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Biodegradable electronics have great potential to reduce the environmental

footprint of electronic devices and to avoid secondary removal of implantable

health monitors and therapeutic electronics. Benefiting from the intensive

innovation on biodegradable nanomaterials, current transient electronics can

realize full components’ degradability. However, design ofmaterials with tissue-

comparable flexibility, desired dielectric properties, suitable biocompatibility

and programmable biodegradability will always be a challenge to explore the

subtle trade-offs between these parameters. In this review, we firstly discuss the

general chemical structure and degradation behavior of polymeric

biodegradable materials that have been widely studied for various

applications. Then, specific properties of different degradable polymer

materials such as biocompatibility, biodegradability, and flexibility were

compared and evaluated for real-life applications. Complex biodegradable

electronics and related strategies with enhanced functionality aimed for

different components including substrates, insulators, conductors and

semiconductors in complex biodegradable electronics are further

researched and discussed. Finally, typical applications of biodegradable

electronics in sensing, therapeutic drug delivery, energy storage and

integrated electronic systems are highlighted. This paper critically reviews

the significant progress made in the field and highlights the future prospects.
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1 Introduction

The emergence of flexible electronic devices offers unlimited possibilities for their

application inmany areas of smart electronics, including health monitors (Li et al., 2020a),

therapeutic devices (Long et al., 2018; Liu et al., 2021; Long et al., 2021), wireless power

supply components (Li et al., 2018a; Li et al., 2020b; Li et al., 2020c; Li et al., 2021a) and

artificial electronic skin (Chou et al., 2015; Miyamoto et al., 2017), etc. Flexible electronic

devices should be developed with good mechanical deformability and integrated

functionality, designed to adapt to the specific tissues with which they interact and to
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move with minimal damage to tissue properties, significantly

reducing the immune response of human tissues (Wang et al.,

2020a). However, prolonged exposure to non-biological

components in the vicinity of the implanted organ will

inevitably lead to a negative immune response in the short

and/or long term (Li et al., 2020d; Wang et al., 2022a). As a

result, surgical removal of chronic implants is often required after

the intended use has been achieved, but this additional secondary

surgery can be physically and financially taxing for the patient.

Over the past decade, biodegradable electronic devices

(transient electronics) that naturally degrade or completely

dissolve in the physiological environment have emerged as

attractive alternatives in invasive and non-invasive biomedical

fields. Arterial pulse sensors for blood flow monitoring (Boutry

et al., 2019), bioresorbable pacemakers without leads or batteries

(Choi et al., 2021), biodegradable supercapacitors (Hu et al.,

2019), and multifunctional integrated electronic skins represent

flexible (Kang et al., 2016), stretchable biodegradable electronics

that can be safely absorbed by the body after they have completed

their therapeutic and diagnostic functions, marking a

tremendous advancement of transient electronics in

biomedicine (Figure 1). More importantly, these efforts benefit

from the vast chemical design space of various organic polymers

allowing great tunability of electronic, mechanical and

degradable properties. This tunability circumvents the use of

complex structures and patterns to achieve the desired properties

and facilitates the development of advanced biodegradable

electronics.

For many applications, complete breakdown of the polymer

into monomeric structural units (Type I degradable polymers)

(Feig et al., 2018) is not required, and the breakdown equipment

alone is sufficient to alleviate the need for invasive and expensive

recycling procedures (Feig et al., 2018). In addition to

macroscopic degradation, the molecular cleavage of the

polymer backbone into oligomers and monomers can be

further broken down by immune mechanisms in vivo or

through microorganisms in the environment. This more

complete chemical degradation (called Type II) (Feig et al.,

2018) may help alleviate the environmental problems of

discarded e-waste as electronics become more prevalent (Li

et al., 2018b).

This review provides an overview of the chemical structure

and degradation behavior of degradable polymers used in a wide

range of electronic products, comparing and evaluating the

mechanical and degradation properties of different degradable

polymeric materials, focusing on the tunable electronic

properties of polymeric materials. Finally, typical applications

of biodegradable polymers materials in sensing, therapeutic drug

FIGURE 1
Applications of biodegradable electronics include implantable sensors, therapeutic electronics, implantable power devices, and integrated
electronic systems. These achievements have beenmade possible by the vast chemical design space of various organic polymers, allowing for great
tuning of electronic, mechanical and degradable properties. Images adapted with permission from refs (Son et al., 2015; Zhang et al., 2018; Boutry
et al., 2019; Li et al., 2020e; Koo et al., 2020; Choi et al., 2021; Sheng et al., 2021; Yue et al., 2021). Copyright 2019 Springer Nature, 2020 Springer
Nature, 2021 Springer Nature, 2020 AAAS, 2021 AAAS, 2018 Wiley, 2015 American Chemical Society, and 2021 Wiley.
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delivery, energy storage and integrated electronic systems are

presented, and the main challenges and future prospects for

stretchable and bioresorbable electronics are indicated.

2 Properties of polymeric
biodegradable materials

2.1 Common chemical composition and
structure of biodegradable materials

Biodegradable polymers include both naturally derived

materials and synthetic polymers, which are classified in the

manner shown in the Figure 2. Among the naturally derived

materials, plant-based polysaccharides (e.g., cellulose, alginate,

dextran) and animal-derived polymers (e.g., collagen, silk,

chitosan) are used for transient electronic applications due to

their inherent enzymatic degradability (Sun et al., 2018).

However, these materials, despite their better biocompatibility

and degradable properties, may be more complex to extract than

synthetic polymers (Diouf-Lewis et al., 2017; Kumar et al., 2018;

Chang et al., 2020). Since the simplest linear, aliphatic and

thermoplastic polyester polyglycolide (PGA) was marketed as

the first biodegradable suture in the 1960s, many advances in the

development of synthetic biodegradable polymers have been

made in a range of synthetic biodegradable polymers (Schmitt

et al., 1969; Middleton and Tipton, 2000; Nair and Laurencin,

2007). Various biodegradable poly (α-ester) cross-linked

elastomers such as poly (1,8-octanediol-citrate) (POC) citrate

and poly (glycerol sebacate) (PGS), polycarbonate, polyurethane

(PU), polydioxanone, and polyhydroxyalkanoate (PHA) have

emerged. Of these, poly (lactic acid) or poly (propylene glycol)

(PLA/PLLA), poly (co-glycolic acid) or poly (propylene glycol)

(co-glycol) (PLGA), POC, PGS, polycaprolactone (PCL), and

more recently, polyhydroxybutyrate (PHB) and

polyhydroxyvalerate (PHV) have attracted the most attention

(Can et al., 2011; Vey et al., 2011; Bonartsev et al., 2012; Tian

et al., 2012; Yang et al., 2014; Goonoo et al., 2015; Regazzoli et al.,

2017; Wang et al., 2022b; Vlachopoulos et al., 2022).

Polymeric materials are highly tunable in terms of their

chemical structure, morphology and dissolution time scales,

and their rates can be adjusted by changing the intrinsic

FIGURE 2
Classification of natural and synthetic biodegradable polymeric materials and the corresponding chemical structures.
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properties of the polymer, including molecular weight, crystal

structure, chemical composition, hydrophilic or hydrophobic

properties and erosion mechanisms (Nair and Laurencin,

2007; Feig et al., 2018). In addition to flexibility and

biocompatibility, this ability to modulate the intrinsic

properties of polymeric materials makes them promising

candidates for compliant, customizable and biodegradable

device components (Amass et al., 1998; Nair and Laurencin,

2007).

2.2 Design and selection criteria for
biodegradable polymer materials

Polymers are attractive for their scalability, solution

processability, ability to be rationally tuned by synthetic

design, and a variety of material properties (e.g., stretchability,

toughness, compliance, electrical conductivity) (Chiong et al.,

2021). In designing polymers that are eco- and human-friendly as

well as impart desirable properties (e.g., self-healing, stimulus

responsiveness, adhesion) for electronic applications. Next, we

will discuss how to design polymers to impart biocompatible,

biodegradable, flexible, conductive or other specific functional

properties.

2.2.1 Biocompatibility
Generally, a material is considered biocompatible if it

produces an acceptable host response when exposed to body

or body fluids (Vert et al., 2012). These adverse reactions are

triggered by chemical or physical reactions of the material and

include chronic inflammation, production of cytotoxic

substances, and corrosion of the implanted material and so on

(Irimia-Vladu, 2014; Cao and Uhrich, 2018). When considering

wearable and implantable electronics, degradable polymer

materials must not only be chemically compatible with their

surroundings (i.e., hydrophilic, non-contaminating, non-toxic),

but also mechanically compatible (i.e., flexible, stretchable) (Vert

et al., 2012). Rigorous evaluation through in vitro culture

experiments or in vivo implantation is critical before materials

can be classified as biocompatible.

Natural polymers derived from biological systems, including

polymers derived from proteins and polysaccharides (e.g.,

sericin, collagen, gelatin, elastin) are readily available,

inexpensive, and often biocompatible (i.e., non-toxic and non-

inflammatory) (Xu et al., 2018; Chen et al., 2019; Wang et al.,

2020b). Synthetic polymers such as PLA, PLGA, and PEG are

often used in implantable electronics due to their typical

lubricity, sterilization capabilities, broad temperature tolerance

and minimal chemical reactivity in vivo (Fukai et al., 2004; Teng,

2012; Huang, 2017).

In recent scientific studies, many representative

biocompatibility studies of degradable polymers have been

widely reported (Hosseini et al., 2021). For example, the

biocompatibility of PLA and PLGA microspheres implanted

in rats was verified by human histological and immunological

analyses (Anderson and Shive, 2012). The biocompatibility of

POC scaffolds was confirmed by their lack of effect on the

morphology and phenotype of porcine chondrocytes (Jeong

and Hollister, 2010). The biocompatibility of PGS films was

demonstrated in a similar manner (Rai et al., 2012). The

biocompatibility of PCL films was confirmed by examining

the effect of their exposure on the viability of L929 mouse

fibroblasts (Serrano et al., 2004). Finally, the in vitro and in

vivo biocompatibility of silk has been widely demonstrated, and it

is widely used as a substrate for degradable electronics and in

many biomedical applications (Vepari and Kaplan, 2007).

In contrast to polymeric materials containing

superhydrophilic groups, cationic polymers, particularly poly

(ethyleneimine) (PEI), have recently begun to be used in

biocompatible polymer research (Englert et al., 2015).

Although this cationic polymer has less potential as a

substrate and encapsulant, it achieves complete

biocompatibility and degradability of the device, which is

important to facilitate the development of implantable

transient electronic devices. These recent examples

demonstrate the importance of considering charge density

when designing and modifying the molecular structure of

polymers (Bus et al., 2017). Most current polymer-based

electronics do not use charged polymers, thus leaving much

potential for the application of these emerging polymers in

implantable electronics.

2.2.2 Biodegradability
The time that a biodegradable polymer is able to maintain its

designed function under conditions of use is the most important

indicator of its performance. This duration is referred to as the

“functional time” (Hosseini et al., 2021). The time it takes for a

polymer material to completely degrade and lose weight is also

important. This time is referred to as the “disappearance time”

(Chiong et al., 2021; Hosseini et al., 2021; Manousiouthakis et al.,

2022). Depending on the chemical and physical properties and

the rate of release, the degradation products can cause

biocompatibility problems. For the successful use of polymers,

the functional time, the time of disappearance, the degradation

products and the release rate must be well characterized and

controlled. For this purpose, the degradation mechanisms must

be understood.

The main degradation mechanisms of the materials used in

all these applications are similar, but differ kinetically due to

different processing conditions and use environments. Polymers

used in biomedical devices have four main degradation

mechanisms: hydrolysis (reaction with water in the tissue),

oxidation (due to oxidants produced by the tissue), enzymatic

degradation, and physical degradation (e.g., water swelling and

mechanical loading and wear) (Brannigan and Dove, 2017).

Widely used biodegradable synthetic polymers often contain

Frontiers in Electronics frontiersin.org04

Zhai et al. 10.3389/felec.2022.985681

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.985681


ester bonds that promote hydrolytic degradation under acidic or

alkaline conditions. Amide, sulfonamide, anhydride, carbonate,

ether, acyl, imide, phosphonate, thioester, urea and carbamate

bonds are also unstable sites susceptible to hydrolytic

degradation (Brannigan and Dove, 2017; Chiong et al., 2021)

(Figure 3A). The mechanism of polymer hydrolysis has been

extensively studied and more detailed review articles can be

found (Lyu and Untereker, 2009; Brannigan and Dove, 2017)

(Figures 3C,D).

Oxidation is another fundamental process that degrades

polymers. The oxidation mechanism usually involves the

formation, proliferation and movement of free radicals within

the polymer prior to final termination (George and Celina, 2000)

(Figure 3B). These reactions may also involve catalysts, including

natural enzymes produced by the body. Enzymatic degradation is

also due to defense against implanted foreign substances.

Collagen, polysaccharides (hyaluronic acid), some polyesters

(e.g., polyhydroxyalkanoates, PHA), synthetic polycarbonates,

and proteins are degraded primarily due to these types of

reactions (Casas et al., 1999).

An important issue to consider is the effect of polymer

degradation products on humans. Hydrolysis produces

carboxylic acids and/or hydroxyl chain ends, and the hydroxyl

groups can later be further oxidized. The products of the

oxidation reaction are usually aldehydes, ketones or carboxylic

acids. Implants of smaller size and slower degradation may

FIGURE 3
Chemical structures of fractions susceptible to hydrolysis (A) and oxidation (B) are shown. Hydrolysable bonds and oxidative attack sites are
highlighted in red andmarkedwith an asterisk. Images adaptedwith permission from 2018, American Chemical Society (Feig et al., 2018). (C) Scheme
of water-soluble, temperature-responsive polyacetals and their degradation by acid hydrolysis. (D) Chemical structures of the fully degradable
semiconductor polymer p (DPP-PPD) and its monomeric by-products after cleavage and the biodegradable elastomer e-PCL. Images adapted
with permission from 2021, Wiley (Chiong et al., 2021).
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trigger a milder immune response than larger implants made of

the same material (Lyu and Untereker, 2009; Ilyas et al., 2022a).

2.2.3 Mechanical properties of degradable
polymers

Flexibility and stretchability are desirable mechanical

characteristics for biomedical devices and are critical when

attaching materials to the body. The flexible surfaces of

organs and tissues greatly limit the application of rigid

electronic products, placing higher demands on the flexibility

of new biodegradable electronic products, especially the

flexibility and stretchability of substrate materials (Feiner and

Dvir, 2018).

Cellulose biopolymers and their derivatives have shown high

performance (e.g., high Young’s modulus, excellent thermal

stability, low coefficient of thermal expansion as well as high

strength, stiffness and adsorption ability, excellent degradation

properties and biocompatibility) (Fu et al., 2016; Yu et al., 2018)

and become the most widely used synthetic degradable polymer

substrate materials (Kamel and Khattab, 2020). Diverse

modifications of cellulose biopolymers for water solubility,

electrical conductivity, optical transparency, and gas tightness

have led to successful applications in a variety of emerging fields

such as bioresorbable electronics (Zhang and Bellan, 2017),

energy storage devices (Yu et al., 2018), and optoelectronic

devices (Morsada et al., 2021).

Widely used synthetic polymers and their copolymers (e.g.,

PVA, PCL, PGA, PLA, and PLGA) have adjustable degradation

rates and biocompatibility, but lack tensile properties and

flexibility that are compatible with human tissues (Liu et al.,

2012; Ilyas et al., 2022b). Unlike traditional biodegradable

polymers, degradable bioelastomers require chemical and/or

physical cross-linking to form a three-dimensional cross-

linked network structure which allows them to typically have

a glass transition temperature (Tg) below body temperature, high

elongation at break, and a fully reversible stress-strain curve

(Drotleff et al., 2004). Physically cross-linked degradable

bioelastomers are known as thermoplastic degradable

bioelastomers, and chemically cross-linked degradable

bioelastomers are also known as thermosetting degradable

bioelastomers, which mainly include thermosetting and light-

curing bioelastomers. Polyglyceryl sebacate (PGS) provides

biodegradability and elasticity as a thermosetting polyol/

dicarboxylic acid-based bioelastomer with excellent

mechanical properties (Shin et al., 2003). Another

thermosetting elastomeric polymer, POC, offers excellent

mechanical properties (higher tensile strength, modulus of

elasticity) and adjustable degradability (Krook et al., 2020).

TABLE 1 Representative physicochemical properties of typical thermosetting, photocuring, thermoplastic degradable bioelastomers.

Degradable
bioelastomer

Glass transition
temperature Tg

(°C)

Tensile strength
σ (MPa)

Young’s modulus
E (MPa)

Elongation at
break ε
(%)

References

Thermo-cured degradable bioelastomers

PGS <−80 0.5 0.28 267 Pomerantseva et al. (2009)

PPS 7.3–45.6 0.57–17.64 0.37–378 10.9–205.2 Bruggeman et al. (2008)

PGD 32.1 0.46–7.2 1.08–136.55 123.2–225 Migneco et al. (2009)

POC −10 to 0 2.6–6.1 0.92–16.4 100–400 Yang et al. (2004)

PEC −28.2 to 2.9 0.21–2.66 0.1–1.91 139.5–1,505.5 Ding et al. (2006)

Photo-cured degradable bioelastomers

PGSA −32.2 to 28.1 0.05–0.5 0.05–1.38 42–189 Nijst et al. (2007)

POMC −36 to −9 0.29–0.88 0.07–1.06 55.02–322.09 Gyawali et al. (2010)

Fumaric-based PTMC −18 to −13 0.95–17.5 1.12–2.3 108–753 Hou et al. (2009)

Thermoplastic degradable bioelastomers

Thermoplastic PGS −32.2 to −25.1 0.21–0.70 0.07–7.05 12%–114% Liu et al. (2005)

PCL diol, 1,4-BDI, BDO −58.5 to −45.9 38–55 30.1–263.9 870–1,200 Heijkants et al. (2005)

PPS, poly (polyol sebacate); PGD, poly (glycerol dodecanoate); PEC, poly (ethylene glycol citrate); PGSA, poly (glycerol sebacate); POMC, poly (octamethylene-maleate-citrate); PTMC,

poly (1,3-trimethylene carbonate); 1,4-BDI, 1,4-butane diisocyanate; BDO, Butanediol.
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More physical and chemical properties of typical degradable

elastomers are shown in Table 1.

2.3 Properties for specific components

The basic material types for basic electronic components

including diodes, transistors, capacitors and inductors are

substrates, dielectrics, semiconductors and conductors.

Organic polymer chemistry can be processed to meet the

electronic needs of these materials while adjusting for the

desired degradation kinetics, stretchability and scalability of

production (Feig et al., 2018). Since most polymers are natural

insulators, they have been developed as substrates and dielectrics.

Whereas conjugated conducting polymers act as semiconductors

or conductors. Designing stretchable semiconductor materials,

especially conducting polymer materials, has become

increasingly challenging because the polymer backbone

capable of facilitating electron transport through alternating

double and single bonds is usually rigid (Liu et al., 2020).

However, recent advances in controlling the chemistry and

morphology of conjugated polymers have made it possible to

develop stretchable semiconductors and conductors.

2.3.1 Biodegradable substrate and encapsulation
material

Substrate and packaging materials typically make up the

majority of the weight of the device, and as such, they largely

determine the overall degradation behavior of the device

(Hwang et al., 2014; Hadidi et al., 2022). Clearly, the

selection of substrate and package with the desired

degradation characteristics is critical to the design of

biodegradable devices. The range of biodegradable

insulating materials that can be used as substrates is

limited by compatibility with the device fabrication process

steps, requiring consideration of thermal stability, solvent

compatibility, and mechanical robustness (Hwang et al.,

2014). To circumvent these conditions, the target substrate

can be separated from the processing step by transferring the

device to the substrate after fabrication.

As an example of this strategy (Figure 4A), Hwang and his

colleagues demonstrated a versatile transfer printing method to

FIGURE 4
Degradable polymer substrates and packaging used for application demonstration. (A) Scheme of the general transfer process of devices
fabricated on a temporary silicon substrate to a final degradable substrate. This transfer method enables a wide choice of substrate materials.
Reproduced permission from 2014, Wiley (Hwang et al., 2014). (B) (i) Silicon-based microheater on a thin silk substrate. (ii) Exploded view with top
view in the lower right inset. (iii) Image shows the time sequence of dissolution in deionized water, with complete decomposition at about
10 min. Reproduced permission from 2012, AAAS (Hwang et al., 2012). (C) (i) Flexible device using a degradable polymer as the active material or
substrate. (ii) Photographs of devices in various stages of disintegration. Reproduced permission from 2017, National Academy of Sciences (Lei et al.,
2017).
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fabricate complementary metal oxide semiconductor (CMOS)

arrays on a variety of synthetic biodegradable substrates (Hwang

et al., 2014), such as PLGA, PCL, and rice paper. The authors

used this technique to fabricate a transient hydration sensor

made of soluble silicon, SiO2, and Mg components on PLGA that

can be used to monitor wound healing, Similar transfer-based

strategies have been reported for transient silicon-based devices

on PVA, silk, and cellulose (Jin et al., 2014; Jung et al., 2015; Fu

et al., 2016). In another work, Hwang and his colleagues used

transfer printing methods to fabricate silicon-based micro

heaters on silk that degrade after 15 days for transient heat

therapy to prevent post-surgical infection (Figure 4B) (Hwang

et al., 2012). Bao and colleagues recently fabricated an ultrathin

flexible CMOS circuit using trimethylsilyl-functionalized

cellulose as a substrate and exhibited complete degradation

properties within 1 month (Figure 4C) (Lei et al., 2017).

Considering that implanted devices need to adhere tightly

around the brain or heart and make stable conformal contact

with dynamic biological tissues, more flexible and stretchable

substrate materials are required. Stretchable transient Si-based

pH and electrophysiological sensors are manufactured from POC

using transfer printing, and complete dissolution is observed

after immersion in PBS (pH 10)12 at room temperature (Hwang

et al., 2015). For such elastomers, photocrosslinking by the

introduction of maleic anhydride can also be used to avoid

prolonged heat shrinkage and curing (Tran et al., 2010).

Similar strategies can be used with other synthetic degradable

polymers to expand the range of materials that can be used to

make stretchable and degradable substrates.

2.3.2 Biodegradable dielectric
Many stretchable and biodegradable materials used as sealants

and substrates may also qualify as dielectrics due to their insulating

properties, but the dielectric properties of many polymers have not

been fully explored. Currently, the general strategy for creating

biodegradable dielectrics is to incorporate high-κ fillers into

biodegradable polymeric matrices (Deshmukh et al., 2017).

Common high-κ materials include metal oxides (Al2O3, HfO2),

SiO2 and carbon nanotube materials (Figure 5A) (Gupta and Gupta,

2009; Zeng et al., 2016), etc. These composites exhibit general

transients through matrix degradation while achieving tunable

dielectric constants.

Plant-based fibers (e.g., cotton, jute, bamboo) and sugars

such as glucose and lactose are natural polymers that

inherently have practical dielectric properties. OFETs

fabricated with sugar dielectrics and fullerenes as

FIGURE 5
Design and functional realization of biodegradable dielectrics, semiconductors and conductors. (A) The dielectric constants of degradable
composites can be increased by adding high κ-additive carbon nanotubes (CNTs). Reproduced permission from 2016, Royal Society of Chemistry
(Zeng et al., 2016). (B) A fully biodegradable capacitive pressure sensor consisting of PGS’s pyramidal microstructure. Reproduced permission from
2015, Wiley (Boutry et al., 2015). (C) Topographical and current AFM image for 40: 60 TPU: P3TMA. Reproduced permission from 2014, Royal
Society of Chemistry (Pérez-Madrigal et al., 2014). (D) DPP polymers with imine bonds and PCL-based elastomers. Reproduced permission from
2019, American Chemical Society (Tran et al., 2019). (E) SEM images of PPy-coated PLGA nanofiber network. Reproduced permission from 2009,
Elsevier (Lee et al., 2009). (F) Undoped conductive polyurethane (DCPU) containing aniline oligomers. Reproduced permission from 2016, Springer
Nature (Xu et al., 2016).
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semiconductors show a small hysteresis phenomenon (Irimia-

Vladu et al., 2010). In addition to natural materials, synthetic

biodegradable polymers, such as PGS, also exhibit useful

dielectric properties. As shown in Figure 5B, Bao and her

colleagues reported the implementation of fully degradable

capacitive pressure sensors using pyramidal microstructures

of PGS with in vivo degradation rates of approximately

0.2–1.5 mm per month (Boutry et al., 2015). Additionally,

it should be noted that most of the aforementioned dielectrics

have been studied at relatively low operating frequencies

(<1 kHz). For eventual use in more complex electronic

devices, additional research and optimization of the high

frequency performance of biodegradable dielectrics is needed.

2.3.3 Biodegradable conductors
Conductive polymers (CPs) are synthetic macromolecules

with highly discrete π-conjugated backbone structures and

configurable side chains. Some of the most common CPs

include polypyrene (PPy), polyaniline (PANi), polythiophene

(PTh), poly (3,4-ethylenedioxythiophene) (PEDOT) and their

derivatives (Kenry and Liu, 2018; Bao et al., 2022). Similar to

dielectric composites, methods for achieving degradable

conductive polymers can be divided into two main categories.

The first category of degradable conductors includes composites

of non-degradable conductive polymers with electrically

insulating degradable polymers. The second category of

degradable conductors includes conductive oligomers, or

degradable conductive polymers by incorporation based on

the incorporation of modified monomers, degradable

monomer units and conjugated joints.

Biodegradable conductive scaffolds are formed by

electrostatically spinning biodegradable polymers and

subsequently polymerizing conductive monomers in situ

(Figure 5E) (Lee et al., 2009). Alternatively, conductive

polymers can be co-spun with biodegradable polymers to

form conductive fibers. For example, co-spinning of

camphorsulfonic acid (CPSA)-doped polyaniline with

gelatin yields fiber sheets with conductivity up to 2.1 ×

10–2 S/cm (Li et al., 2006). Similarly, CPSA-doped PANI

co-spun with poly (L-lactide-co-ε-caprolactone) (PLCL)

exhibited electrical conductivity up to 1.38 × 10–2 S/cm at

30 wt% PANI (Jeong et al., 2008).

To confer better degradability and faster body clearance

to conductive biodegradable polymers, small-sized short

chains of conductive monomers, i.e., conductive oligomers,

are increasingly being explored as viable alternatives to CPs

as conductive components of electroactive biodegradable

copolymers (Wei and Faul, 2008). In fact, studies on

pyrrole, aniline and thiophene oligomers have shown that

in addition to having similar, these oligomers can be

processed and copolymerized more readily with

biodegradable polymers and show better biodegradability

(Wang et al., 2011; Guo et al., 2013). Most importantly,

these oligomers can be more readily absorbed and

internalized by macrophages and then excreted by the

kidneys. Thus, conductive oligomers have emerged as a

viable option for achieving fully biodegradable and

conductive polymer structures (Kenry and Liu, 2018).

In addition to biocompatibility issues, themobility of the dopant

can be a problem for applications requiring relatively long-term

stability, as the conductivity decreases significantly when the dopant

leaches. To address this issue, Xu and coworkers synthesized amulti-

segmented undoped conductive polyurethane (DCPU) elastomer

consisting of an aniline trimer linked to biodegradable PCL and the

dopant dihydroxymethylpropionic acid (DMPA) (Figure 5F) (Xu

et al., 2016). Immersion in PBS further increases the conductivity up

to 4.7 × 10–3 S/cm. Crucially, although their polymers degraded to

75.8% of their original mass in PBS after 14 days in the presence of

lipase, the electrical conductivity did not decrease by more than one

order of magnitude.

In addition to biodegradable conductive polymer blends and

oligomer-based conductive approaches, strategies for the

modification of conductive monomers and the integration of

degradable monomer units or conjugated joints to produce

bioerodible CPs are receiving increasing attention. Instead of

partial degradation based on conventional chemical bond

breaking, these modified CPs can be gradually eroded to achieve

enhanced and complete biodegradation. One of the first studies

demonstrating this concept showed that pyrrolemonomers could be

modified and then polymerized to achieve readily erodible PPy

(Zelikin et al., 2002). The conductive films made from acid-

functionalized PPy show a low average resistance of about 300Ω.
Importantly, the modified PPy is capable of progressive degradation

under physiological conditions. This suggests that the degradation

rate of these erodible CPs can be modified by introducing and

adjusting the amount of different functional groups.

In addition to monomer modification and integration of

biodegradable units, a recent example shows that fully erodible

CPs can be prepared by incorporating degradable conjugate

linkages. Amine bonds (-C=N-) were used as conjugate

linkages to synthesize biodegradable conductive PDPP-PD

polymers with an average hole mobility of about 4.2 × 10−2

–3.4 × 10−1 cm2/Vs (Lei et al., 2017). More significantly, the

PDPP-PD solutions decomposed to the monomer DPP-CHO

after 10 days and completely after 40 days under acidic

conditions, based on their absorption spectra and physical colors.

So far, the conductivity of type II conductive polymers

may be lower than that of type I conductive polymers

(Table 2). Better control of the chemistry, doping, and

morphology of these materials could help improve the

conductivity of type II conducting polymers for high-

performance electronics.

2.3.4 Biodegradable semiconductors
Semiconductors are critical to the switching mechanism

of organic transistors and therefore to complex electronic
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circuits. They are usually characterized by the charge carrier

mobility, which indicates the rate of free charge movement

through the material when pulled by an electric field.

Typical semiconductor polymers are polythiophene (e.g.,

poly (3-hexylthiophene), P3HT) (Bao et al., 1996) and

donor-acceptor copolymers originally developed for

organic photovoltaics (e.g., diketopyrrolopyrrole, DPP)

(Bao et al., 1996). In organic systems, charge transport

occurs between and among the conjugated backbones. As

with conducting polymers, copolymerization has been used

to produce semiconductors that exhibit type I degradation.

As shown in Figure 5C (Pérez-Madrigal et al., 2014), poly (3-

thiophene methyl acetate) (P3TMA), a P3HT derivative with

a carboxylic acid substituent, was selected for use with

thermoplastic hybrid polyurethanes (TPUs) showing

enhanced semiconductor behavior and electrochemical

degradability. Lipomi reported a stretchable and

biodegradable semiconductor-a block copolymer based on

repeating rigid, conjugated DPP and soft poly

(s-caprolactone) (PCL) chain segments-demonstrating

improved strain tolerance and a near hole mobility of

0.1 cm2/Vs (Sugiyama et al., 2018). The charge mobility

was correlated with up to PCL polyester chains provide

hydrolysis sites for chain breakage under physiological

conditions, with no detectable PCL content after 12 weeks.

A combination of polymer chemistry and physics was used to

develop an intrinsically stretchable and fully degradable

semiconductor polymer system. As shown in Figure 5D (Tran

et al., 2019), The semiconductor part is the DPP polymer with

imine bonds, while the elastomer is based on PCL, where both

matrix and semiconductor are designed to completely degrade

into monomeric components. Nano-constrained p (DPP-PPD)

showed no change in mobility (~0.03 cm2/Vs) at up to 100%

strain and subsequent release.

3 Typical applications in transient
electronics

To avoid the potential problems of non-degradable

implantable electronics in biomedical applications that

interfere with imaging, act as foci for bacterial infection, or

TABLE 2 Conductivities of various biodegradable conducting polymeric materials.

Biodegradable
CP-based structures

Distinct features of
the synthesis of
copolymers

Electrical
conductivity (S/cm)

References

Type I: Conductive mixtures

PPy-PLGA nanofibers polymer blending or coating N.A. Lee et al. (2009)

PANI gelatin nanofibers 2.1 × 10−2 Li et al. (2006)

PEDOT particles in PLLA 4.7 × 10−3 Wang et al. (2017)

PPy-PLA nanofibers 1 × 10–6—1 × 10–4 Zhou et al. (2016)

PEDOT-PLGA microfibers 7 × 10–2—2.8 × 10–1 Feng et al. (2013)

SF-PPy films 1.1 Jia et al. (2016)

GP hydrogels polymer grafting 4.54 × 10–4—2.41 × 10–4 Li et al. (2014)

Type II: Conductive oligomers

DCPU films Aniline trimer incorporation 5.5 × 10−8– 1.2 × 10–5 (dry state) Xu et al. (2016)

4.4 × 10–7—4.7 × 10–3 (wet state)

DECPH films Aniline tetramer incorporation 3.13 × 10–8—2.94 × 10–4 Guo et al. (2011a)

DEC hydrogels 4.69 × 10–7—1.05 × 10–4 Guo et al. (2011b)

PGAP films Aniline pentamer incorporation 2 × 10–5 Zhang et al. (2010)

Type II: Biodegradable conductive polymers incorporating modified monomers, degradable monomer units and conjugated joints or a combination of both

Modified PPy thin films β-substituted pyrrole monomer incorporation N.A. Zelikin et al. (2002)

Modified PPy pellets N.A. Zelikin et al. (2002)

SPT-PEI films Modified thiophene monomer incorporation 7.82 × 10–3—2.94 × 10–4 Mawad et al. (2011)
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migrate and displace, bioresorbable implantable electronics have

been extensively investigated as an alternative to permanent

implants (Wang et al., 2020a). System-level absorbable devices

for biomedical applications can be divided into four main

application scenarios: sensing and monitoring, therapeutic

drug delivery, wireless power supply, and integrated

electronics (e.g., electronic skin). Each category is discussed in

detail below.

FIGURE 6
Typical applications of transient electronics in the field of sensors. (A) (i) Bioabsorbable Electron Patch (BEP) image with temperature sensor. (ii)
Wireless heater degradation images at 37°C (0–14 days). Reproduced permission from 2019, Springer Nature (Lee et al., 2019a). (B) (i) Illustration and
equivalent circuit of the capacitive pressure sensor. (ii) Results at 3 months post-implantation. Scale bar. 100 μm. Reproduced permission from 2019,
Springer Nature (Boutry et al., 2019). (C) (i) Schematic diagram of a transient NO sensor consisting of a bioresorbable PLLA-PTMC substrate, Au
nanomembrane electrode, and poly (eugenol) film. (ii) The manufacturing process of the NO sensor. (iii) Time varied degradation images.
Reproduced permission from 2020, Springer Nature (Li et al., 2020e).
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3.1 Typical applications of transient
electronics in the field of sensors

Bioresorbable sensors have been widely reported because

physicians often need to track various physiological indicators of

patients, especially after surgery, for a short period of time (Salvatore

et al., 2017; Lee et al., 2019a; Ashammakhi et al., 2021). Recently

reported examples include bioresorbable temperature sensors,

chemical/mechanical sensors, and electrophysiological signal

sensors. For example, Kim’s group (Figure 6A) (Lee et al., 2019a)

reports a biodegradable, integrated drug delivery platform consisting

of a temperature sensor, a polymeric drug reservoir, and a heater for

controlled intracranial drug delivery via thermal stimulation,

achieving enhanced therapeutic efficacy for brain tumor treatment.

The device dissolved after a sustained 10-weeks in vivo drug release,

leaving no detectable debris or causing side effects. A recent study

demonstrated two types of bioresorbable fiber optic pressure sensors

for monitoring intracranial pressure and temperature with optical

interfaces made of PLGA fibers (Shin et al., 2019), and in vitro

solubility studies and histopathological evaluations confirmed the

biodegradability of these complete systems.

Another fully biodegradable pressure sensor aimed formeasuring

arterial blood flow in both contact and non-contact modes, as shown

in Figure 6B (i) were also recently reported by Bao’s group (Boutry

FIGURE 7
Typical applications for biodegradable therapeutic electronics. (A) Silk-based device for wirelessly activated drug release. Reproduced
permission from 2014, National Academy of Sciences (Tao et al., 2014). (C) Thermally responsive drug nanocarriers induced by the integrated flexible
heater. Reproduced permission from 2017, Springer Nature (Tamayol et al., 2017). (E) Bioabsorbable electronic patch (BEP) consists of OST film and
PLA encapsulated film. Reproduced permission from 2019, Springer Nature (Lee et al., 2019a). (B) (D) (F–H) A series of fully bioresorbable
implantable therapeutic devices from Rogers’ teamwithin the past few years, including radio stimulators for recovery of peripheral nerve injury, drug
delivery systems, and pacemakers. Reproduced with permission (Lee et al., 2015a; Koo et al., 2018; Choi et al., 2020; Koo et al., 2020; Choi et al.,
2021). Copyright 2015 Springer Nature, 2018 Springer Nature, 2020 Springer Nature, 2020 AAAS and 2021 Springer Nature.
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et al., 2019).Oneweek after implantation around the femoral artery in

rats, stable operation of the biodegradable sensor was observed.

Twelve weeks after implantation, the rats were able to move

without any apparent limb damage, after which the sensors were

retrieved and it was observed that all sensor components, including

the poly [octamethylene maleate (anhydride) citrate] (POMaC)

sealing layer, PGS microstructure pyramid, magnesium wire and

PLLA membrane, had degraded and only the PHB/HV remained

Figure 6B (ii).

Pressure and temperature sensors represent the most studied

bioresorbable physical sensors to date. However, several new hot

research areas have recently emerged, including biodegradable

sensors targeting dopamine, ROS/RNS, and RNA (Tao et al.,

2012; Kim et al., 2018; Lee et al., 2019a). For applications in the

central nervous system, biodegradable soft neurotransmitter

sensors have been explored for continuous and real-time

monitoring of dopamine levels in the brain and have

demonstrated their usefulness as electrochemical sensors (Kim

et al., 2018). All components of the sensors were gradually

dissolved in PBS at 37°C over 15 h. Real-time monitoring of

ROS and RNS in organisms has attracted a lot of attention. A

flexible physical transient electrochemical sensor has been used

for real-time wireless nitric oxide monitoring Figure 6C (i) (Li

et al., 2020e). The combination of a highly stretchable matrix,

ultrathin electrodes, and selective membranes gives the sensor

ideal flexibility and stretchability and resistive stability, and these

materials are fully bioresorbable. The NO sensor completely

disappeared after 8 weeks of implantation into the joint cavity.

Hematoxylin-eosin (HE) staining of the implantation site tissue

showed no obvious signs of inflammation or any residual PLLA-

PTMC matrix and gold nanomembrane electrodes, successfully

achieving complete physical transient.

3.2 Biodegradable therapeutic electronics

Biodegradable therapeutic devices have gained tremendous

momentum in the last decade, thanks to advances in modulation

processes and novel processing technologies for flexible,

stretchable degradable materials (Long et al., 2018; Cha et al.,

2019; La Mattina et al., 2020; Wei et al., 2021). In 2014, Omenetto

and colleagues demonstrated a programmable transient thermal

therapy system for surgical site disinfection and anti-infection

using a silk substrate and encapsulation with magnesium metal as

the heating resistor (Figure 7A) (Tao et al., 2014). The lifetime of

the entire device can be further tuned by the encapsulation

material, allowing the device to dissolve completely within

minutes to weeks. In 2015, a thermal actuator, consisting of

Mo electrodes (Lee et al., 2015a), thin PLGA scaffolds, and

biolipid membranes, was fully degradable in vivo and

successfully implemented to stimulate target tissues or drive

drug delivery devices in response to dynamic changes

monitored by integrated sensors (Figure 7B). As shown in

Figure 7E (Lee et al., 2019a), to treat cancer in organs with

special blood barriers, such as the brain, peritoneum, and eye,

Kim et al. (2018) reported a flexible, adhesive Bioabsorbable

Electron Patch (BEP) consisting of a hydrophilic drug-carrying

oxidized starch (OST) membrane and a hydrophobic PLA

encapsulated membrane. The synergistic effects and degradable

properties for brain tumor treatment by integrating all these

materials and device components were demonstrated in vivo

mouse subcutaneous and canine brain GBM models.

Rogers and colleagues have reported a series of fully

bioresorbable implantable therapeutic devices within the last

few years, including a fully degradable radiostimulator for

accelerated functional recovery from peripheral nerve injury

(Figures 7C,D,F) (Koo et al., 2018; Choi et al., 2020), a drug

delivery system consisting of mechanically stabilized PBTPA

containers (Figure 7G) (Koo et al., 2020) and a recently

reported fully implantable and bioresorbable pacemaker

without leads or batteries (Figure 7H) (Choi et al., 2021), which

are in vitro and in vivo complete degradability have been

demonstrated, thus attracting widespread interest and attention.

3.3 Powering of biodegradable and
bioresorbable devices

The pollution caused by e-waste and the toxic effects of electronic

materials on humans should draw attention to the sustainable

development of flexible electronics and the environment.

Bioresorbable energy storage devices are integral components of

bioresorbable electronic implants because they eliminate the need

for external power lines (Li et al., 2018c; Li et al., 2020f). Arranging

and integrating efficient power sources for biodegradable and

bioresorbable devices is a daunting step. In general, materials and

structural design are the primary methods for redesigning typical

power devices into biocompatible, miniaturized systems.

Batteries provide high energy density and immediate

readiness and are therefore the most widely used power

source (Li et al., 2018a; Chao et al., 2021). Transient primary

cells, as representative primary cells, can generate currents with

spontaneous redox reactions through the redox potential

difference between the biodegradable anode and cathode.

However, the need for frequent replacement or recharging,

the great sacrifice of performance to reduce size, and possible

biological toxicity pose significant challenges for biodegradable

implantable batteries (Fu et al., 2015). Among various energy

storage devices, compared with batteries, high-performance

supercapacitors are of great interest because of their high-

power density, good cycling stability, fast charge and

discharge rates, and simple structure.

As shown in Figure 8A Lee et al., (2017a), reported a transient

micro-supercapacitor consisting of a biodegradable Mo film, a

biopolymer hydrogel electrolyte containing NaCl salts (agarose

gel), and a PLGA substrate with a PA encapsulation layer. The
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FIGURE 8
Typical applications of biodegradable power supply equipment. (A) NaCl/agarose gel electrolyte planar supercapacitor on a glass substrate.
Reproduced permission from 2017, Wiley (Lee et al., 2017a). (B) Schematic diagram of a stretchable serpentine wire supercapacitor. Reproduced
permission from 2017, Wiley (Zhao et al., 2017). (C) Optical photographs of mesoporous cellulose membrane-based planar-type micro-
supercapacitors. Reproduced permission from 2019, Elsevier (Lee et al., 2019b). (D) Schematic and electrostatic immunity mechanism of fully
degradable rechargeable Zn-Mxene capacitor. Reproduced permission from 2019, American Chemical Society (Yang et al., 2019). (E) Biodegradable
PLA/PVA and/or starch paper are used for the package edges and exterior. Reproduced permission from 2021, AAAS (Sheng et al., 2021). (F)
Milestones of TENG using degradable materials as frictional electrical layers. Reproduced permission from 2020, Wiley (Chao et al., 2021). (G) (i)
Schematic and photos of BD-TENG; (ii) Photographs of BD-TENG at different stages of the degradation timeline. Reproduced permission from 2016,
AAAS (Zheng et al., 2016). (H) (i) Schematic diagram of T2ENGs; (ii) T2ENG gradually dissolved in DI water. Reproduced permission from 2016, Wiley
(Zheng et al., 2016).
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performance of the device is comparable to that of non-transient

devices. The molybdenum forked finger electrode was completely

degraded after 9 days in PBS at pH 7.4 at 37°C and showed stable

performance before degradation. Chen et al. (2019)

demonstrated an all-wood asymmetric supercapacitor (ASC)

wood carbon (MnO2 @WC) (Figure 8B) (Zhao et al., 2017).

The all-wood ASC device can biodegrade in the environment and

provide a significantly high capacitance of 3.6 F cm−2, mainly due

to the carbonized and direct-channel wood with high electronic

and ionic conductivity and low curvature.

As shown in Figure 8C (Lee et al., 2019b), highly flexible

biodegradable POC can also be used as an encapsulation layer

for supercapacitors, providing goodmechanical and electrochemical

stability in aqueous solutions. The introduction of microstructure

engineering strategies can greatly improve the cycling performance

of Zn-Mxene supercapacitors and facilitate the controlled

adjustment of device degradation time Figure 8D (Yang et al.,

2019). Similarly, as shown in Figure 8E (Sheng et al., 2021), fully

biodegradable supercapacitor implants with two-dimensional,

defective amorphous MoOx flakes grown in situ on water-

soluble molybdenum foil as electrodes and sodium alginate (Alg-

Na) gel as electrolyte have high area capacitance (112.5 mF cm−2 at

1 mA cm−2) and excellent energy density (15.64 μWh cm−2)/high

power density (2.53 mW cm−2), and their lifetimes can be designed

for a few days to several weeks (Sheng et al., 2021).

In recent years, nanogenerators (NGs) have begun to emerge as a

new technology for converting biomechanical energy into electrical

energy (Figure 8F) (Li and Wang, 2017; Li et al., 2018d; Long et al.,

2019; Li et al., 2020b; Chao et al., 2021). Figure 8G Shows a transient

friction nanogenerator consisting of PLGA, PVA, PCL, and poly (3-

hydroxybutyric-co-3-hydroxyvaleric acid) (PHB/V) (Zheng et al.,

2016). The friction generator loses its structural integrity and

degrades after 50 days at pH 7.4 PBS and 37°C. Tao et al.

reported a suite of silk-based multifunctional implantable transient

triboelectric nanogenerators (T2ENGs) for remote in vivo biomedical

sensing/monitoring and “smart” therapies automatically triggered by

specific symptoms (i.e., epilepsy monitoring) (Figure 8H) (Zhang

et al., 2018). Due to the remarkable frictional electrical properties of

the silk, the implanted T2ENGs device provides a stable output of

~6 V for a relatively long period of 6 h. Local injection of 10 ml of

saline into the implanted area triggers rapid degradation and loss of

frictional electrical function within 30min.

3.4 Biodegradable integrated electronic
systems

By integrating suitable bioresorbable device components,

bioresorbable integrated electronic systems can be fabricated as

promising solutions to various clinical challenges (Choi et al.,

2016a; Choi et al., 2016b; Lin et al., 2016; Li et al., 2021b).

Bioresorbable stents have been developed as a potential solution

to address in-stent restenosis (Bai et al., 2019). Recently, (Figure 9A)

Son et al. (2015) proposed amultifunctional bioresorbable electronic

stent that provides postoperative monitoring and therapeutic

functions in addition to the original functions of conventional

bioresorbable stents (Son et al., 2015). The proposed

bioresorbable electronic stent is equipped with a bioresorbable

flow sensor for monitoring blood flow and a bioresorbable heater

and temperature sensor for controlling postoperative drug delivery.

The entire system consists of bioresorbable materials, so the

complete biodegradation of the stent reduces the possibility of

restenosis. Future research directions for biodegradable integrated

electronic systems, including bioresorbable electric scaffolds and

postoperative monitoring systems, may lie in the integration of

various sensors, memories, wirelessly powered devices, and even

therapeutic nanoparticles (Lee et al., 2015b; Lee et al., 2017b; Cha

et al., 2019).

The human skin has a variety of functions, such as sensing

external stimuli, giving flexibility to joint or muscle movement,

FIGURE 9
(A)Schematic diagram of a bioresorbable stent for endovascular disease. Reproduced permission from 2015, American Chemical Society (Son
et al., 2015). (B) Schematic diagram of a dual bionic multifunctional self-powered e-skin with layered nanostructures of spider webs and ant
tentacles. Reproduced permission from 2021, Wiley (Yue et al., 2021).
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protecting vital organs from injury, and performing autonomous

self-repair (Wang et al., 2018). Further research in skin-inspired

integrated electronics will contribute to the great development of

electronic skin for prosthetics (Wang et al., 2018; Zou et al., 2018). In

2021, self-powered, sensitive, flexible, breathable, biodegradable,

intelligent, and integrated e-skin with a multi-layered, all-

nanofibers (NFs) structure was successfully developed (Figure 9B)

(Yue et al., 2021). In addition, the e-skin is used to efficiently harvest

biomechanical energy and monitor whole-body physiological

signals of pressure, temperature, and humidity. Thanks to the

complete NFs structure, the e-skin has a breathability of

20.87 ms−1, guaranteeing comfort when worn. This study

combines versatile, sensitive and self-powered materials to ensure

an intelligent and integrated e-skin to detect various physiological or

environmental signals. It even ensures permeability and

biodegradability, thus helping to promote more practical and

environmentally friendly applications of e-skins in human-

machine interfaces and artificial intelligence (Yue et al., 2021).

4 Conclusion and prospects

The rapid development of bioresorbable materials and the

understanding of their dissolution behavior have led to the

invention of numerous high-performance bioresorbable electronic

devices with multiple applications in the last few years. Despite the

rapid development and remarkable achievements in bioresorbable

electronics, there are some potential problems and challenges, and the

main challenges and possible solutions are listed below.

1. Degradation mechanism studies and modulation of degradation

behavior. Although a large set of organic and inorganic

biomaterials have been studied over the past 30 years, the

diversity of degradation behaviors of materials has limited the

progress of research. The majority of degradable implantable

devices currently utilize simple hydrolysis decomposition

mechanisms, and the influence of multiple chemical

components in the in vivo microenvironment on the

decomposition of implantable materials should be investigated

in more depth to expand the application of degradable materials.

2. Innovative chemistry and processing technologies. First,

functional polymers from organic sources should be

emphasized in future research in order to develop fully

organic flexible, stretchable and biocompatible

bioelectronics. Further, natural abundance, renewable and

intrinsic biocompatible natural polymers should be

explored to enrich the field of sustainable healthcare

monitoring and green electronics.

There are more areas of concern in the existing research on

degradable electronics. In terms of biosafety, attention needs to be paid

to the effects of degradation byproducts on humans, which requires

relevant clinical studies to investigate potential concomitant chronic or

acute diseases from degradation byproducts. In terms of device

processing, there are often difficulties in combining new materials

with existing technologies or products, and the more critical challenge

is also to achieve integration of multiple components in a device

without compromising system functionality and device size. Finally,

wirelessly powered components should also be considered for

inclusion in the overall system considerations.

A systematic research approach could accelerate the progress of

future biodegradable bioelectronics research. For designing polymeric

materials with specific electronic properties (semiconductors,

conductors), new possibilities exist to utilize unconventional

degradable connections. Since most degradable materials are

studied from different geographic environments in nature, for

future work it would be interesting to consider specific

microenvironments in the human body that favor decomposition

mechanisms other than simple hydrolysis. For example, mechanisms

that degrade polymers using highly reactive oxygen and nitrogen

radical species produced by macrophages upon encountering foreign

bodies. Further understanding of the chemical composition of

different natural and physiological environments could open the

door to biodegradable polymeric materials that are currently not fully

explored in flexible bioresorbable electronic systems.
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