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Analog resistive random-access memory (RRAM)-based computation-in-
memory (CIM) technology is promising for constructing artificial intelligence
(AI) with high energy efficiency and excellent scalability. However, the large
overhead of analog-to-digital converters (ADCs) is a key limitation. In this
work, we propose a novel LINKAGE architecture that eliminates PE-level ADCs
and leverages an analog data transfer module to implement inter-array data
processing. A blockwise dataflow is further proposed to accelerate
convolutional neural networks (CNNs) to speed up compute-intensive layers
and solve the unbalanced pipeline problem. To obtain accurate and reliable
benchmark results, key component modules, such as straightforward link (SFL)
modules and Tile-level ADCs, are designed in standard 28 nm CMOS technology.
The evaluation shows that LINKAGE outperforms the conventional ADC/DAC-
based architecture with a 2.07×~11.22× improvement in throughput, 2.45×~7.00×
in energy efficiency, and 22%–51% reduction in the area overhead while
maintaining accuracy. Our LINKAGE architecture can achieve 22.9~24.4 TOPS/
W energy efficiency (4b-IN/4b-W) and 1.82 ~4.53 TOPS throughput with the
blockwise method. This work demonstrates a new method for significantly
improving the energy efficiency of CIM chips, which can be applied to general
CNNs/FCNNs.
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1 Introduction

Deep neural networks (DNNs) have seen explosive growth in many AI applications over
the last few years, such as computer vision and speech recognition (Sze et al., 2017). Many
domain-specific DNN accelerators have been designed for edge applications, where massive
data need to be transferred between computing and memory units. The memory access
latency in von Neumann architecture is difficult to improve, and this largely limits its energy
efficiency (Sze et al., 2017; Xu et al., 2018). Due to their advantages of high density, multilevel
capability, and CMOS compatibility, analog RRAM-based computation-in-memory (CIM)
chips have been widely investigated as promising candidates to improve energy efficiency
and reduce memory bandwidth requirements (Zidan et al., 2018; Zhang et al., 2020).
However, although the RRAM array has high computation density and energy efficiency, the
overhead of the digital-to-analog converter (DAC) and analog-to-digital converter (ADC)
between arrays greatly limits the system energy efficiency. For example, it has been shown
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that 2-bit DAC power consumption accounts for up to 24% of total
consumption and 8-bit ADC accounts for as much as 61% (Liu et al.,
2020; Shafiee et al., 2016). In addition, the energy cost of data
movements due to the loaded and stored intermediate digital data
also limits the system energy efficiency; this cost can reach 83% of
the total cost in PRIME (Chi et al., 2016).

To address these issues, several recent works have proposed
using RRAM to perform in-RRAM partial sum accumulation and
adopting RRAM as an analog local buffer to enhance analog data
locality, such as in CASCADE (Chou et al., 2019). Other works
have proposed applying analog CMOS components between
RRAM arrays to reduce the ADC/DAC overhead (Bayat et al.,
2018; Kiani et al., 2021; Zhou et al., 2021). However, these
methods are mainly suitable for fully connected neural
networks (FCNNs). The convolutional layers are compute-
bound. Although a convolutional operation can be represented
by general matrix‒matrix multiplications (GEMMs) via the
Im2Col operation (Qin et al., 2020), the next convolutional
layer cannot start its operation until enough outputs have
been generated by the previous convolutional layer. The data
should be aggregated in a buffer between the convolutional
layers. However, the proposed components in Bayat et al.
(2018), Kiani et al. (2021), and Zhou et al. (2021) cannot
buffer intermediate data. Therefore, the energy efficiency can
be significantly reduced when the methods are generalized to
CNNs. In addition, the shift-add process can be moved before the
AD conversions process and conducted in the analog domain,
effectively eliminating the digital shift-add module (Jiang et al.,
2022a). TIMELY achieves up to an 18.2× improvement over
ISAAC (Shafiee et al., 2016) in energy efficiency. The energy
efficiency of ISAAC is approximately 300 GOPs/W. Yun et al.
(2021) proposed value-aware ADC bypass techniques and
improved the overall system energy efficiency by up to 3.43 in
8-bit precision networks compared to ISAAC. BRAHMS (Song
et al., 2021) reorders the activation and pooling functions in front
of AD conversions and forms fused operators to eliminate useless
AD conversions. It exhibits 6.64× energy reduction on average
than ISAAC-like with 4-bit RRAM precision. ENNA (Jiang et al.,
2022b; Jiang et al., 2023) has a CIM architecture based on an
ADC-free sub-array design with a pulse-width-modulation
(PWM)-based input encoding scheme to improve the
throughput. To address the overhead of peripheral circuits
and local access in analog RRAM-based CIM systems, we
present the straightforward link in analog domain and
generalizable (LINKAGE) architecture. The key contributions
of this paper are as follows:

• The proposed LINKAGE architecture eliminates PE-level
ADCs and leverages an analog data transfer module to
implement inter-array data processing. It exploits a
straightforward link module that can save the inter-array
analog data to the local analog domain and directly transfer
analog data to the next layer.

• For CNNs, we propose a blockwise method to speed up
compute-intensive layers and solve the unbalanced pipeline
problem.

• To obtain accurate and reliable evaluation results, the key
component modules are designed in standard 28 nm CMOS

technology. Our LINKAGE architecture can achieve
22.9~24.4 TOPS/W energy efficiency and 1.82 ~4.53 TOPS
throughput (4b-IN/4b-W/4b-O) with the blockwise method.

2 Background

2.1 CNN and data reuse

There are three forms of data reuse in the process of CNNs
(Chen et al., 2017), as shown in Figure 1A. The first form is the
input feature map (IFM) reuse. Each IFM can be reused by M
kernels to generate M output feature map (OFM) channels. The
second form is the kernel reuse. Each kernel can be reused by
multiple IFMs. The third form is the convolution reuse. Each
kernel weight is reused E × E times in one IFM, and each IFM
pixel is reused K × K times in one kernel. The next patch of an
IFM simply needs to update #stride×#K×#Channel input pixels.
E and K are the size of each IFM plane and each kernel plane,
respectively. To maximize the energy efficiency and minimize the
memory bandwidth, the goal is to make the most of the three
forms of data reuse in the analog RRAM-based CIM system. For
the IFM reuse and kernel reuse, the IFMs are encoded as voltage-
level based inputs of the bit-lines (BLs), and the kernel weights
are represented as the conductance matrixes of RRAM arrays.
RRAM is non-volatile memory, so the conductance matrixes can
be stored on the chip all the time. Therefore, IFMs and kernels are
naturally reused for the RRAM-based CIM system. Furthermore,
we propose a blockwise mapping method and dataflow to take
advantage of the convolution reuse to reduce data
communication and redundant data production.

2.2 Blocked pipeline in CNNs

For convolutional neural networks, the size of the input
feature map will become smaller and smaller with the number
of layers and the convolution kernel dimension will increase. This
results in a low computation/weight ratio for deeper neural
network layers and a high computation/weight ratio for
shallower layers. The first few layers of a convolutional neural
network are compute-intensive, as shown in Figure 1B. When all
layers of the VGG16 network are mapped only once to the CIM
chip, the number of operands in the first two layers is much larger
than that in the other layers and the number of arrays required
for each layer is much larger than the first two layers. The process
will be blocked in the first few compute-intensive layers. It leads
to an unbalance in the pipeline and eventually causes the
throughput bottleneck of the system. To improve the
throughput of the system, the pipeline should be balanced,
such as ISAAC and PipeLayer, replicating the weights of the
first few layers of the network to improve the intra-layer
parallelism. In short, the first two layers of convolutional
neural networks have the highest ratio of computation/weight,
large parameters in feature maps, and large amounts of interlayer
data transmission. To accelerate the two most compute-intensive
layers, a blockwise mapping method and dataflow are proposed
to solve the problems of an unbalanced pipeline. In addition, the
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proposed blockwise method can reuse the analog data stored in
local analog buffers, greatly reducing the constraints of data
transmission.

3 Proposed implementation

3.1 Design of ADC-less RRAM PE

Figure 2A shows the design of the ADC-less RRAM processing
element (PE). One PE consists of a 576 × 128 1T1R RRAM array, BL
analog buffers, current subtractors, straightforward links (SFLs), and
a digital control module. For the 1T1R array, word-lines (WLs) and
source-lines (SLs) are horizontal, and BLs are vertical to SLs. Neural
network weights are represented as the conductance of RRAM cells.
One weight needs to be represented by two RRAM cells because
RRAMs cannot represent negative weights directly. Each 1T1R cell

stores a 4-bit value. The subtraction result between the two cells’
conductance is the real weight value. There are two reasons for the
PE size. First, 576 is a multiple of 3 × 3. The PE size can match the
size of the convolutional layer and maximize the array utilization.
Second, for IR-drop, the RRAM array with 128 columns and
576 rows can obtain a small accuracy loss (Zhang et al., 2019).
The PE is an analog input and analog output. The analog inputs are
the voltage-level-based inputs encoded by DACs of a higher level of
the hierarchy. First, the inputs are applied to RRAM arrays through
BL analog buffers. The buffer is a unity gain buffer (UGB), which is a
single-ended operational amplifier (OpAmp) with negative unit
feedback. The OpAmp is a two-stage amplifier with a class-AB
output stage, as shown in Figure 2C. UGBs are adopted to stabilize
the analog voltage and drive the BLs of RRAM arrays. Then, vector-
matrix multiplication (VMM) between the voltage-level-based
inputs and weight matrix is implemented through the RRAM
array, and it generates analog current outputs. Current

FIGURE 1
(A) Illustration of data reuse and (B) dataflow bottleneck in CNNs.

FIGURE 2
(A) ADC-less RRAM PE design; (B) schematic representation of the straightforward link (SFL). The SFL consists of a capacitor, a unity gain buffer
(UGB), and a ReLUmodule; (C) amplifier in the UGB or BL analog buffer; (D) the ReLUmodule comprises a sense amplifier (SA) and a 2-to-1 MUX. (E) The
SA is a latch-based voltage mode SA.
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subtractors (I-SUB) based on the current mirror structure
(Xue et al., 2019) are used to subtract two current outputs. At
last, the subtracted currents are converted to analog voltages
through charge-based conversion. The analog voltages will be
stored in the ADC-less RRAM PE temporarily and applied to the
next RRAM array as read voltages. The conversion, temporary local
analog storage, and driver are all realized by the proposed SFL
module.

Figure 2B demonstrates the design of the SFL. It comprises a
capacitor for charge-based current-to-voltage conversion, a UGB
as a voltage buffer for stabilizing the voltage and driving the BLs of
the next RRAM array, and a rectified linear units (ReLU) module
for the activation function. Figure 2D shows the schematic
representation of the ReLU module, composed of a sense
amplifier (SA, as shown in Figure 2E) and a 2-to-1 multiplexer
(MUX). The capacitor is used not only as a converter but also as an
analog memory (CMEM). The retention time of CMEM is on the
order of milliseconds, the same as DRAM, so charges in the CMEM

would not reduce within 100 ns. The capacitance value needs to
ensure that the range of integrated voltages is no more than the
maximum read voltage, 0.2 V. In one 576 × 128 1T1R RRAM array,
the subtracted currents distribute within ±11uA through algorithm
evaluations. Therefore, the capacitance value is 550 fF, with an
integration time of 10 ns.

We design the SFL module in a standard 28-nm CMOS process
through Cadence Virtuoso. The simulation waveforms are shown in
Figure 3. In the first phase (PH1), only switch (SW) 1 is turned on
and the CMEM is reset to 350 mV. In the second phase (PH2), only
SW 2 is turned on and the CMEM is integrated by the subtracted
current to realize the charge-based current-to-voltage conversion. In
the third phase (PH3), only SW 3 is turned on and the temporarily
stored voltages across the CMEM are rectified by the ReLU module

and then drive the next RRAM array. The latency of the three phases
is 30 ns, and each phase occupies for 10 ns. The key metric of SFL is
to transfer the analog data to the next array accurately. Because
analog voltages are sensitive to noise and interference, the SFL can be
affected by process, voltage, and temperature (PVT) variations. We
simulate the SFL under different process corners, temperatures, and
supply voltages. The waveforms shown in Figure 3 demonstrate that
the integrated voltages across the CMEM are transferred to the next
array in all PVT situations. There is a deviation of about 0.4–0.5 mV.
The total integrated noise of CMEM and UGB is 0.12 mVrms and
0.53 mVrms, respectively. The UGB offset is −65 μV, and the charge
injected to CMEM is 6.29 × 10−19 C (about 1.1 μV). We consider all
the PVT, noise, and interference in the neural network accuracy
simulation and benchmark on the ResNet18/CIFAR-10. Because the
one-sided swing of SFLs is 200 mV (@ tt, 27°C, and varies under
different corners), the total deviation, 0.4–0.5 mV, is relatively little
compared to the swing. In addition, random noise is considered
during the offline training of the neural network, so the neural
network can resist circuit noise after noise-aware training. Finally,
neural networks also have a certain tolerance for noise. The accuracy
can be maintained under noise and interference of the SFLs (as
shown in Table 1).

3.2 Hierarchical architecture

There are two levels, the PE level and Tile level, in the LINKAGE
hierarchy. One Tile consists of ADC-less RRAMPEs. Figure 4 shows
the Tile-level of LINKAGE architecture. There are two consecutive
ADC-less PE stages, processing two continuous layers of neural
networks. The PE level leverages an analog data transfer module to
implement inter-array data processing. Although the LINKAGE
eliminates ADC, DAC, and local buffers at the PE level, it still needs
digital quantization modules at the Tile level to provide the
scalability for a large-scale hierarchical system design. It needs to
digitize the analog outputs and store them in global buffers for
various neural network layers. The Tile of LINKAGE is designed for
two consecutive layers. The first layer is mapped to the PEs of the
first stage in the Tile, and the second layer is mapped to the PEs of
the second stage. The pipelines in LINKAGE are organized by pairs,
and two layers occupy a pipeline stage. The second layer can realize
the data conversion using Tile-level ADCs to prepare the data for the
next pipeline stage. In addition, large NN layers are split and
mapped to multiple PEs. For the sum required after splitting, the
currents can be summed by connecting two currents to the
same node.

Early layers are more compute-intensive, especially the first two
layers. To speed up the two most compute-intensive layers, we
propose a blockwise mapping method and dataflow for LINKAGE
to solve the unbalanced pipeline and communication-bound
problems. First, the first two layer’s IFMs have the largest size in
the plane. It will block the pipeline severely for long latency to
prepare enough data for the next layers. Second, the huge inter-layer
data would cause communication-bound problems. The proposed
blockwise method can reuse the stored inter-layer data and largely
reduce data that need to be digitalized.

Figure 5 illustrates the blockwise mapping method and dataflow.
We assume that two consecutive convolutional layers are (C, K1, K1,

FIGURE 3
Simulation waveforms of the proposed SFL module.
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N) and (N, K2, K2, M), where K1 and K2 are the kernel sizes, C is the
input channel of the first layer, N is the input channel of the first
layer and the output channel of the second layer, andM is the output
channel of the second layer. At each time step, the input block moves
by one stride in the IFM, as shown in Figure 5A. One subblock is the
size of (C, K1, K1), the same as one kernel of the first layer. Each
subblock is unfolded to a C × K1 × K1 vector to be input to a RRAM
array, as shown in Figure 5B, and the array outputs N results.
Similarly, the second layer needs N × K2 × K2 data; otherwise, it
cannot start the complete VMM operation. To construct a balanced
flow, the first layer is replicated by K2 × K2 on RRAM arrays. An
input block also contains K2 × K2 subblocks, and the subblocks are
staggered one stride, as shown in Figure 5C. In the first time step, the
K2 × K2 subblocks are unfolded to K2 × K2 vectors and all input to
RRAM arrays simultaneously. The first layer outputs N × K2 × K2

results, and they are stored in the CMEM of SFLs. Next, the results are
transferred and input to the second layer through SFLs. The second
layer outputs M results. At the next time step, the input block moves
by one stride. K2 × (K2 -1) subblocks in this input block are the same
as in the last time step. The N × K2 × (K2 -1) results of these

subblocks have been stored in the CMEM of SFLs, so they need not be
recalculated. Only the new K2 subblocks will be calculated, and N ×
K2 × 1 results are updated into CMEM. Therefore, N × K2 × K2

outputs can be calculated simultaneously at a one-time step. The N ×
K2 × K2 inputs of the second layer are organized through MUX sets.
Each MUX is controlled by a mod-K2 synchronous counter.

Figures 6A, C illustrate the dataflow of the first two
consecutive convolutional layers at the architectural level. For
the first layer, Conv1, input data are loaded from input buffers to
the DACs. The N × K2 × K2 outputs are obtained simultaneously
from RRAM arrays in the first stage. The output currents are
converted to analog voltages by the SFLs and then stored in the
local analog domain. The analog voltages can be directly applied
to RRAM arrays in the second stage through the SFLs. Then, the
results of the second layer, Conv2, are output through the ADCs
and stored first-in first-out (FIFO). It should be noted that the
Tile of LINKAGE used to compute convolutional layers is
designed for two consecutive layers. Otherwise, the number of
replications will increase exponentially. Therefore, the
convolutional layers are computed in pairs in the LINKAGE

TABLE 1 Benchmark of ResNet18/CIFAR-10, considering the PVT, noise, and interference.

Corner tt, 27°C ff, 0°C ff, 27°C ff, 80°C ss, 0°C ss, 27°C ss, 80°C tt, 27°C, 0.9V + 10% tt, 27°C, 0.9V-10%

Swing (mV) 200.01 212.15 210.57 207.68 189.53 188.13 187.31 200.85 201.89

Accuracy (%) 90.66 90.73 90.69 90.80 90.67 90.64 90.65 90.63 90.74

tt means typical nmos and typical pmos; ff means fast nmos and fast pmos; ss means slow nmos and slow pmos.

FIGURE 4
Tile level of LINKAGE architecture.
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FIGURE 5
The blockwisemappingmethod and dataflow for two consecutive convolutional layers. (A) At each time step, the input blockmoves by one stride in
the IFM; (B) Each subblock is unfolded and input to an ADC-less RRAM PE; (C) Only the new K2 subblocks will be calculated and N × K2 × 1 results are
updated into CMEM.

FIGURE 6
Dataflow between PEs for (A, C) two consecutive convolutional layers and (B, D) other two consecutive layers.
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FIGURE 7
Baseline design with conventional ADC-based PE.

TABLE 2 The accuracy of different neural networks.

Benchmark FCNN VGG-8 ResNet18

Dataset MNIST CIFAR-10 CIFAR-10

Accuracy (software baseline) 97.88% 88.90% 91.46%

Accuracy (w_bit = 4, a_bit = 4, wnoise = 0.05) 97.38% 87.43% 89.96%

FIGURE 8
Performance benchmarks on different DNN models (4-bit weight/4-bit input configuration).
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architecture. For the basic block of ResNet (Zhang et al., 2019), if
there is a shortcut layer, the workflow of the shortcut layer is
marked with a dotted line (as shown in Figure 6C). The currents
of shortcut and conv2 can be summed by connecting the two
currents to the same node. Figures 6B, D illustrate the dataflow of
the other two consecutive layers. These layers of the neural
network are less compute-intensive than the first two layers. It
would not adopt array replication and the blockwise method.

4 Evaluations

4.1 Experimental setup

To provide a fair comparison, we build a baseline design with
conventional ADC-based PE, as shown in Figure 7. This CIM
architecture consists of local buffers, DACs, RRAM arrays,

ADCs, shift adders, controllers, and special function units
(SFUs), such as pooling units and ReLU. The analog output
currents of RRAM arrays are converted to digital voltages
through ADCs. Then, outputs of each part are added by a
shift-adder, and the results can be stored in a local buffer as
inputs to other Tiles. The DAC is shared by RRAM arrays. The 8-
bit DAC would have an enormous overhead and be impossible to
design, so we choose a 4-bit DAC. We retrain the NN with lower
bit width weights and activations. The input and output are both
4 bits, and the weight is also 4 bits. As shown in Table 2, the
accuracy loss is within 2%. We design the 4-bit ADC and 4-bit
DAC modules in a standard 28-nm CMOS process. The 4-bit
DAC consists of an R-ladder and clamping buffers. The R-ladder
generates discrete voltages, and the clamping buffers are UGBs
used to clamp the 24 analog voltage levels. In addition, each row
in an RRAM array needs a BL analog buffer to drive the
input voltage. One ADC is reused by eight SLs in the baseline
design.

4.2 Benchmark results and discussion

To ensure the analysis is close to the real prototype, we build
an end-to-end CIM simulator with an integrated framework from
the device to the algorithm. The simulator includes the noise-
aware offline training algorithms, the complete design of the
circuit and architecture for the RRAM neural process unit, and
the non-idealities of RRAM (Liu and Gao, 2021). The
performances of modules (measured from the circuit’s design)
are integrated into the PE level in the LINKAGE hierarchy. For
different neural networks, the performance and energy efficiency
are evaluated, according to the network structure and the
LINKAGE architecture. Figure 8 shows the benchmark results
on FCNN/MNIST, VGG-8/CIFAR-10, and ResNet-18/CIFAR-
10 and ResNet-50/CIFAR-10. The energy efficiency of proposed
SFL-based designs could perform 2.45×~3.17× better than
baseline designs, and the throughput of SFL-based designs
performs 1.67×~4.30× better for different tasks. The IFMs are
processed continuously inter-array without quantization, so the
latency is reduced and the workloads for Tile-level ADCs are
decreased. Our LINKAGE architecture can achieve

FIGURE 9
Area overhead of different DNN models.

TABLE 3 Comparison table with recent RRAM-based CIM macros.

Related work DAC’22 (Song et al.,
2021)

ISCA’20 (Li et al.,
2020)

MICRO’19 (Chou et al.,
2019)

TCAS-1′22 (Jiang et al.,
2022b)

This work

Array size 128×128 256×256 64×64 256×256 576×128

Weight precision 2-bit/4-bit 4-bit 1-bit 2-bit 4-bit

Array-level interface 2-bit ARCAM/4-bit:ADC 8-bit DTC/TDC DAC/TIA 4-bit PWM-based DAC/edge
capacitor

DAC/capacitor

Energy efficiency
(TOPS/W)

5.51 (2-bit)/2.52 (4-bit) 21 (8-bit MAC) 1.33 26.97 22.9–24.4

Accuracy Baseline ≤ 0.1% loss 90% @ MLP-2, w/6-bit BL
resolution

Baseline (7-bit Tile-
level ADC)

Baseline (4-bit Tile-
level ADC)

Normalized TOPS/W 22.0/40.32 168 7.98 215.76 366.4

Normalized: for 1-bit × 1-bit MAC operation.
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8.51~10.35 TOPS/W energy efficiency (4b-IN/4b-W) and 0.68
~1.73 TOPS throughput without the blockwise method. The
blockwise method can further improve the energy efficiency
by 2.21×~2.54×. LINKAGE architecture can achieve
22.9~24.4 TOPS/W energy efficiency and 1.82 ~4.53 TOPS
throughput with the blockwise method. SFL-based designs
could reduce the area by 22%–51% (Figure 9), particularly
benefitted from a substantial reduction in the total number of
BL buffers and ADCs at the Tile-level. In addition, the blockwise
method achieves more than twice energy efficiency with little area
overhead.

To provide a comparison, LINKAGE and other related
RRAM-based CIM macros are compared, as shown in Table 3.
These works also propose ADC-less solutions to solve the ADC
overhead problem. We list their array-level interfacing solutions,
energy efficiency, and recognition accuracy. The accuracy of
these tasks is maintained to the software baseline. To
intuitively compare these works, energy efficiency of macros is
normalized to a 1-bit × 1-bit multiply and accumulate operation
(MAC). (Input bits × weight bits × energy efficiency, or MAC
bits × energy efficiency). As shown in Table 3, this work has the
highest normalized energy efficiency.

5 Conclusion

In this work, we propose a CIM architecture design that eliminates
PE-level ADCs. It exploits a straightforward link module that can save
the inter-array analog data to the local analog domain and directly
transfer analog data to the next array. Furthermore, for CNNs, we
propose a blockwise dataflow to speed up compute-intensive layers and
solve the unbalanced pipeline problem. To obtain accurate and reliable
evaluation results, PE-levelmodules are designed in the standard 28-nm
CMOS technology. Our LINKAGE architecture can achieve
22.9~24.4 TOPS/W energy efficiency and 1.82 ~4.53 TOPS
throughput (4b-IN/4b-W/4b-O) with the blockwise method. The
evaluation results demonstrate that the LINKAGE architecture could
significantly improve the energy efficiency of CIM chips. In addition,
LINKAGE provides a new type of PE and extends the search space in
CIM design.
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