, possible important attack models are discussed and the
robustness of RF-PUF against them is analyzed. This work
experimentally validates RF-PUF with high accuracy, which
can contribute to a secure authentication system using
inherent physical signatures without extra power, area, or
computational overhead on the resource-constrained IoT
transmitter side.
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FIGURE 9 | Heatmap of unsupervised learning in the attacker using k-means clustering. (A) The worst-case accuracy of 0.09% and (B) the best-case accuracy of
6.8%. Repeated clustering 1000 times shows 3.63% accuracy on average.

FIGURE 10 |ML attack model. Adversary ML networks cannot undo the
effect of ADC and DAC which requires extremely high precision and
resolution, making the attack impractical.
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