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Pulse photoplethysmography (PPG) is a simple and economical technique for

obtaining cardiovascular information. In fact, PPG has become a very popular

technology amongwearable devices. However, the PPG signal is well-known to

be very vulnerable to artifacts, and a good quality signal cannot be expected for

most of the time in daily life. The percentage of time that a given measurement

can be estimated (e.g., pulse rate) is denoted coverage (C), and it is highly

dependent on the subject activity and on the configuration of the sensor,

location, and stability of contact. This work aims to quantify the coverage of PPG

sensors, using the simultaneously recorded electrocardiogram as a reference,

with the PPG recorded at different places in the body and under different stress

conditions. While many previous works analyzed the feasibility of PPG as a

surrogate for heart rate variability analysis, there exists no previous work

studying coverage to derive other cardiovascular indices. We report the

coverage not only for estimating pulse rate (PR) but also for estimating pulse

arrival time (PAT) and pulse amplitude variability (PAV). Three different datasets

are analyzed for this purpose, consisting of a tilt-table test, an acute emotional

stress test, and a heat stress test. The datasets include 19, 120, and 51 subjects,

respectively, with PPG at the finger and at the forehead for the first two datasets

and at the earlobe, in addition, for the latter. C ranges from 70% to 90% for

estimating PR. Regarding the estimation of PAT, C ranges from 50% to 90%, and

this is very dependent on the PPG sensor location, PPG quality, and the fiducial

point (FP) chosen for the delineation of PPG. In fact, the delineation of the FP is

critical in time for estimating derived series such as PAT due to the small

dynamic range of these series. For the estimation of PAV, the C rates are

between 70% and 90%. In general, lower C rates have been obtained for the PPG

at the forehead. No difference in C has been observed between using PPG at the

finger or at the earlobe. Then, the benefits of using either will depend on the

application. However, different C rates are obtained using the same PPG signal,

depending on the FP chosen for delineation. Lower C is reported when using

the apex point of the PPG instead of the maximum flow velocity or the basal

point, with a difference from 1% to even 10%. For further studies, each setup
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should first be analyzed and validated, taking the results and guidelines

presented in this work into account, to study the feasibility of its recording

devices with respect to each specific application.

KEYWORDS

pulse photoplethysmography, coverage, wearable, heart rate variability, pulse transit
time, PPG body locations, reliability, stress

1 Introduction

Pulse photoplethysmography (PPG) remains a simple and

economical technique to obtain cardiovascular information

using sensors that can be placed in different parts of the body

such as the wrist, fingertip, earlobe, or forehead (Nitzan et al.,

1998; Allen, 2007; Bernardi et al., 2014). These features make

PPG a very popular technology among wearable devices.

However, the PPG signal is well-known to be very vulnerable

to motion artifacts (Ismail et al., 2021). In fact, during daily life

when individuals engage in moderate or vigorous physical

activity, good quality cannot be expected most of the time.

The potential applications of a wearable device depend on the

percentage of time that physiological parameters (e.g., mean

pulse rate) can be estimated, which is known as coverage. The

PPG coverage is highly dependent on the configuration of the

sensor: transmission/reflection, location, and stability of the

contact between the sensor and the body. Few works such as

Orphanidou et al. (2014) reported measurements of coverage for

PPG-based wearable devices, ranging from 14% to 56% (Bonomi

et al., 2018; Eerikäinen et al., 2018; Tarniceriu et al., 2018; Bashar

et al., 2019).

Choosing the most feasible sensor location and measurement

technique for pulse rate variability (PRV) analysis may thus be

challenging (Nilsson et al., 2007; Buxi et al., 2015). This work

aims to quantify the coverage of PPG-based devices when placing

them over different locations of the body. Three different datasets

are analyzed, studying the percentage of time that pulses can be

detected in different PPG signals recorded at different places of

the body and under different conditions. In addition, the

feasibility of estimating well-known series dependent on

PPG—such as pulse arrival time (PAT) or pulse amplitude

variability (PAV)—is also considered.

A large variety of different devices exist to register the PPG

signal adapted to different parts of the body, including the

forehead, earlobe (Lu et al., 2009; Vescio et al., 2018), in-ear,

chest (Chreiteh et al., 2014), abdomen (Spigulis, 2005), vagina,

wrist (Grajales and Nicolaescu, 2006; Salehizadeh, 2015), and so

on. The most common place for the PPG sensor in clinical

practice is the fingertip or the earlobe (Rhee et al., 2001; Wang

et al., 2007). In this setup, PPG is usually used for heart rate (HR)

and peripheral oxygen saturationmonitoring. On the other hand,

the wrist is a more common place for PPG acquisition by

wearable devices.

Wearable pulse rate (PR) sensors based on PPG signals have

become popular for instantaneous assessment of PR (Tamura

et al., 2014; Zhang, 2014). Lots of previous studies, such as

Charlot et al. (2009), Porto and Junqueira (2009), Gil et al.

(2010), Khandoker et al. (2011), Lin et al. (2014), Pinheiro et al.

(2016), and Peralta et al. (2019), analyzed the feasibility of PRV as

a surrogate of heart rate variability (HRV). These findings show

sufficient accuracy under non-stationary conditions, but results

regarding the position of the sensor are not conclusive (Schäfer

and Vagedes, 2013). However, none analyzed explicitly the

coverage of the PPG and compared different setups, body

locations, and fiducial points (FPs).

The present work is focused on the coverage of the detection

of PPG pulses and their reliability to derive cardiovascular

indices such as HR and PAT. The results are obtained using

scientific equipment, not commercial wearables, but the results

will help to approach future projects based on wearables.

2 Materials

Three datasets are analyzed. These datasets are composed of

PPG signals recorded at different body places and

electrocardiogram (ECG) signals in three different stress

protocols. All signals were simultaneously registered using

commercial recording devices. The subjects analyzed for the

datasets are independent of each other.

These protocols for stress tests are explained in detail and

have been extensively studied in previous studies (Hernando

et al., 2016; Peralta et al., 2019; Cernych et al., 2021). These will be

summarized in the following three subsections. All the data were

collected according to the Declaration of Helsinki, and the

specific inclusion-exclusion criteria are mentioned in the

corresponding studies (Hernando et al., 2016; Peralta et al.,

2019; Cernych et al., 2021). Note that all subjects included in

the three datasets are young healthy volunteers with no cardiac

comorbidities or cardiovascular problems.

2.1 Tilt-table orthostatic stress test dataset

The tilt-table test (TTT) protocol consisted of 10 min in the

early resting supine position (R1), followed by 5 min tilted up 80°

(T), and 5 min back to the resting supine position (R2). There are
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19 subjects available. As mentioned, note that the total time spent

in this protocol is around 20 min.

During TTT, various biomedical signals were recorded,

including ECG lead II and PPG at two wavelengths, red

(660 nm, R-PPG) and infrared (940 nm, IR-PPG), a

transmission-based PPG signal at the finger, and a reflection-

based PPG signal at the forehead. All these signals were

simultaneously recorded by Cardioholter 6.2-8E78 (Biomedical

Engineering Institute of Kaunas University of Technology,

Lithuania), using a sampling rate of 500 Hz for the ECG

signal and 250 Hz for the PPG signals. Further details can be

obtained in the study by Peralta et al. (2019).

2.2 Acute mental stress test dataset

The mental stress test data include ECG and PPG signals

recorded from volunteer students at the Autonomous University

of Barcelona (UAB), University of Zaragoza (UZ), and

Polytechnique University of Madrid (UPM). The ABP

10 module (Medicom 83 System, MTD Ltd., Russia) was used

for the simultaneous and synchronized acquisition of the PPG on

both forehead and finger sampled at 250 Hz, and the Y orthogonal

lead ECG (Frank Lead System), using a sampling rate of 1 kHz for all

signals. A total of 120 young healthy subjects, not previously

diagnosed with any chronic or psychological disease, performed

the stress test. However, due to issues during the recordings, PPG at

the forehead is only available for 41 subjects.

All subjects underwent a basal session (BS) and a stress

session (SS). The BS session consisted of a total 35-min-length

relaxing audition. On another day, during the ES session,

emotional stress was induced by means of a modified Trier

Social Stress Test. Refer to Hernando et al. (2016) for more

information on the protocol. The total time spent in the SS, for

each volunteer to complete the different stress stages, is around

other 35 min.

2.3 Heat stress dataset

The heat stress test protocol consisted of repetitive exposures

to a sauna characterized by air with a relative humidity of 30%

and a high temperature of 80–90°C. Before and after sauna

exposures, participants were instructed to rest in semi-

Fowler’s position in a neutral temperature environment

(25°C). The total duration of the protocol was approximately

2 h and 20 min.

The data were acquired simultaneously by using the

Nautilus1 (Biomedical Engineering Institute of Kaunas

University of Technology, Lithuania). The database includes

the conventional three-lead (I, II, and III) ECG data and three

PPG signals at two wavelengths, IR-PPG and R-PPG, with the

PPG from the right hand, forehead, and earlobe, were recorded at

1,000 Hz, all synchronized. This dataset was recorded at

Lithuanian Sports University, and it includes biomedical

signals from 51 healthy subjects. Further details are given in

Kontaxis et al. (2019) and Cernych et al. (2021).

3 Methods

3.1 Electrocardiogram delineation

The R-wave is detected for each heartbeat by means of a

wavelet-based method (Martínez et al., 2004). The time instants

of each R-wave are denoted as n R. The time between two

successive R-waves defines the RR interval. The inverse of the

RR intervals is used to calculate the HR, in beats per

minute (bpm).

Ectopic beats and miss-detections are corrected as described

in Mateo and Laguna (2003). The exclusion of non-normal RR

intervals results in the normal-to-normal (NN) interval series,

from which the HR is derived.

3.2 Pulse photoplethysmography
delineation

First, PPG signals, denoted as d PPG(n), are band-pass

filtered between 0.3 and 15 Hz with a 4th-order Chebyshev

type II filter in order to eliminate the baseline contamination

and high-frequency noise (see Elgendi (2016)).

Forward–backward zero-phase filtering was applied for

preserving signal morphology.

Following PPG filtering and before PPG delineation, it is

necessary to remove motion artifacts. A wide variety of artifact

detectors are available in the literature, from which we chose one

based on the energy of the PPG signal (Armanac et al., 2019),

aiming to eliminate only those noticeable artifacts characterized

by higher energy than clean segments. The detection of energy-

based artifacts is performed in the following steps:

1) First, the PPG signal, d PPG(n), is squared to emphasize the

segments with artifacts related to high energy: d2PPG(n).
2) The moving variance signal, σ2(d2PPG(n)), is calculated over a

5-s window.

3) The moving median signal, m(n), of d2PPG(n) is calculated

over a 5-min window.

4) The decision criterion is established to

σ2(d2PPG(n))≥ 20*m(n). Sample by sample, if

σ2(d2PPG(n))≥ 20*m(n), that PPG sample “n” is considered

as an artifact since a large deviation from the PPG median

occurs.

The two window lengths and the decision criteria scalar are

set empirically. As commented, the detected segments of artifacts

Frontiers in Electronics frontiersin.org03

Armañac-Julián et al. 10.3389/felec.2022.906324

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.906324


are removed from the original data for further analysis. Figure 1

illustrates the performance of this artifact detector.

After that, cubic spline interpolation was performed over the

PPG signals to obtain a 1,000 Hz version of the PPG signals to

increase the time resolution to define the FP. Each PPG pulse is

detected by an algorithm that determines the maximum up-slope

instant of each PPG pulse based on a low-pass differentiator filter

and a time-varying threshold (see Lázaro et al. (2013b)). Four FPs

are computed and subjected to analysis (see Figure 2). The

maximum up-slope instant (maximum in the first derivative)

for a PPG pulse is denoted as n D, representing the time instant

when the pulse reaches the maximum flow velocity during the

FIGURE 1
PPG artifact detection based on the energy of the signal. Detected PPG artifacts are in red at the top. The estimated energy, σ2(d2

PPG(n)), and the
decision criteria, 20*m(n), are plotted at the bottom.

FIGURE 2
ECG and PPG synchronous recording illustration. The three PPG signals are at the forehead (PPGH), at the earlobe (PPGE), and at the finger
(PPGF), respectively. The FP delineated are n R for the ECG R-wave instant, n D for the PPGmaximum up-slope instant, n A for the PPG apex point, and
n B for the PPG basal point. Both red PPG (R-PPG, in red) and infrared PPG (IR-PPG, in gray) lights are also illustrated. Refer Allen (2007) and Charlton
et al. (2018) for more information on the morphology of PPG in different body locations.
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ventricular systole. Afterward, the n A and n B instants are

denoted by the apex and the basal point of the corresponding

PPG pulse. For PR estimation, ectopic beats are corrected for

each FP point of each PPG, using the algorithm proposed by

Mateo and Laguna (2003).

3.3 Heart rate and pulse rate estimation

For the HR and PR estimation, the IPFM model is used.

The HR is obtained as follows (Mateo and Laguna, 2003):

HRu n( ) � ∑
i

nRi − nRi−1[ ] · δ n − nRi( ), (1)

where “i” represents the index for each heartbeat, δ(·) denotes the
Kronecker delta function, and the superscript “u” denotes that

the signals are unevenly sampled since heartbeats occur unevenly

in time.

The PR is obtained as follows (Lázaro et al., 2013a):

PRu
FP n( ) � ∑

i

n FPi − n FPi−1[ ] · δ n − n FPi( ), FP ∈ nA, nB, nD{ }.

(2)

3.4 Pulse arrival time estimation

PAT is measured as the difference between those FPs

detected at each PPG signal and the time instant of the

R-wave, n R, detected in the ECG signal for each heartbeat

(Mukkamala et al., 2015):

PATu
FP n( ) � ∑

i

n FPi − nRi[ ] · δ n − nRi( ), FP ∈ nA, nB, nD{ }.

(3)
Note that the number of PAT pulses can be, at most, equal to the

number of heartbeats detected on the ECG.

A valid physiological range for PATu
FP(n) should be

established. Any PATu
FP(n) value out of the [50, − ,650] ms

range are excluded from further analysis. Afterward, a median-
absolute-deviation outlier rejection rule is applied to suppress
spurious values (Bailón et al., 2006).

3.5 Pulse amplitude variability estimation

PAV is measured as the amplitude variation at the PPG signal

between the apex and the basal points for each pulse (Lázaro

et al., 2013a):

PAVu n( ) � ∑
i

xPPG nAi( ) − xPPG nBi( )[ ] · δ n − nBi( ), (4)

where “i” represents the index for each heartbeat, δ(·) denotes
the Kronecker delta function, and the superscript “u” denotes

that the signals are unevenly sampled since pulses occur

unevenly in time. Note that the number of PAV pulses may

differ from the number of heartbeats detected on the ECG in

the same segment.

Then, similarly to PAT estimation, the median-absolute-

deviation outlier rejection rule is applied to exclude the

spurious pulses of each PAV series (Bailón et al., 2006).

3.6 Coverage measures

The coverage measures are defined based on the HR,

taking the ECG as the gold standard. We compare the HR

and the PR in consecutive 10-s segments without overlapping

for each FP point of each PPG signal. As a result, each segment

of PPG is classified as good or bad. This 10-s segment duration

is established since it has been shown sufficient to estimate HR

(Orphanidou et al., 2014). A segment of PPG pulses is

classified as bad if the number of pulse detections within

the segment differs by more than 10% from the number of

ECG detections in the same segment. Table 1 illustrates one

example including 70 s. Note that while HR is perfectly

estimated by PR in the average 70 s period, coverage is

not 100%.

PPG is useful for more purposes than as a surrogate for

the ECG to estimate HR or HRV indices. PPG pulses are

largely exploited for calculating cardiovascular indices such

as PAT and PAV among others. Therefore, coverage

measures based on PAT and PAV are also reported in

this work. For this purpose, the number of heartbeats in

10-s consecutive segments is compared with the number of

PAT values that can be derived in that same segment.

Similarly, coverage based on PAV is studied as well in

order to have a measure similar to the PAT but

independent of the ECG. See Table 1 for an illustrative

example of the coverage definition.

Note that the pulse instant reference differs for the

definition of HR (Eq. 1), PR (Eq. 2), PAT (Eq. 3), and

PAV (Eq. 4), being at nRi for HR and PAT, and at n FPi for

PR and PAV. When comparing, for example, HR with PR in

10-s segments, there is a possibility of having a mismatch at

the beginning or end of each segment that would lower the

total average coverage. To avoid this possible mismatch, the

average PAT of the corresponding stage is subtracted from

the PPG signal before computing the coverage in the 10-s

segment. This correction of mismatch can be seen in

Figure 3.

As mentioned, three datasets are analyzed, all with

different characteristics. The PPG mode of the acquisition

devices can be transmission or reflection, in the IR-PPG or

R-PPG light wavelengths, and can be placed at the finger, at

the forehead, or at the earlobe. Results of total average

coverage (C) are reported for each dataset for PR, PAT,
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TABLE 1 Illustrative example for the coverage definition. For the PR, good coverage is considered in a 10-s segment if the estimation error of PPG
pulses is lower than 10% compared to ECG. For PAT-coverage measurement purposes, a 10-s segment is considered valid if the number of PAT
values differs by less than 10% from the number of ECG beats. Note that PAT measures may be omitted either because of being considered out of
physiological limits or because the associated PPG pulse is considered spurious. Similar to PAT, this is done for the PAV-coverage measurement.

Time [secs] 0 10 20 30 40 50 60

Segment "i" 1 2 3 4 5 6 7

# ECG beats 9 10 9 10 11 12 11

HR [bpm] 54 60 54 60 66 72 66 62

# PPG pulses 8 9 9 10 11 14 11

PR [bpm] 48 54 54 60 66 84 66 62

Coverage, C (10%)
# beats - # PPG pulses1

X OK OK OK OK X OK C = 71%

# PAT pulses 8 9 9 9 11 12 11

# valid PAT pulses 7 9 8 8 10 11 10

Coverage, C (10%)
# beats - # PAT pulses2

X OK X X OK OK OK C = 57%

# PAV Pulses 8 11 9 9 11 12 13

# valid PAV pulses 8 10 9 9 9 11 11

Coverage, C (10%)
# beats - # PAV pulses3

X OK OK OK X OK OK C = 71%

1IF (#PPG-pulses(i) ≥ #ECG-beats(i)*0,9 AND #PPG-pulses(i) ≤ #ECG-beats(i)*1,1 ), C(i)=“OK”; else, C(i)=“X”.
2IF (#valid PAT-pulses(i) ≥ #ECG-beats(i) *0,9 ), C(i)=“OK”; else, C(i)=“X”.
3IF (#valid PAV-pulses(i) ≥ #ECG-beats(i) *0,9 AND #valid PAV-pulses(i) ≤ #ECG-beats(i) *1,1 ), C(i)=“OK”; else, C(i)=“X”.

With “i” being the index for each 10-s segment.

FIGURE 3
Correction of the mismatch in the PPG signal for the calculation of PR and PAV coverage. Before calculating the coverage of the series
referenced in the PPG pulses, such as PR or PAV, the average PAT must first be subtracted to align the occurrence of the pulses (n FPi) with the
occurrence of the heartbeats (nRi). If this is not done, there is the possibility of mismatch, which will make the coverage to be less than the real.
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and PAV estimation, considering ECG as the gold standard. In

addition, the number of artifacts deleted in the PPG signals is

also reported.

4 Results

Results are shown in three tables for the three different

datasets (Tables 3–5). Each table contains all the coverage

information summarized for all the PPG signals: body

locations, characteristic protocol stages, PPG light emission

wavelength, and FPs delineated.

First, the percentage of artifacts detected from each PPG

signal is displayed in Table 2. Note that an artifact is

considered only in segments with clearly higher energy

than the clean segments. A small percentage of artifacts

are suppressed, from 1% to 6% in signals of 20 min and

2 h 20 m, in the tilt-table test and in the heat stress test,

respectively. However, the PPG at the forehead in the acute

mental stress test was low quality, and almost 20% of the PPG

were artifacts.

4.1 Tilt-table orthostatic test dataset

Coverage results for the TTT are shown in Table 3. There is

good PPG coverage for estimating PR. Around 80–90% of HR

can be estimated via PPG with a 10% error or less, regardless of

the FP used. The coverage is similar whether using PPG at the

finger or at the forehead and for IR-PPG or R-PPG lights as well,

although slightly better for IR-PPG.

However, it is remarkable that the coverage deteriorates

when we try to estimate the PAT. There is an approximate

maximum of 75% PAT pulses that can be properly defined,

compared to the number of R-waves delineated. Remember

that while an R-wave exists, the corresponding PAT can be

omitted, either because of a bad definition in time of the FP,

or an outlier, or even a PAT defined out of the physiological

range. Even more, whereas the n A appears to be a good FP to

estimate the PR, it now presents the worst results of

coverage in terms of PAT, with an average coverage of

53–56%. The other FPs report a higher coverage,

around 70%.

4.2 Acute mental stress dataset

Results of the mental stress test are shown in Table 4. Again,

the coverage of PPG to estimate the PR is notably higher than

that used to estimate the PAT. In addition, it can be seen that

there is a sudden decrease in the coverage of PPG at the forehead,

compared to the coverage at the finger. In fact, looking at the PPG

at the forehead, the quality of the signal in this dataset is

particularly bad. As a result, an average coverage of 30% is

found for estimating PR or PAT.

TABLE 2 Percentage of artifacts detected for each PPG signal at the three datasets.

Tilt-table orthostatic test Acute mental stress test Heat stress test

N: 19 subjects N: 120 subjects N: 51 subjects

Protocol duration: 20 min Protocol duration: 1 h 10 min Protocol duration: 2 h 20 min

% Artefacts % Artefacts % Artefacts

Finger Finger 6% Finger

IR-PPG 1% IR-PPG 4%

R-PPG 2% R-PPG 4%

Forehead Forehead 19% Forehead

IR-PPG 1% IR-PPG 3%

IR-PPG 1% IR-PPG 4%

Earlobe

IR-PPG 3%

IR-PPG 1%

TABLE 3 Coverage results for the TTT dataset. Values of coverage are
presented in %, relative to the number of heartbeats (ECG as
ground truth).
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4.3 Heat stress dataset

Third, the results of the heat stress test are shown in Table 5.

For this dataset, there are 6 PPG signals available for 2.20 h of

recordings, including PPG at the finger, forehead, and earlobe,

both for IR-PPG and R-PPG lights. In general, except for some

particular cases, all PPGs have good signal quality.

Coverage for PR estimation is around 70–80%. In fact, no big

differences are found for the coverage either using IR-PPG or

R-PPG lights. Moreover, the coverage of PR estimation and of

PAT estimation is quite similar. The highest coverage rates are

for the PPG at the earlobe using the R-PPG wavelength.

Nevertheless, for the PAT estimation using n A, we can see

again the smaller coverage rates.

5 Discussion

Coverage for mean PR, PAT, and PAV has been analyzed

when using different PPG fiducial points with signals

recorded at different parts of the body and light

wavelengths. As mentioned earlier, the coverage definition

differs depending on the physiological parameters to

estimate, that is, PR, PAT, or PAV. On the one hand,

regarding PR coverage, a segment is considered valid for

PR estimation if PPG can estimate this parameter with an

error lower than 10% with respect to the HR estimated from

the ECG, which is taken as ground truth. On the other hand,

a physiological range restriction and an outlier rejection rule

are applied to PAT estimation, and only the outlier rejection

rule is applied to PAV. Ground truth is not available for these

two estimates since PAT is estimated inside its physiological

limits and PAV is a relative measure with arbitrary units.

Then, a segment is considered valid if the error in the

number of PAT or PAV estimates determinable in the

segment is lower than 10% with respect to the number of

heartbeats detected from the ECG. In general, the best results

in terms of coverage are obtained for the transmission-PPG

at the finger, especially using n D or n B as FP. Except for

some particular cases, the coverage of PPG when estimating

the PR, compared to the coverage of ECG, is equivalent.

Regarding the placement of the PPG, the obtained coverage

for the finger and earlobe are higher, whilst the coverage at the

forehead is usually lower. This is due to the fact that PPG

acquisition is very sensitive to artifacts due to either poor

contact or minimal motion artifacts, and PPG at the forehead

is predisposed to these (because of facial expression and

setup configuration). Moreover, the device to record PPG at

the forehead must be dedicated, and signal quality must be

ensured before recording as well. We show no fundamental

differences and no advantage between using IR-PPG or

R-PPG light for PPG recordings. Note that the devices

used for the recordings did not include green light, which

is the most common wavelength for PPG measurement with

wearable devices. An influence of the selected FP in the

coverage was observed, especially for PAT and PAV. The

end of systole of the PPG pulses is typically smooth, making

n A very vulnerable to additive noise, in line with the

observations of Rajala et al. (2017). Furthermore, the

morphology of the apex of PPG at the earlobe or at the

forehead is also usually smoother.

The FP n A might be used for mean PR estimation with a

similar performance to that obtained by the other methods.

However, results of PAT coverage suggest that the

performance weakens for this FP n A. On the contrary,

FPs, n D and n B, are less prone to this heterogeneity in

morphology. In fact, the FP analysis performed by Peralta

et al. (2019) in the TTT dataset, for time domain PRV

estimation, reported that n B and n D had the minimum

relative errors compared to the HRV estimators based on the

ECG, with n D representing the instant of maximum flow

velocity for each heartbeat and n B representing the time

onset of systole.

In fact, looking at Tables 3, 4, and 5, the coverage for

estimating PAT, using n A as FP, is lower than using n D or n

TABLE 4 Coverage results for the acute mental stress test dataset.
Values of coverage are presented in %, relative to the number of
heartbeats (ECG as ground truth).

TABLE 5 Coverage results for the heat stress test dataset. Values of coverage are presented in %, relative to the number of heartbeats (ECG as ground
truth).
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B. The coverage for PR estimation using n A is also slightly

lower than using n D or n B. However, the coverage for

estimating PAV is high. Based on that, we can say that the

estimation of the maximum point of a PPG pulse, that is, x

PPG(n A), can be done well. Then, for measurements derived

from the amplitude, such as PAV, the coverage is good, but if

measurements are based on the time instant of detection,

that is, n A, the coverage may worsen for estimating both PR

and PAT, with the latter getting much worse due to the very

small dynamic range intrinsic to PAT. Therefore, the

delineation of the FP in time is critical depending on the

application of use. In general terms, in order to better suit the

smoother shapes of the reflection-based PPG signals and for

greater robustness under non-stationary conditions such as

wearable scenarios, we suggest using n D or n B as FP to get

the best possible coverage rates.

Although many previous works analyzed the feasibility of

PRV as a surrogate of HRV, to the best of our knowledge,

there are no previous works studying the coverage when

deriving other cardiovascular indices such as PR, PAT, or

PAV estimation. Different coverage is obtained using the

same PPG signal, depending on the PPG pulse fiducial point

chosen for delineation. Additionally, for PRV analysis, the

sensor results regarding the position are not conclusive

(Schäfer and Vagedes, 2013). In this work, some advice

and results regarding PPG recording places, delineation,

or stress protocols are reported. For further studies, each

setup should be first analyzed and validated, taking the

results and guidelines presented in this work into account,

to study the feasibility of their recording devices with respect

to each specific application.

Finally, some limitations should be noted. The forehead-

PPG signal was not of main interest for the purposes of the

study for which the acute mental stress test dataset was

recorded. Thus, the choice of the sensor was not optimal.

As a consequence, PPG at the forehead is very noisy, and very

low coverage has been obtained for this dataset. In addition,

none of the three datasets analyzed included daily life data

from wearables, as in the study of Charlton et al. (2020), where

a greater impact of artifacts is expected. Consequently, the

obtained coverage cannot be extrapolated to daily life in

absolute terms. However, these datasets allow us to extract

interesting conclusions in relative terms between FP and

sensor positions.

6 Conclusion

Finger- and earlobe-PPG signals obtained the higher

coverage rates, with coverage ranging from 70% to 90% for

estimating the PR, 50–90% for estimating the PAT, and

75–90% for estimating the PAV. Lower coverage has been

obtained for forehead-PPG signals, probably due to the

smoother shapes of the PPG at this location. The results

should be read keeping in mind that coverage has been

reported using protocolized datasets in controlled

environments, and further studies should be performed using

data from daily life for measures of PR, PAT, and PAV.

Different coverage is obtained using the same PPG signal,

depending on the PPG pulse fiducial point chosen for

delineation. The PPG pulse fiducial point is optimal to derive

clinically useful measures such as PR, PAT, or PAV, maximizing

the coverage rates is n D, or alternatively, n B, especially in the case

of PAT measures.
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