
AI-PiM—Extending the RISC-V
processor with
Processing-in-Memory
functional units for AI inference
at the edge of IoT

Vaibhav Verma* and Mircea R. Stan

Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA,
United States

The recent advances in Artificial Intelligence (AI) achieving “better-than-human”

accuracy in a variety of tasks such as image classification and the game of Go

have come at the cost of exponential increase in the size of artificial neural networks.

This has lead to AI hardware solutions becoming severely memory-bound and

scrambling to keep-up with the ever increasing “von Neumann bottleneck”.

Processing-in-Memory (PiM) architectures offer an excellent solution to ease the

von Neumann bottleneck by embedding compute capabilities inside the memory

and reducing the data traffic between the memory and the processor. But PiM

accelerators break the standard von Neumann programming model by fusing

memory and compute operations together which impedes their integration in

the standard computing stack. There is an urgent requirement for system-level

solutions to take full advantage of PiM accelerators for end-to-end acceleration of AI

applications. This article presents AI-PiM as a solution to bridge this research gap. AI-

PiM proposes a hardware, ISA and software co-design methodology which allows

integration of PiM accelerators in the RISC-V processor pipeline as functional

execution units. AI-PiM also extends the RISC-V ISA with custom instructions

which directly target the PiM functional units resulting in their tight integration

with the processor. This tight integration is especially important for edge AI

devices which need to process both AI and non-AI tasks on the same hardware

due to area, power, size and cost constraints. AI-PiM ISA extensions expose the PiM

hardware functionality to software programmers allowing efficient mapping of

applications to the PiM hardware. AI-PiM adds support for custom ISA extensions

to the complete software stack including compiler, assembler, linker, simulator and

profiler to ensure programmability and evaluation with popular AI domain-specific

languages and frameworks like TensorFlow, PyTorch, MXNet, Keras etc. AI-PiM

improves the performance for vector-matrix multiplication (VMM) kernel by 17.63x

and provides a mean speed-up of 2.74x for MLPerf Tiny benchmark compared to

RV64IMCRISC-V baseline. AI-PiM also speeds-upMLPerf Tiny benchmark inference

cycles by 2.45x (average) compared to state-of-the-art Arm Cortex-A72 processor.

KEYWORDS

processing-in-memory, PIM, artificial intelligence hardware, AIHW, TinyML, RISC-V,
custom instruction extensions, IoT edge

OPEN ACCESS

EDITED BY

Deming Chen,
University of Illinois at Urbana-
Champaign, United States

REVIEWED BY

Jae-sun Seo,
Arizona State University, United States
Yu Cao,
Arizona State University, United States
Shanshi Huang,
Georgia Institute of Technology,
Atlanta, United States

*CORRESPONDENCE

Vaibhav Verma,
vv8dn@virginia.edu

SPECIALTY SECTION

This article was submitted to Integrated
Circuits and VLSI,
a section of the journal
Frontiers in Electronics

RECEIVED 17 March 2022
ACCEPTED 05 July 2022
PUBLISHED 11 August 2022

CITATION

Verma V and Stan MR (2022), AI-
PiM—Extending the RISC-V processor
with Processing-in-Memory functional
units for AI inference at the edge of IoT.
Front. Electron. 3:898273.
doi: 10.3389/felec.2022.898273

COPYRIGHT

©2022 Verma and Stan. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Electronics frontiersin.org01

TYPE Original Research
PUBLISHED 11 August 2022
DOI 10.3389/felec.2022.898273

https://www.frontiersin.org/articles/10.3389/felec.2022.898273/full
https://www.frontiersin.org/articles/10.3389/felec.2022.898273/full
https://www.frontiersin.org/articles/10.3389/felec.2022.898273/full
https://www.frontiersin.org/articles/10.3389/felec.2022.898273/full
https://www.frontiersin.org/articles/10.3389/felec.2022.898273/full
https://crossmark.crossref.org/dialog/?doi=10.3389/felec.2022.898273&domain=pdf&date_stamp=2022-08-11
mailto:vv8dn@virginia.edu
https://doi.org/10.3389/felec.2022.898273
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org/journals/electronics#editorial-board
https://www.frontiersin.org/journals/electronics#editorial-board
https://doi.org/10.3389/felec.2022.898273


1 Introduction

There has been an incessant increase in the demand for

artificial intelligence (AI) and machine learning (ML) based

systems ever since ML models like He et al. (2016) achieved

better-than-human accuracy (≈ 95%) in the ImageNet Large

Scale Visual Recognition Challenge (Russakovsky et al. (2015))

and Deep Neural Networks (DNN) like AlphaGo (Silver et al.

(2016)) defeated the human Go champions. These large Artificial

Neural Networks (ANNs) were originally designed to be hosted

on big compute clusters consisting of server CPUs and GPUs. But

in the last few years, AI applications have been expanding away

from the cloud and towards the edge of Internet of Things (IoT).

Low-cost and low-power microprocessors and microcontroller

units (MCU) are being targeted to process edge AI applications in

order to achieve the goal of truly intelligent IoT and this class of

computing has been referred to as tinyML (Warden and

Situnayake (2019)). The goal of tinyML devices and edge AI

in general is to process the data close to data generation sources

like IoT sensors and reduce the amount of data that is transferred

to the cloud. Edge AI offers enhanced security and privacy by

processing the user data in individual edge consumer devices.

This local processing of data also improves the quality of service

(QoS) in areas with no network coverage, latency of response and

immensely reduces the cost and bandwidth requirements for

communicating large amounts of data from edge devices to the

cloud.

RISC-V (Waterman et al. (2014)) and Arm are the two most

widely used Instruction Set Architectures (ISA) for tinyML and

edge hardware devices. But open-source RISC-V ISA offers the

added advantage of lowering the cost of edge IoT hardware by

removing the license royalty costs associated with other edge

processor architectures like Arm. Many AI accelerators have also

been proposed in literature (Chen et al. (2016); Jouppi et al.

(2017); Yazdanbakhsh et al. (2021); Anderson et al. (2021)) to

meet the demands of compute and memory-intensive AI

workloads like Deep Neural Networks (DNN). Processing-in-

memory (PiM) based accelerators are one such class of AI

accelerators which are particularly well-suited to alleviate the

memory-wall problem (Moyer (1991); Wulf and McKee (1995))

(also known as von Neumann bottleneck) by minimizing the

movement of data between the processor and the memory while

accelerating the computation of AI workloads at the edge. PiM

accelerators can be based on different memory technologies like

SRAM (Eckert et al. (2018); Dong et al. (2020); Zhang et al.

(2017)), DRAM (Roy et al. (2021); Seshadri et al. (2017);

Hajinazar et al. (2021)) or emerging memories like RRAM

(Chi et al. (2016); Li et al. (2020); Chou et al. (2019)) and can

be of different sizes depending on the underlying memory

technology. State-of-the-art PiM AI accelerators fuse memory

and compute functionality together and hence deviate from the

standard von Neumann architecture. This makes PiM

accelerators hard to program and difficult to integrate in the

standard computing stack since they do not follow the traditional

programming model. These accelerators require special

compilers to orchestrate the data movement to and from the

accelerator (Li et al. (2020); Jia et al. (2022)) and each new design

of the accelerator necessitates the design of a new compiler.

Standard C/C++ and deep learning compilers struggle to map

computations effectively onto PiM accelerators without an

intermediate special PiM compiler. Hence, to fully utilize the

advantages of PiM accelerators for AI applications at the edge of

IoT, a standard design methodology is required to enable

integration of PiM accelerators in the traditional computing

stack.

In this article, we present AI-PiM as a hardware, ISA and

software co-design solution to bridge this research gap. AI-PiM

extends the RISC-V processor pipeline via integration of PiM

accelerators as fine-grained functional units. AI-PiM also extends

the RISC-V ISA with custom instructions which directly target

PiM functional units to make these accelerators transparent to

the software stack andmake it easier to map various computation

kernels to PiM functional units. Figure 1 shows the top-level

overview of AI-PiM. Section 3.2 explains the tight integration of

PiM accelerators in AI-PiM methodology in detail. Sections 3.3

and Section 3.4 explain the complete end-to-end hardware, ISA

and software co-design methodology of AI-PiM.

AI-PiM follows a similar developmental evolution path as the

floating-point units which were originally designed for farming

out a huge chunk of scientific computation to floating-point co-

processors similar to large batch size AI workloads carved out for

FIGURE 1
Top-level overview of AI-PiM hardware, ISA and software co-
design methodology. (A) RISC-V hardware is extended with the
addition of PiM based Vector-Matrix Multiplication (VMM)
functional unit. (B) Custom instruction extensions are added
to the RISC-V ISA to expose the VMM functionality of the PiM
hardware to the programmers. (C) Complete Software
Development Kit (SDK) including compiler, simulator etc. is then
extended to communicate the hardware and ISA enhancements to
the software stack.

Frontiers in Electronics frontiersin.org02

Verma and Stan 10.3389/felec.2022.898273

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.898273


current PiM accelerators. But as floating-point computations

became more common, floating-point accelerators became a part

of the processor hardware as floating-point units (FPU) along

with floating-point instructions becoming a part of the processor

ISA. We believe PiM accelerators for AI acceleration will follow a

similar path and AI-PiM presents a solution for this forward-

looking problem. The main contributions of this article are:

• A standardized hardware, ISA and software co-design

methodology to integrate PiM accelerators in the main

processor pipeline.

• Treatment of PiM accelerators as a first-class citizen in the

RISC-V processor pipeline unlike prior works which treat

PiM hardware as a co-processor or accelerator integrated

over a system bus.

• Design-space exploration of PiM functional units to

determine optimum size of PiM Vector-Matrix Multiply

(VMM) unit for IoT edge AI workloads.

• System level simulation results for accelerating complete

neural network models for tinyML applications and

comparison with existing edge AI hardware solutions.

2 Background

The “memory wall” problem in computer architecture (Wulf

and McKee (1995); Moyer (1991)) exposes the limitations of

traditional von Neumann architecture with separate hardware

for compute and memory. This separation between logic

processing compute blocks and the memory blocks used for

storage of data and programs leads to system performance being

limited by the memory bus bandwidth in memory-intensive

workloads like AI. Several prior proposals have been made in

the literature to bring the memory and compute units closer to

reduce or remove the memory wall. The IRAM (Patterson et al.

(1997)) architecture proposed fabricating a compute logic

processor on the DRAM main memory chip. This was an

early proposal for the PiM model but was not widely accepted

due to fabrication technology limitations at the time. But after the

introduction of 3D stacked memory technology like Jun et al.

(2017) and Jeddeloh and Keeth (2012), many prior works like

Gao et al. (2017) embedded AI Processing Units (APU) in the

base logic die of a 3D stacked main memory. This technique

shown in Figure 2A lowers the memory wall by introducing near-

memory processing and minimizing the memory bandwidth

pressure.

This was followed by research focused on embedding

processing capabilities into the DRAM main memory to

create Processing-in-Memory (PiM) architectures like Seshadri

et al. (2017), Roy et al. (2021) and Hajinazar et al. (2021). But in

the past few years, PiM architectures have also been proposed

using memory technologies other than DRAM. SRAMbased PiM

architectures (Eckert et al. (2018); Zhang et al. (2017); Jia et al.

(2022); Dong et al. (2020)) offer the advantage of easier

fabrication than DRAM based solutions since SRAM is

usually fabricated in the same process technology as the

compute blocks. Many non-volatile memory (NVM) like

RRAM based PiM solutions have also proposed recently

(Shafiee et al. (2016); Chi et al. (2016); Chou et al. (2019); Li

et al. (2020)). NVM based PiM solutions offer the advantage of

non-volatility of data which is not possible in SRAM or DRAM

based PiM architectures. Figure 2B shows the basic architecture

of AI accelerators based on PiM hardware where a part of the

memory hierarchy consisting of SRAM, DRAM or NVM is

converted to a dedicated AI Processing Unit. Some

commercial prototypes based on PiM architecture have also

started to become available (Devaux (2019); Lee et al. (2021)).

Analog-to-digital and digital-to-analog converters (ADC and

DAC) account for the biggest area overhead in many PiM

implementations and also dominate the power consumption.

FIGURE 2
Different processing-in-memory hardware architectures for accelerating AI applications. (A) Near 3D memory processing solutions embed AI
processing functionality into the base logic die of 3D stacked memory. (B) Processing-in-memory solutions convert a part of the memory hierarchy
(SRAM, DRAM or NVM) into a dedicated AI Processing Unit (APU). (C) AI-PiM tightly integrates optimum sized PiM accelerators as AI Functional Units
(AFU) inside the processor pipeline.

Frontiers in Electronics frontiersin.org03

Verma and Stan 10.3389/felec.2022.898273

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.898273


There has been prior research into purely digital PiM (Imani et al.

(2019)) solutions which let go of the ADC/DAC in order to

simplify the PiM design and keep the area overheads low. Such

solutions allow for smaller PiM sizes without having to worry

about amortizing the ADC/DAC area overhead using bigger PiM

arrays. Although DRAM based PiM architectures utilize large

(Mb)memory sizes, SRAM andNVMbased PiM solutions utilize

smaller (Kb) memory arrays. Dong et al. (2020) presents an

SRAM based PiM solution based on foundry provided 8T

(8 transistor) bit-cell with an array size of 64 × 64 bits. Such

smaller sized PiM solutions are an ideal fit low-cost edge AI

applications due to limited area cost required to implement these

solutions.

AI-PiM focuses on tightly integrating such small sized PiM

accelerators within the RISC-V processor pipeline as functional

execution units. This allows acceleration of common AI kernels

like vector-matrix multiplication within the CPU pipeline. This

design philosophy of utilizing PiM based AI functional units

(AFU) inside the processor is shown in Figure 2C. This approach

is different than prior solutions (Figures 2A,B) where relatively large

PiM based AI processing units (APU) communicate with the CPU

over a system bus. In AI-PiM approach shown in Figure 2C, smaller

sized PiM functional units are embedded inside the processor to

allow for finer-grained offloading of AI kernels. This fine-grained

offloading of AI kernels is beneficial in edge AI and tinyML

applications which consist of a mix of both AI and non-AI tasks

which need to be seamlessly executed on the same processor

hardware. Moreover, tinyML workloads (Banbury et al. (2021))

shown in Table 1 consist of small neural network models with a

few kilo parameters running with batch size 1 which precludes

farming out a huge chunk of the AI workload to be offloaded to

bigger APUs shown in Figures 2A,B. AI-PiM utilizes PiM functional

units to both store weights and compute vector-matrixmultiplication

operations in a weight-stationary fashion (Chen et al. (2016)). This

approach to utilize smaller sized PiM AFUs has been proposed to

balance the compute parallelism offered by PiM AFU with the huge

area cost required for bigger PiM accelerators. Smaller sized AFUs

also allow to balance the memory load/store operations with the

compute operations since a bigger AFU would mandate a large

number of store operations to change the weights from one layer of

the neural network to the other for a single highly parallel compute

operation.

Section 3.2 details how this tight integration of PiM AFU is

done within the RISC-V processor pipeline. Section 3.1 discusses

the support for PiM AFUs at the ISA level using custom

instruction extensions to the RISC-V ISA.

3 Materials and methods

3.1 ISA extensions for PiM

AI-PiM extends the RISC-V ISA to support the PiM

functional units within the RISC-V processor pipeline and

expose the functionality of the PiM hardware to higher layers

of abstraction in the software stack. Custom ISA instructions

allow to effectively utilize the PiM functional units and make it

easier to map computations to PiM hardware by conveying the

information about PiM functionality to the compiler. Compiler

utilizes this knowledge about exact hardware behavior of PiM to

break computation kernels into appropriate sizes and map those

kernels to the hardware preserving the shape and size of PiM

operands.

Three new sets of instructions that have been included as PiM

extensions in the RISC-V ISA with their binary encoding details

shown in Figure 3. Figure 3A shows the vector-matrix multiply

(vmm) instruction which captures the basic compute

functionality of the PiM hardware. This instruction encodes

the input activation in the rs1 source operand. Two output

registers rdl and rdh are used as low and high registers for the

accumulated output. The vmm instruction supports multiple

sizes for vector-matrix multiply PiM hardware units along

with multiple input and accumulation bit widths. The

instruction has been tested for supporting 4 bit and 8 bit

input and weight (stored in memory) operands along with 8,

16 and 32 bit accumulations for the output based on different

flavors of PiM hardware. If required to return more or longer

output activations than what can fit in rdl and rdh registers,

dedicated return registers can also be encoded along with the

instruction. But the dedicated return register encoding is just a

workaround for the time being till the support for either

scratchpad memory or output buffer for the vmm instruction

for specific cases is enabled. This support is still in experimental

phase and would be described in detail in a future publication.

TABLE 1 Quantitative description of MLPerf Tiny benchmark (Banbury et al. (2021)) models depicting the scale of neural network models used in
tinyML applications.

Model Number of
layers

Number of
parameters (K)

TFLite model
size (KB)

Task Dataset

MobileNetV1 (0.25x) 14 221.8 325 Visual Wake Words Visual Wake Words Dataset

ResNet-V1 8 78.6 96 Image Classification CIFAR-10

DSCNN 4 24.9 52.5 Keyword Spotting Google Speech Commands

FC AutoEncoder 9 270 270 Anomaly Detection ToyADMOS (ToyCar)

Frontiers in Electronics frontiersin.org04

Verma and Stan 10.3389/felec.2022.898273

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.898273


Figure 3B shows the binary encoding for the custom load

instruction (vmm.ld). This instruction is utilized for loading the

output operand from the PiM AFU memory to the processor

registers. For a dual cycle (execute andmemory stages) PiMAFU,

the load instruction is fused inside the vmm instruction for return

of the output operand in the memory stage to be written back in

the writeback stage to the rdl and rdh registers based on the size of

the output operand. Formulticycle PiMAFU, vmm.ld instruction

is used to load output from the PiM AFU memory to the

processor registers. Figure 3C describes the binary encoding of

custom store instruction (vmm.sd) used to store the weights into

the PiMAFUmemory for weight stationary execution. rs1 source

register and imm immediate offset are used to calculate the

address of the location in the PiM AFU memory where the

value from the rs2 source register is stored.

All the extension instructions follow the conventions of

RISC-V instruction encoding philosophies like three register

encoding for compute operations and immediate, source and

destination register encoding restrictions for the load and store

memory operations. The funct3 and funct7 bits of the

instructions are used to relay information about different PiM

sizes and other characteristics while keeping the rest of the

instruction encoding constant to reduce the instruction

decoding complexity. As shown in Figure 3D, all new PiM

instruction extensions have been encoded in the custom-2

opcode space of RISC-V ISA which allows AI-PiM to be

completely compatible with base RISC-V ISA.

Figure 4 shows the pseudo C code and pseudo assembly code

for 1 × 8 vector multiplication to the 8 × 8 matrix with 8 bit

elements each to generate 1 × 8 output vector with 16 bit

accumulated values split across two 64 bit registers (rdl and

rdh). This code shows that 8 × 8 matrix is written row-by-row by

packing 1 × 8 8 bit rows into a single 64 bit input operand for the

vmm.sd instruction. Once all the rows of the 8 × 8 matrix are

stored in memory, the compute vmm instruction can be issued to

perform a dual cycle vector-matrix multiply operation. The PiM

receives the 1 × 8 input vector with 8 bit elements as a packed

64 bit operand (treated as a column vector) and multiplies it in

parallel with matrix column values stored on each bitline to

generate 1 × 8 16 bit accumulated output vector. The output

vector is received in the memory stage and written to rdl and rdh

destination registers as the low and the high part of the output in

the writeback stage. This PiM based vector-matrix multiplication

instruction is used to accelerate a variety of AI kernels like

Conv2D, depthwise separable Conv2D, fully connected dense

layers and other kernels which map naturally to the vmm

primitive.

AI-PiM development methodology values that as we adapt

the RISC-V ISAwith custom instructions and augment the RISC-

V hardware with PiM AFU, it is of high importance to also

develop the software infrastructure to efficiently target AI

applications this new AI-PiM processor architecture. These

software development efforts for AI-PiM are detailed in

Section 3.3.

Special care has been taken to keep the custom PiM

instruction extensions agnostic to the type of underlying PiM

hardware technology (RRAM/STT-MRAM/SRAM etc.) to create

a clear separation between the ISA and the hardware

implementation. The type of PiM and its performance

characteristics are encoded separately in the processor model

in a cycle accurate fashion as described in Section 3.2. This clear

separation allows AI-PiM the flexibility to swap PiM accelerators

while keeping the same ISA and the software stack when better

PiM accelerators are available. Section 4 details the performance

improvements and the area overheads of supporting these

custom PiM instruction extensions to the RISC-V ISA.

FIGURE 3
(A) Binary encoding for PiM vector-matrix multiply (vmm) custom instruction. (B) Binary encoding for the custom load instruction for PiM
accelerator memory. (C) Binary encoding for the custom store instruction for PiM accelerator memory. (D) All the new instructions are encoded in
the custom-2 opcode space of RISC-V ISA to maintain compatibility with the base RISC-V ISA.

Frontiers in Electronics frontiersin.org05

Verma and Stan 10.3389/felec.2022.898273

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.898273


3.2 Tightly integrated PiM functional unit

This section provides the details about how PiM functional

unit is tightly integrated inside RISC-V processor pipeline at the

microarchitecture level. As discussed previously in Section 2,

finer-grained offloading of AI kernels to the PiM functional

units while executing IoT edge workloads consisting of a mix AI

and non-AI tasks is a major motivation for this tight

integration. Such tight integration of PiM functional units

within an edge processor allows to save area and hardware

cost of a decoupled AI accelerator by utilizing the same

processor to run both AI and non-AI tasks. This approach

also helps to save power required for communication of data

between processor and a standalone AI accelerator used as a

coprocessor. The tight integration approach is highly beneficial

when PiM functional units can only accelerate a part of the AI

workload e.g. vector-matrix multiplications and the host

processor needs to perform pre- and post-processing of data

for the PiM and execute other layers in the neural network like

pooling and activation layers. Tight integration also helps to

reuse resources from the processor pipeline and reduce the

complexity required to design bus interface and separate ISA

for a decoupled PiM accelerator. AI-PiM enables PiM

functional units to accept inputs from and write the outputs

back to the RISC-V processor pipeline stages and registers

simplifying the interface design. Additionally, it is easier to

break convolutional kernels and map them onto small PiM

VMM functional units compared to bigger VMM units which

require efficient mapping of workloads to keep a bigger PiM

accelerator fully utilized. The smaller PiM functional units also

help to balance the latency of PiM computation units with the

processor pipeline delays to keep the critical execution path of

the processor short. This helps to accelerate AI instructions

described in Section 3.1 seamlessly on the same processor which

runs non-AI part of the applications. This helps us to reduce the

cost and complexity of AI hardware at the edge of IoT since AI-

PiM is a complete system-level solution rather than an

accelerator for AI tasks which depends on a control

processor. This tight integration of AFUs enables AI-PiM to

execute complete applications and not just the AI/ML kernels

like prior PiM solutions.

Figure 5 shows the microarchitectural view of the modified

RISC-V processor pipeline extended with PiM AI functional unit

(AFU). AI-PiM implements a basic five stage pipeline for the

RISC-V processor as shown in Figure 5. The custom PiM

extension instructions are fetched and decoded in the same

way as any other standard RISC-V instruction. But rather

than using standard arithmetic and logic unit (ALU) in the

execute stage, custom instructions send their operands to the

PiM AFU. vmm instruction is a compute instruction and reads

the input operand from the general purpose registers (GPR) and

dispatches the same as the input to the PiM AFU. The PiM AFU

computes vector-matrix multiplication of the input vector with

the weight matrix stored in the PiM AFU memory and returns

the output vector at the end of the memory stage which is then

written back to the GPR in the writeback stage. The custom

memory instructions (vmm.ld and vmm.sd) are also fetched and

decoded like standard RISC-V memory instructions but rather

than performing load or store operations on the RISC-V data

memory, these instructions perform custom load and store

operations on the PiM AFU memory in the memory stage.

Such a tight integration allows AI-PiM to reuse majority of

the RISC-V pipeline hardware with overheads only for the

PiM functional units.

FIGURE 4
Pseudo code for 1 × 8 vector (8b elements) multiplication with an 8 × 8 matrix (8b elements) to produce 1 × 8 vector output with 16b
accumulation and the corresponding pseudo assembly code with instruction extensions.

Frontiers in Electronics frontiersin.org06

Verma and Stan 10.3389/felec.2022.898273

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.898273


Many design decisions are important when PiM functional

unit is developed to be integrated in the RISC-V processor

pipeline. The first question is about the size of the PiM

functional unit. It is required to balance the latency and

frequency of PiM compute operations with the latency for

weight updates since a larger sized AFU requires less frequent

weight updates but takes longer for each update cycle.

Additionally, the maturity and endurance of underlying

memory technology also imposes restrictions on the physical

size of the AFU. Once the AFU size is defined, the next question is

howmany such AFUs can be fit given an area budget and pipeline

resources and complexity. AI-PiM enables researchers to find

answers to all these questions as part of the design-space

exploration of PiM AFUs and the impact of each hardware

design on the end IoT edge AI application as described in

Section 4.4. The current version of the PiM AFU has been

behaviorally modeled in a cycle accurate manner as 8T SRAM

(Dong et al. (2020)) based in-memory vector-matrix

multiplication unit. The PiM VMM functional unit has been

tested and verified at the system level to support both 4 bit and

8 bit integer formats for weights and input activations with

output accumulation in 16 and 32 bit integer precision based

on different quantization levels supported in the software

versions of pretrained neural network models. The PiM VMM

functional unit utilizes packed inputs and outputs as 64 bit

operands for compatibility with 64 bit version of the RISC-V

processor. Section 3.3 describes how the PiM AFU is exposed to

the compiler and other layers of the software stack via custom

ISA extensions described in Section 3.1.

3.3 Software framework development

AI-PiM extends the RISC-V processor hardware with PiM

functional units as described in Section 3.2 and the RISC-V ISA

with custom instruction extensions to support inclusion of PiM

functional units in the hardware and software stacks as described

in Section 3.1. But designing a custom processor is not very

advantageous without the corresponding software support

required to target real-world workloads to this processor.

Hence, AI-PiM differentiates from existing PiM solutions by

co-developing the complete software stack along with ISA and

hardware PiM contributions. Another highlight of AI-PiM

solution is that it preserves programmability in popular

domain specific languages and frameworks for AI applications

like PyTorch (Paszke et al. (2019)), TensorFlow (Abadi et al.

(2016)), ONNX, MXNet (Chen et al. (2015)) and Keras by

allowing existing neural network descriptions from any of

these frameworks to be compiled with custom instructions

and simulated for hardware with PiM functional units. The

complete software, ISA and hardware co-design methodology

and development flow has been shown in Figure 6.

AI-PiM software development framework is bifurcated into

two different phases. At the frontend, modified version of the

TVM (Chen et al. (2018)) open-source deep learning compiler is

utilized as shown in Figure 6. TVM supports input neural

network descriptions in different domain specific languages

(DSL) and frameworks like TensorFlow, PyTorch, MXNet,

Keras, CoreML, DarkNet and ONNX. Neural network

topologies are distilled into individual operators like Conv2D,

DepthwiseConv2D, pooling, transpose etc. using TVM frontends

for each DSL or framework. AI-PiM extends the current TVM

operators by adding operator compute definitions and operator

lowering schedules which map efficiently onto PiM functional

unit sizes in hardware. This support has been added to all

operators which can be further lowered onto vector-matrix

multiplication (VMM) kernels supported by PiM functional

units in AI-PiM hardware. The optimized operator compute

definitions and schedules are then lowered into Tensor

Intermediate Representation (TIR), which is the low-level IR

supported in TVM. AI-PiM utilizes the “tensorize” intrinsic in

TVM schedule to map custom VMM kernels from individual

FIGURE 5
RISC-V processor pipeline data flow for custom PiM instructions targeting tightly integrated PiM functional units.

Frontiers in Electronics frontiersin.org07

Verma and Stan 10.3389/felec.2022.898273

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.898273


operators to the PiM functional units at the TIR level. The final

TIR code consisting of regular IR and custom tensor IR for PiM

units is then passed through the C code generation (codegen)

phase to generate specialized C code for the input neural

networks bundled with lightweight TVM C runtime. AI-PiM

has extended the TVM C codegen stack to support C code

generation for standard RISC-V ISA along with support for

custom compiler intrinsics which map directly onto the added

ISA extension assembly instructions for AI-PiM as shown in

Figure 7. This extension of TVM C codegen allows AI-PiM to

generate C code for input neural networks from different DSLs

and frameworks with custom compiler intrinsics for ISA

extensions embedded into the generated C source code. This

is an optimized way of generating C code consisting of standard

C functions and customized intrinsics for ISA extensions since

this approach does not require to run any specialized scripts to

convert TVM generated generic C code to C code with support

for PiM instructions or manually hand code system libraries or

assembly instructions to support PiM ISA extensions in AI-PiM.

TVM compiler modifications at different levels enable AI-PiM to

generate customized C code with support for PiM functional

units for neural network models from almost all the standard AI

frameworks. This allows AI-PiM to support processing-in-

memory based hardware functional units in the processor and

expose this functionality to the highest levels of the software

abstraction all the way up to AI specific DSLs and frameworks.

Figure 7 provides further details into step-by-step process of

lowering specialized schedule of TVM operators down to AI-PiM

ISA extension assembly instructions. TVM compute operators

like Conv2D, DepthwiseConv2D, Dense etc. are augmented with

special lowering schedules for AI-PiM where the main kernel

FIGURE 6
AI-PiM hardware, ISA and software co-design methodology consisting of TVM deep learning compiler (Chen et al. (2018)) as the frontend
compiler to map models from popular machine learning frameworks to C and Synopsys ASIP Designer (Synopsys (2022)) as the backend processor
design tool to generate complete SDK and synthesizable RTL. AI-PiM contributions andmodifications to existing tools to support PiM functional units
across the hardware and software stacks have been highlighted in green.

FIGURE 7
Process for mapping high-level operators like Conv2D to ISA
extensions using the AI-PiM compiler intrinsics in frontend and
backend compilers.

Frontiers in Electronics frontiersin.org08

Verma and Stan 10.3389/felec.2022.898273

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.898273


consisting of multiple “for” loops is split into inner and outer

loops. The innermost two loops are sized to map efficiently onto

the PiM hardware functional units. After this splitting at the

operator level, inner loops are replaced with compiler intrinsics

at the TIR level. Special care is given to properly define the input

and output operands in correct order, size and bit width to ensure

correct mapping of operands from operator to TIR to TIR with

compiler intrinsics. This code is then lowered further where

regular TIR is lowered to standard C code and compiler intrinsics

are retained within the C code. This version of the C code is then

generated from TVM and passed onto the backend C compiler.

The backend compiler is modified to map compiler intrinsics to

custom instructions and this allows to generate assembly code

consisting of standard RISC-V instructions along with custom

assembly instructions.

Synopsys ASIP Designer (Synopsys (2022)) acts as the

backend of the AI-PiM hardware, ISA and software co-design

methodology as shown in Figure 6. The backend definition starts

from the processor model shown in Figure 6. The processor

model consists of the instructions supported in the ISA along

with the microarchitecture definition of the processor describing

register transfers in each stage of the processor pipeline for each

ISA instruction. This processor description is written in a tool

specific language called nML (Fauth et al. (1995)). AI-PiM

extends the current RISC-V processor model with AI-PiM

functional units integrated inside the processor pipeline

(Section 3.2) and ISA extensions targeting these functional

units (Section 3.1). This extended processor model is used by

ASIP Designer to generate a C compiler for the extended RISC-V

processor. AI-PiM further modifies the generated compiler to

define the compiler intrinsics for ISA extension instructions

which are then exposed to TVM frontend. AI-PiM creates a

bridge between enhanced versions of TVM and ASIP Designer

where C code generated from TVM along with custom compiler

intrinsics can be directly compiled by ASIP Designer generated C

compiler which lowers the intrinsics to appropriate assembly

instructions which map directly onto the PiM functional units.

ASIP Designer utilizes the extended RISC-V processor model to

also generate complete Software Development Kit (SDK)

including assembler, linker, debugger, instruction set simulator

and profiler. Executable binary is then generated for AI-PiM

processor consisting of standard RISC-V instructions and

custom ISA extensions to support PiM functional units. This

executable binary is simulated using a cycle-accurate instruction

set simulator to generate performance metrics and dynamic

activity traces for power estimation.

3.4 Top-level hardware design

AI-PiM design methodology is based on hardware, ISA and

software co-design approach where PiM hardware is co-

developed along with corresponding ISA extensions and

software framework. The design methodology to integrate

PiM hardware functional units into top-level hardware design

is shown in Figure 6. The processor model describing the ISA and

microarchitecture of AI-PiM processor is used to generate a

synthesizable RTL along with the SDK generation. This ensures

that the software and hardware are always in sync with each other

since they are generated from the same processor description.

PiM functional units follow a custom hardware development due

to the analog and mixed-signal nature of PiM blocks. The top

level Verilog wrapper for the custom PiM blocks is generated to

capture the input and output signals and to connect these signals

to the top-level processor hardware. This Verilog wrapper

replaces the synthesizable RTL generated by the processor

design tool for PiM functional units based of their behavioral

description in the processor model. This synthesizable RTL along

with the PiM AFU Verilog wrapper is then synthesized and

placed and routed (P&R) to generate the final netlist and GDSII

layout for the AI-PiM processor. PiM functional unit modules

are marked as black boxes during the synthesis and P&R steps

and custom designed layout for the PiM blocks is placed in the

black box locations and routed to generate accurate area metrics

for the AI-PiM design.

4 Results

4.1 Evaluation methodology

Detailed experiments have been performed to evaluate the

performance of AI-PiM processor on AI kernels and

benchmarks. All the performance evaluation results for AI-

PiM and RISC-V baseline are generated using a cycle-accurate

simulator and the area results have been obtained through

synthesis with Synopsys DC Compiler on 14 nm FinFET

technology from GlobalFoundries. All the experiments have

been performed on quantized neural networks and utilize 8-bit

weights and input activations and 32-bit accumulations for the

VMM operation. MLPerf Tiny benchmark (Banbury et al.

(2021)) along with ResNet-50 neural network model and

general matrix-vector multiplication kernel have been used

to quantify the performance at a small AI kernel and

complete neural network levels. MLPerf Tiny benchmark is

representative of real-world workloads for the AI applications

at the extreme edge of IoT. A standard 5-stage in-order RISC-V

processor implementation supporting RV64IMC RISC-V ISA is

chosen as the baseline. AI-PiM performance has also been

compared to Arm Cortex-A72 processor from the Raspberry

Pi 4. RISC-V processor with support for the standard integer

(I), multiplication (M) and compressed (C) instruction

extensions (Waterman et al. (2014)) and Raspberry Pi 4 are

common choices for tinyML (Warden and Situnayake (2019))

systems as depicted by the hardware choices for the systems in

the results section of the MLPerf Tiny benchmark

Frontiers in Electronics frontiersin.org09

Verma and Stan 10.3389/felec.2022.898273

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.898273


(MLCommons (2021)). Arm Cortex-A72 performance metrics

are generated by running compiled neural networks on

Raspberry Pi 400 using the perf performance analysis tool. If

the size is not explicitly mentioned then the AI-PiM results

correspond to 64 × 64 bit 8T SRAM based in-memory vector-

matrix multiply unit. Section 4.4 discusses the effects of

different sizes for the PiM VMM AFU.

4.2 GEMV kernel performance

Figure 8 shows the performance improvement of using AI-

PiM with 64 × 64 bit in-SRAM functional unit in two different

modes compared to RV64IMC RISC-V baseline processor. Mode

1 utilizes 8-bit input operands and accumulates in 16-bit to

perform 1 × 8 vector multiplication with 8 × 8 matrix. Mode

2 works on 4-bit input operands and accumulates the output in 8-

bit to perform 1 × 16 vector multiplication with 16 × 16 matrix.

Figure 8 shows the speed improvements of AI-PiM over a small

VMM kernel. VMM forms the basis of most neural network

inference computations and this result shows the effectiveness of

AI-PiM in accelerating edge AI workloads.

4.3 MLPerf tiny benchmark performance

AI-PiM is a system-level solution capable of accelerating

complete neural network models rather than an accelerator-only

solution focusing on accelerating select AI kernels. This

capability enables simulation of the complete MLPerf Tiny

inference benchmark. The results from this experiment are

shown in Figure 9. The number of processor cycles required

to compute a single inference on each neural network model

from the benchmark have been computed and compared against

the RISC-V baseline processor and also against Arm Cortex-A72

processor from Raspberry Pi 4.

Figure 10 further details the performance speedup offered by

AI-PiM over current edge AI processors. AI-PiM provides and

average speedup of 2.74x compared to RISC-V baseline processor

and 2.45x compared to Arm Cortex-A72 processor for the

MLPerf Tiny benchmark. It should be noted that the 10.1x

speedup shown in Figure 8 with 8-bit input operands for a

small GEMV kernel does not translate to similar improvements

at the complete neural network level as shown for different neural

network models in Figure 10. The reason is that PiM functional

units accelerate only convolutional and fully connected layers of

the neural networks and other layers are not accelerated by PiM

functional units. Additionally, TVM introduces a lot of memory-

management wrapper code around the neural network layers

which is not accelerated by the PiM functional units and the

custom ISA extensions. Hence, we see a reduction in speedup

when moving from a hand crafted GEMV kernel written in C to

complete neural network model written in TensorFlow Lite for

Microcontrollers (TFLM) and converted to C code via frontend

ML compiler like TVM. This shows the importance of complete

workload level performance analysis enabled by AI-PiM

compared to other PiM solutions which focus only on kernel

level performance analysis.

The neural network models in the MLPerf Tiny benchmark

cover a wide variety of models including standard convolutional

neural networks (CNN) like ResNet, models with depthwise

separable convolutions and deep autoencoder models. The

benchmark also spans across different applications used for

edge AI and tinyML application domains like audio and video

keyword spotting, image classification and anomaly detection.

AI-PiM achieves a consistent speedup over the current edge AI

processors for all models in the benchmark showing the

effectiveness of designing AI-PiM as a general AI acceleration

solution rather than specializing AI-PiM for any particular type

of neural network model or application.

4.4 Design-space exploration

The results shown thus far have utilized 64 × 64 bit in-

SRAM VMM functional unit. But AI-PiM hardware, ISA and

software co-design allows extensive design-space exploration

for PiM functional units. One of the knobs in this design-space

exploration is the size of the PiM functional units. AI-PiM

allows to sweep the possible sizes of PiM AFUs and generate

performance and area metrics based on cycle accurate

performance measurements on real workloads and synthesis

or place and route based area estimations for each size of the

PiM AFU in this design-space. Rather than relying on empirical

decisions about what should be the size of the PiM AFU, AI-

FIGURE 8
Performance improvement of AI-PiM for GEMV kernel
compared to RV64IMC baseline. Results for 64 × 64 bit PiM
functional unit used in two different configurations are shown -
with 8-bit inputs (1 × 8 vector * 8 × 8 matrix) and 4-bit inputs
(1 × 16 vector * 16 × 16 matrix).

Frontiers in Electronics frontiersin.org10

Verma and Stan 10.3389/felec.2022.898273

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.898273


PiM allows comprehensive data based analysis of the impact of

each possible AFU size on the performance of the end AI

applications and area of end hardware implementation. In

this section, we show an example of the design space

exploration by considering the performance and area

impacts of PiM VMM sizes ranging from small 16 × 16 bit

functional units to 64 × 64 bit functional units. Figure 11 shows

the performance improvement offered by AI-PiM design with

different PiM AFU sizes for the ResNet-8 network from the

MLPerf Tiny benchmark suite. Results shown in Figure 11

match the intuitive understanding that the bigger the size of the

accelerator, higher is the parallelism offered by the VMM unit

and hence, higher the actual speedup of the design.

But a quick look at Figure 12 clearly shows that higher

accelerator performance comes at a higher area overhead. The

area overhead is measured as a ratio of the extra area required for

AI-PiM with different PiM functional unit sizes to the area of the

baseline RV64IMC processor. In such a scenario, AI-PiM offers

an effective design-space exploration methodology where users

can do a comprehensive trade-off analysis at the design time

between the performance and area overhead of each size of the

PiM functional unit by comparing the performance not on just

small kernels but on complete neural network models which will

serve as the final application workloads.

Edge AI devices are often cost, size and power limited which

requires extracting maximum performance at a minimum area

cost. This philosophy is used to devise a simple figure of merit

(FoM) by dividing the percentage performance improvement

offered by individual PiM VMM AFU sizes by percentage area

overhead for each design. This allows to maximize the

FIGURE 9
Comparison of AI-PiM performance with RV64IMC RISC-V baseline and Arm Cortex-A72 processor on MLPerf Tiny benchmark in terms of
number of processor cycles.

FIGURE 10
Performance speedup as a result of AI-PiM compared to RV64IMC RISC-V baseline and ArmCortex-A72 processor onMLPerf Tiny benchmark.

Frontiers in Electronics frontiersin.org11

Verma and Stan 10.3389/felec.2022.898273

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.898273


performance per unit area cost. Figure 13 clearly shows that

designing using smallest PiM AFU in terms saving area or

designing with biggest PiM AFU in terms of performance

maximization does not offer the highest advantage. Rather

AFU sizes in the middle of the range such as 32 × 32, 64 ×

16 and 64 × 32 provide the highest performance improvement

per percentage area overhead. Such figures of merits are

necessary when designing tinyML and edge hardware devices

where a very high importance is given to keeping the area cost of

the design to the minimum.

4.5 Comparison to standalone AI
accelerator

AI-PiM also enables power and energy estimations using

simulated activity files back-annotated to either synthesis or

post-place-and-route netlists. This allows for accurate, fast and

extensive power, performance, area and energy (PPAE) analysis

for each hardware, ISA and software framework design point.

The power results in this section have been generated using the

activity files from simulation of the audio keyword spotting

FIGURE 11
Performance speedup on ResNet-8 model from MLPerf Tiny benchmark in terms of number of processor cycles compared to RV64IMC 5-
stage RISC-V processor baseline.

FIGURE 12
Area overhead of different PiM AFU sizes compared to RV64IMC 5-stage RISC-V processor baseline.

Frontiers in Electronics frontiersin.org12

Verma and Stan 10.3389/felec.2022.898273

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.898273


benchmark featuring DS-CNN neural network model from

MLPerf Tiny benchmark. These activity files are then back-

annotated to the RTL for AI-PiM RISC-V processor and

synthesized for 14 nm FinFET technology. Power estimates

for the PiM AFU are added to the processor average power

metrics. All the power metrics show the average power

consumption for the DS-CNN benchmark. Energy spent on

the entire benchmark model inference is calculated using the

average power, performance in terms of number of cycles

required to run the benchmark for each design and the

frequency of the design.

Figure 14 shows PPAE comparison of AI-PiM with the

equivalent Gemmini accelerator (Genc et al. (2021); Gonzalez

and Hong (2020)) with 8 × 8 systolic array. Figure 14 shows that

loosely coupled Gemmini systolic array accelerator takes

9.62 times the power, 18.34 times the area and 9.36 higher

energy to offer just 3% performance improvement over AI-

PiM for the ResNet-50 neural network model. It should be

noted that Gemmini uses hand crafted C kernels to report the

ResNet-50 performance while AI-PiM uses TensorFlow Lite

compiled version of the benchmark using TVM. The hand

crafted C kernels offer high performance efficiency but AI-

PiM is able to achieve equivalent performance with the model

compiled from a high level domain-specific language. This

further proves the advantage of hardware, ISA and software

co-design methodology of AI-PiM and shows the advantage of

tight integration of AFU compared to loose integration of AI

accelerator as performed in the Gemmini accelerator.

5 Discussion

AI algorithms are evolving at a much faster pace than AI

hardware development. This necessitates building scalable and

flexible hardware solutions for processing AI applications all the

way from the cloud to the extreme edge of IoT. AI-PiM offers this

flexibility by extending the RISC-V processor with custom

instructions and hardware for integrating PiM accelerators

within the processor. Although the current article is focused

on SRAM based PiM functional unit, AI-PiM offers the flexibility

to integrate other CMOS compatible PiM technologies like

RRAM based PiM units also within the processor pipeline.

Most importantly, AI-PiM develops a standardized design

methodology for integrating PiM accelerators in the standard

computing stack at the microarchitecture, ISA and software

FIGURE 13
Improvement in Figure of Merit for AI-PiM (percentage performance gain/percentage area overhead) compared to RV64IMC 5-stage RISC-V
processor baseline.

FIGURE 14
Complete power, performance, area and energy (PPAE)
comparison of AI-PiM with the state-of-the-art Gemmini
standalone AI accelerator.

Frontiers in Electronics frontiersin.org13

Verma and Stan 10.3389/felec.2022.898273

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.898273


levels. This allows to build an extended RISC-V based edge

processor which is capable of exploiting the parallelism

advantages of PiM accelerators and couple it with the

programmable nature of a standard processor to build a

hardware solution which can process both AI and non-AI

edge applications. Accurate power estimation is an important

aspect of edge processor design along with performance and area

estimation. AI-PiM methodology provides an agile path to

perform such power, performance and area (PPA) estimation.

Power metrics for AI-PiM have not been reported in this article

but will be the subject of future work. Authors are also extending

the current AI-PiM design to support multiple and

heterogeneous PiM functional units to offer an easy path for

integrating these non von Neumann accelerators in the standard

computing model.

6 Conclusion

In this article, we presented AI-PiM architecture for tightly

integrating PiM accelerators as functional execution units inside the

RISC-V processor using hardware, ISA and software co-design

methodology. AI-PiM extends the RISC-V processor hardware

with PiM functional units, RISC-V ISA with custom instruction

extensions and develops the software framework to transparently

expose PiM accelerators to the software stack. Agile design

methodology of AI-PiM allows users to explore a comprehensive

design-space at the hardware and ISA levels. AI-PiM enables

processing of both AI and non-AI applications on single edge

processor and provides an average speedup of 2.74x over the

RV64IMC RISC-V processor baseline and 2.45x speedup over

Arm Cortex-A72 processor for MLPerf Tiny benchmark.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

VV was involved with the conceptualization of the idea,

conducting experiments and writing the manuscript. MS was

involved with the conceptualization of the idea and writing and

reviewing the manuscript. This manuscript has been approved by

all the authors.

Funding

This work has been funded by Semiconductor Research

Corporation (SRC) under GRC AIHW program task number

2945.001. This work was supported in part by CRISP, one of six

centers in JUMP, a Semiconductor Research Corporation (SRC)

program, sponsored by MARCO and DARPA.

Acknowledgments

The authors would like to thank SRC for funding this research

and to Xida Ren from University of Virginia for providing access to

Raspberry Pi during the pandemic. The authors also acknowledge

lively discussions that have shaped the work with: Kevin Skadron

(UVa), Ashish Venkat (UVa), Mike Caraman (NXP), Mahesh

Chandra (NXP), Ramesh Chauhan (Qualcomm), Vivek De

(Intel), Paul Somnath (Intel), Deepak Desalukunte (Intel),

Muhammad Khelah (INtel), Krishnan Kailas (IBM), Philip Jacob

(IBM), Karthik Swaminathan (IBM), Xin Zhang (IBM),Matt Ziegler

(IBM), Mihir Mody (TI).

Conflict of Interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest. The funder was

not involved in the study design, collection, analysis,

interpretation of data, the writing of this article or the

decision to submit it for publication.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).
“TensorFlow: A system for large-scale machine learning,” in 12th USENIX
Symposium on Operating Systems Design and Implementation, 265–283.

Anderson, M., Chen, B., Chen, S., Deng, S., Fix, J., Gschwind, M., et al. (2021).
First-generation inference accelerator deployment at facebook.

Banbury, C. R., Reddi, V. J., Lam, M., Fu, W., Fazel, A., Holleman, J., et al. (2021).
Benchmarking TinyML systems: Challenges and direction.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., et al. (2015). Mxnet: A
flexible and efficient machine learning library for heterogeneous distributed
systems. arXiv preprint arXiv:1512.01274

Frontiers in Electronics frontiersin.org14

Verma and Stan 10.3389/felec.2022.898273

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.898273


Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H., et al. (2018). “Tvm:
An automated end-to-end optimizing compiler for deep learning,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18).
(Carlsbad, CA: USENIX Association), 578–594.

Chen, Y.-H., Krishna, T., Emer, J., and Sze, V. (2016). “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural networks,” in
IEEE International Solid-State Circuits Conference, ISSCC 2016, 262–263. Digest of
Technical Papers.

Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., et al. (2016). “Prime: A
novel processing-in-memory architecture for neural network computation in
ReRAM-based main memory,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), 27–39. doi:10.1109/ISCA.
2016.13

Chou, T., Tang, W., Botimer, J., and Zhang, Z. (2019). “Cascade:
Connecting RRAMs to extend analog dataflow in an end-to-end in-
memory processing paradigm,” in Proceedings of the 52nd Annual IEEE/
ACM International Symposium on Microarchitecture, New York, NY, USA
(Association for Computing Machinery), 114–125. doi:10.1145/3352460.
3358328

Devaux, F. (2019). “The true Processing in Memory accelerator,” in 2019 IEEE
Hot Chips 31 Symposium (HCS), 1–24. doi:10.1109/HOTCHIPS.2019.8875680

Dong, Q., Sinangil, M. E., Erbagci, B., Sun, D., Khwa, W.-S., Liao, H.-J., et al. (2020).
“15.3 A 351 tops/W and 372.4 gops compute-in-memory SRAMmacro in 7nm FinFET
CMOS for machine-learning applications,” in 2020 IEEE International Solid- State
Circuits Conference - (ISSCC), 242–244. doi:10.1109/ISSCC19947.2020.9062985

Eckert, C., Wang, X., Wang, J., Subramaniyan, A., Iyer, R., Sylvester, D., et al.
(2018). “Neural cache: Bit-serial in-cache acceleration of deep neural networks,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA), 383–396. doi:10.1109/ISCA.2018.00040

Fauth, A., Van Praet, J., and Freericks, M. (1995). “Describing instruction set
processors using nML,” in Proceedings the European Design and Test Conference.
ED TC 1995, 503–507.

Gao, M., Pu, J., Yang, X., Horowitz, M., and Kozyrakis, C. (2017). “Tetris: Scalable
and efficient neural network acceleration with 3D memory,” in Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems (New York, NY, USA:
Association for Computing Machinery), 751–764. doi:10.1145/3037697.3037702

Genc, H., Kim, S., Amid, A., Haj-Ali, A., Iyer, V., Prakash, P., et al. (2021).
“Gemmini: Enabling systematic deep-learning architecture evaluation via full-stack
integration,” in 2021 58th ACM/IEEE Design Automation Conference (DAC),
769–774. doi:10.1109/DAC18074.2021.9586216

Gonzalez, A., and Hong, C. (2020). A chipyard comparison of NVDLA and
Gemmini.

Hajinazar, N., Oliveira, G. F., Gregorio, S., Ferreira, J. a. D., Ghiasi, N. M., Patel,
M., et al. (2021). “Simdram: A framework for bit-serial simd processing using
DRAM,” in Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, New
York, NY, USA (Association for Computing Machinery), 329–345.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 770–778. doi:10.1109/CVPR.2016.90

Imani, M., Gupta, S., Kim, Y., and Rosing, T. (2019). “FloatPIM: In-Memory
acceleration of deep neural network training with high precision,” in 2019 ACM/
IEEE 46th Annual International Symposium on Computer Architecture (ISCA),
802–815.

Jeddeloh, J., and Keeth, B. (2012). “Hybrid memory cube new DRAM architecture
increases density and performance,” in 2012 Symposium on VLSI Technology
(VLSIT), 87–88. doi:10.1109/VLSIT.2012.6242474

Jia, H., Ozatay, M., Tang, Y., Valavi, H., Pathak, R., Lee, J., et al. (2022). Scalable and
programmable neural network inference accelerator based on in-memory computing.
IEEE J. Solid-State Circuits 57, 198–211. doi:10.1109/JSSC.2021.3119018

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., et al.
(2017). “In-datacenter performance analysis of a tensor processing unit,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, New York, NY, USA (Association for Computing Machinery,
ISCA), 1–12. doi:10.1145/3079856.3080246

Jun, H., Cho, J., Lee, K., Son, H.-Y., Kim, K., Jin, H., et al. (2017). “HBM (high
bandwidth memory) DRAM technology and architecture,” in 2017 IEEE
International Memory Workshop (IMW), 1–4. doi:10.1109/IMW.2017.
7939084

Lee, S., Kang, S.-h., Lee, J., Kim, H., Lee, E., Seo, S., et al. (2021). “Hardware
architecture and software stack for PIM based on commercial DRAM
technology : Industrial product,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), 43–56. doi:10.
1109/ISCA52012.2021.00013

Li, W., Xu, P., Zhao, Y., Li, H., Xie, Y., and Lin, Y. (2020). “Timely: Pushing data
movements and interfaces in PIM accelerators towards local and in time domain,”
in Proceedings of the ACM/IEEE 47th Annual International Symposium on
Computer Architecture (IEEE Press), 832–845.

MLCommons (2021). MLPerf Tiny results. Availableat: https://mlcommons.org/
en/inference-tiny-05/.

Moyer, S. A. (1991). Performance of the iPSC/860 node architecture (Citeseer).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
PyTorch: An imperative style. High-Performance Deep Learning Library.

Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C.,
et al. (1997). A case for intelligent RAM. IEEE Micro 17, 34–44. doi:10.1109/40.
592312

Roy, S., Ali, M., and Raghunathan, A. (2021). PIM-DRAM: Accelerating machine
learning workloads using processing in commodity DRAM. IEEE J. Emerg. Sel.
Top. Circuits Syst. 11, 701–710. doi:10.1109/JETCAS.2021.3127517

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
ImageNet large scale visual recognition Challenge. Int. J. Comput. Vis. 115,
211–252. doi:10.1007/s11263-015-0816-y

Seshadri, V., Lee, D., Mullins, T., Hassan, H., Boroumand, A., Kim, J., et al. (2017).
“Ambit: In-Memory accelerator for bulk bitwise operations using commodity
DRAM technology,” in 2017 50th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 273–287.

Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P., Hu,
M., et al. (2016). “Isaac: A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars,” in Proceedings of the 43rd International
Symposium on Computer Architecture (IEEE Press), 14–26. doi:10.1109/ISCA.
2016.12

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
et al. (2016). Mastering the game of go with deep neural networks and tree search.
Nature 529, 484–489. doi:10.1038/nature16961

Synopsys (2022). ASIP designer. Availableat: https://www.synopsys.com/dw/
ipdir.php?ds=asip-designer.

Warden, P., and Situnayake, D. (2019). Tinyml: Machine learning with tensorflow
lite on arduino and ultra-low-power microcontrollers. O’Reilly Media, Inc..

Waterman, A., Lee, Y., Patterson, D. A., and Asanović, K. (2014). The RISC-V
instruction set manual, volume I: User-level ISA, version 2.0. Tech. Rep. UCB/EECS-
2014-54. Berkeley: EECS Department, University of California.

Wulf, W. A., and McKee, S. A. (1995). Hitting the memory wall: Implications of
the obvious. SIGARCH Comput. Archit. News 23, 20–24. doi:10.1145/216585.
216588

Yazdanbakhsh, A., Seshadri, K. K., Akin, B., Laudon, J., and Narayanaswami, R.
(2021). An evaluation of edge TPU accelerators for convolutional neural networks.
ArXiv abs/2102.10423

Zhang, J., Wang, Z., and Verma, N. (2017). In-memory computation of a
machine-learning classifier in a standard 6T SRAM array. IEEE J. Solid-State
Circuits 52, 915–924. doi:10.1109/JSSC.2016.2642198

Frontiers in Electronics frontiersin.org15

Verma and Stan 10.3389/felec.2022.898273

https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1145/3352460.3358328
https://doi.org/10.1145/3352460.3358328
https://doi.org/10.1109/HOTCHIPS.2019.8875680
https://doi.org/10.1109/ISSCC19947.2020.9062985
https://doi.org/10.1109/ISCA.2018.00040
https://doi.org/10.1145/3037697.3037702
https://doi.org/10.1109/DAC18074.2021.9586216
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/VLSIT.2012.6242474
https://doi.org/10.1109/JSSC.2021.3119018
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/IMW.2017.7939084
https://doi.org/10.1109/IMW.2017.7939084
https://doi.org/10.1109/ISCA52012.2021.00013
https://doi.org/10.1109/ISCA52012.2021.00013
https://mlcommons.org/en/inference-tiny-05/
https://mlcommons.org/en/inference-tiny-05/
https://doi.org/10.1109/40.592312
https://doi.org/10.1109/40.592312
https://doi.org/10.1109/JETCAS.2021.3127517
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1038/nature16961
https://www.synopsys.com/dw/ipdir.php?ds=asip-designer
https://www.synopsys.com/dw/ipdir.php?ds=asip-designer
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588
https://doi.org/10.1109/JSSC.2016.2642198
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.898273

	AI-PiM—Extending the RISC-V processor with Processing-in-Memory functional units for AI inference at the edge of IoT
	1 Introduction
	2 Background
	3 Materials and methods
	3.1 ISA extensions for PiM
	3.2 Tightly integrated PiM functional unit
	3.3 Software framework development
	3.4 Top-level hardware design

	4 Results
	4.1 Evaluation methodology
	4.2 GEMV kernel performance
	4.3 MLPerf tiny benchmark performance
	4.4 Design-space exploration
	4.5 Comparison to standalone AI accelerator

	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of Interest
	Publisher’s note
	References


