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This study introduces a pioneering design for leaky integrate-and-fire (LIF)
neurons by integrating memristor devices with CMOS transistors, thereby
forming an innovative hybrid CMOS/memristor neuron circuit. Employing Pt/
TaOx/Ta as the memristor device, the proposed model was meticulously
implemented and rigorously evaluated using the Cadence Virtuoso simulation
environment. The simulation outcomes affirm the effective functionality of the
design, marking a significant advancement in hybrid circuit engineering. Notably,
the proposed neuron circuit exhibits a compact footprint, attributed to the
efficient utilization of hybrid CMOS/memristor gates. This characteristic is
poised to address the critical challenge of scaling in current neuromorphic
systems, offering a viable pathway to substantially augment density and cater
to the escalating demands of advanced computational architectures. The findings
of this research hold promising implications for enhancing the efficiency and
scalability of neuromorphic systems, setting a new benchmark for future
developments in this domain.
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1 Introduction

Inspired by the human brain, neuromorphic systems have drawn much attention in
recent years due to their massive parallelism, low power consumption, fault tolerance, and
capacity for adaptive learning (Indiveri et al., 2006; Benjamin et al., 2014; Mead, 1990; Yu
et al., 2011). In addition to conventional computing systems, von Neumann is facing severe
challenges (Stefano et al., 2018), which made brain-inspired computing an alternative
approach for conventional computing systems. Thus, hardware implementation for
neuromorphic systems has been an ambitious research field and very appealing to
computing architecture. The complementary metal oxide semiconductor (CMOS)
technology offers the platform to realize the neuromorphic systems to emulate the
computations inside the human brain, which is required for implementation of neuron
circuits and electronic synapses. Therefore, several works have been proposed on many
neuron circuits, such as integrate-and-fire (I&F) neurons (Brink et al., 2012), leaky
integrate-and-fire (LIF) neurons (Sangya et al., 2017), and electronic synapses (Seo
et al., 2011). Although these CMOS-based circuits have shown maturity toward
emulating and understanding the neuromorphic systems, it comes at the price of
occupying a large silicon area with considerable power consumption due to the high
number of transistors involved. With the aim to solve this problem, the new emerging
nonvolatile memory (NVM) devices known as memristors could be a promising candidate
for future computing architecture, owing to their nanoscale size and the ability to integrate
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with the existing CMOS technology. Moreover, memristors can
behave similarly to the human brain in adjusting or changing their
responses to stimulation patterns (Gotarredona et al., 2013), making
them a perfect choice to imitate biological behavior. There has been
intensive research (Stefano et al., 2016; Sangsu et al., 2013; Bipin
et al., 2013) covering the area of neuromorphic systems engaging
memristors, whereas memristor devices are used to implement
synapses with a crossbar structure. However, it is very difficult to
integrate the pure memristive crossbar structure with CMOS
neurons due to the differences in their logical states. In this
paper, an LIF neuron model has been implemented based on the
hybrid CMOS/memristor, taking the advantage of the ability to
integrate standard CMOS with memristor devices and the capability
of fabricating memristor devices on top of the CMOS substrate,
which can provide additional storage and fast computing. The rest of
this paper is arranged as follows: Section 2 briefly introduces the
memristor ratioed logic (MRL), which is exploited as a design
method for the LIF neuron. Section 3 includes information about
implementing hybrid CMOS/memristor LIF neurons. Section 4
presents and discusses simulation results and discussion on
MRL-based LIF neurons. Finally, remarks and conclusions are
presented in Section 5.

2 Memristive design method

The memristor is a new emerging resistive device that adds new
capabilities to the CMOS technology, which can enhance the
performance of neuromorphic architectures. The integrated
platform of CMOS/memristors, also known as MRL (Kvatinsky
et al., 2012), offers the ability to perform all logic gates utilizing
memristors and stack them in between CMOS upper layers (Cho
et al., 2015), which will allow faster computing and additional
storage at a reasonable chip area for neuromorphic hardware
implementation. MRL is CMOS-compatible. Hence, the logical
state of this method is based on the output voltage level. Thus,
low and high voltage represent logical states (“0” and “1”),
respectively. MRL-based AND and OR gate implementation
requires only two memristors, while NAND and NOR gates
require a CMOS inverter to be connected to the output of AND
and OR gates to facilitate the circuits with the interface and control
operation (Zidan et al., 2018). Figure 1 displays MRL-based AND,
NAND, OR, and NOR. In this work, the memristor model
Pt /TaOx /Ta presented in Siemon et al. (2014) was utilized to
provide the proposed (LIF) neuron with the memristive behavior
over other memristor models reported in Chen and Yu (2015);
Kvatinsky et al. (2015) due to the model’s fast switching speed,
excellent scalability, and compatibility with CMOS fabrication at
low programming voltage. The memristor model Pt /TaOx /Ta
has a compact structure with an oxide layer sandwiched between
two electrodes that send and receive electrical signals. The stable
resistive switching characteristics of the devices are strongly
associated with the distribution of oxygen vacancies observed in
the oxide material (TaOx). The resistance of the device given
in Equation 1 changes to reflect the logical states. Logic “0” is
represented by the high resistance state, while logic “1” is
represented by the low resistance state.

R � Ldisc
N.e.µn.A[ ]

, (1)

where Ldisc is the length of the disc zone in which switching
activity takes place, N is oxygen vacancy in the disc zone, e is the
elementary charge, µn is the mobility of the electrons, and A is the
device cross-sectional area. The I–V curve shown in Figure 2
represents the Pt /TaOx /Ta device true memristive behavior,
which demonstrates the stable resistance switching characteristics
of the model. The average current in the device given in Equation 2 is
considered the sum of the Schottky current observed in the
Pt /TaOx junction and the areal leakage current during the
device high resistance state ROFF.

I � ISchottky + Iareal. (2)

The device’s reliability and accuracy are impacted by Schottky
current, which is responsible for changing the concentration of the
oxygen vacancy. Schottky current has two components: the ionic
current Iion and the current passing through the electronic
resistance.

3 Hybrid CMOS/memristor LIF neuron

The LIF model is the most popular structure used to emulate the
behavior of biological neurons. Figure 3 depicts the simplest form of
the LIF model as a parallel combination of a capacitor Cmem as the
membrane capacitor and the leaky resistor RLeak as the leak path
resistance of the neuron with a voltage-controlled switch connected
in parallel with the capacitor. The performance of the model shown
in Figure 3 can be explained as follows: the input excitation current
Iinput charges the membrane capacitor to produce a potential Vmem

(integrating process); when the membrane potential Vmem exceeds a
certain threshold Vth, the neuron fires, and a spike is generated
(firing process); at the same time, the voltage-controlled switch is
closed instantly to reset the membrane potential to a predefined
resting potential value lower than the threshold value (resetting
process). Equations 3, 4 describe the LIF model’s basic mechanism,
which indicates that excitation and leakage currents control the
membrane potential and vice versa.

Cmem
dVmem

dt
� − 1

RLeak
Vmem − Vreset( ) + Iinput, (3)

ILeak � − 1
RLeak

Vmem − Vreset( ), (4)

A proposal for a memristive LIF neuron model has been
presented in Figure 4 based on the MRL method. The design
involves several building blocks as follows.

3.1 Synapse block

The synaptic weight is realized in this block based on
the output pulse duration, which is generated when the input
spikes trigger the block. Hence, the operations are
implemented assuming that multiple inputs can be combined
and applied to the counter’s input using MRL-based OR gate,
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assuming input spikes will not happen exactly at the same
time (Heidarpur et al., 2024). The 4-bit memristor-based
counter is the main element in this block. The up-counter

has been implemented using the MRL-based up–down counter
(Alammari et al., 2020). The MRL-based counter can change
its count direction, whether up or down, at any point
within the counting sequence. Hence, up-counting is chosen
from the control mode (Alammari et al., 2020). The counter
starts counting from the initial value until it reaches the
synaptic weight, which is defined by the pulse width. Synaptic
weights with larger values have wider pulses, thus having more
effect on the neuron core. Synaptic weights are sent to the neuron
core block. At the same time, a feedback signal is sent to reset
the counter.

3.2 Neuron core

The integration and leak function are performed in this
block. The integration process commences when a pulse is
received from the synapse block. The membrane potential is
realized by a 4-bit memristor-based up–down counter, which
was implemented and tested in the Cadence Virtuoso schematic
level and previously published in Alammari et al. (2020). The
counter updates its logical states every time it receives a synaptic
pulse. The counter is incremented or decremented based on the
pulse type received from the synapse block. The parameter Exc/Inh
indicates the type of the input spike, whether excitatory or
inhibitory. However, when no synapse pulse is applied to
the neuron core, the leak function takes place by continuously
decrementing the counter.

3.3 Neuron output

The final stage in the design is to compare the output of
the up–down counter “membrane potential” with a threshold
value via a 4-bit memristor-based comparator. A spike is
generated when the membrane potential exceeds the threshold
value. Simultaneously, a feedback signal is sent to the neuron core
to reset the membrane potential to its initial value.

FIGURE 1
Schematic of MRL-based logic gates (A) AND, (B) NAND, (C) OR, and (D) NOR.

FIGURE 2
I–V curve of the Pt /TaOx /Ta memristor device. Current flows
through the device from the bar side, and the resistance of the device
decreases (SET process). Current enters from the non-bar side, and
the device’s resistance increases (RESET process).

FIGURE 3
Schematic diagram of the leaky integrate-and-fire model.
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4 Experimental results

The model for LIF neurons has been implemented based on
the MRL method. Hence, the memristor devices are employed in
the structure depicted in Figure 4. The LIF neuron is made up of a
few simple blocks: counters, comparators, and logical gates. The
main element in the design is the memristive counter, which was
implemented and tested in the Cadence Virtuoso schematic level
and previously published in Alammari et al. (2020). The
mechanism of the LIF neural model can be explained as
follows: the up–down counter begins counting as the input
“Stim” generated from the synapse block entering the counter.

The counter starts the up-counting when the parameter Exc/Inh
is at logic 1. Otherwise, down-counting is performed. The width
of the pulse, which is received from the synapse block, provides
information about the synaptic weights. However, when no
synapse pulse is applied to the neuron core, the counter has
no counting activity and the counter’s value starts to decrease,
emulating the leak behavior observed in the neuron model
definition. Finally, a comparator is used to detect the threshold
level. Figure 5 demonstrates the behavior of the memristive LIF
model in Cadence Virtuoso. In the first period, the synaptic
weights are accumulated, which contributes to the membrane
potential until the threshold value (Vth = 7) is reached when the

FIGURE 4
Schematic of the proposed MRL-based LIF neuron.

FIGURE 5
Time diagrams for the proposed MRL-based LIF neuron. Output of the up–down counter Q1 Q2 Q3 Q4 begins incremented /decremented as the
input “Stim” generated from the synapse block. Synaptic weights accumulated until the threshold value (Vth=7) is reached when the neuron fires.
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neuron fires. In the second period of the simulation, the
membrane potential starts to decrease its value since there are
no input spikes to the up–down counter “stim = 0,” and “the leak
behavior.” Figure 6 confirms the action potential of the LIF
neuron model. The exceptional features about this proposed

memristive LIF neuron circuit compared to other works
utilizing memristors (Myonglae et al., 2015; Yuning et al.,
2018) is the comprehensive involvement of the memristor
devices in every aspect of the design. In Myonglae et al. (2015)
the LIF neuron is implemented using an integrator, comparator
with eight switches, and control logic, while in Yuning et al.
(2018), the neuron circuit comprises an analog demultiplexer,
summing amplifier, and comparator, and the digital part
includes AND and OR gates with D flip-flop (DFF). However,
both designs have employed memristor devices only to
implement synapses. At the same time, our study design shows
that both memristive counters in the synapse block and the
neuron core block employ four MRL-based T flip-flops (TFF)
connected with other MRL-based Boolean gates shown in
Figure 1. The circuit of MRL-based TFF consists of MRL-
based DFF and MRL-based 2-input XOR gate. The DFF is an
edge-triggered circuit consisting of two D-latches connected in
series with a master–slave configuration to prevent any possibility
of invalid input states. The hybrid memristor-CMOS logic gates
AND, OR, and NOR are utilized and connected based on the
schematic shown in Figure 7. The DFF involves 16 memristors
and 14 MOSFETs, while the XOR gate requires six memristors
and two MOSFETs. Hence, the memristive TFF shown in Figure 8
consists of 22 memristor devices and 16 MOSFETs (Alammari
et al., 2020). The four memristive TFFs can produce a 4-bit
representing the counting sequence once TFFs are trigged.
The MRL-based counter in each block of the memristive
neuron circuit can change its count direction, whether up or
down, at any point within the counting sequence. The TFF is an
essential element in the design since it assesses both counters
regarding the area, delay, and power consumption. Table.1
presents a comparison of the memristive TFF against other
CMOS-based TFF (Abiri et al., 2014). The memristive
comparator was implemented based on the memristor-based
MRL logic gates depicted in Figure 9. The number of all
devices which contribute to the circuit of the memristive
neuron is listed in Table 2, which indicates that the MRL-
based design is efficient in terms of the layout area. It
can be seen from Table 2 that in the hybrid memristor-
CMOS-based up–down counter, the number of transistors
required is fewer than the number in traditional CMOS-
based up–down counter with 110 memristors and
34 MOSFETs, which is less than half of the devices reported in

FIGURE 6
Action potential of thememristive LIF neuronmodel shows three
fire events taking place as the threshold value (Vth=7) is reached and
one short spike due to short current because of no input spikes to inter
the up–down counter “leak behavior commences.”

FIGURE 7
Circuit schematic for T flip-flops (TFF).

FIGURE 8
Circuit schematic of the memristor-based TFF.
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Alioto et al. (2006); Abdel-Hafeez and Gordon-Ross (2011);
Zhang and Hu (2012). The integral platform of CMOS
transistors and memristor devices has led to almost 50% in
area saving (Kvatinsky et al., 2012) compared to the same
CMOS-based design. This is because of the limited utilized
number of CMOS transistors in the proposed LIF neuron
model as memristor devices can be fabricated on the upper
layers of CMOS transistors (Cong and Xiao, 2011; Ru et al., 2011).

5 Conclusion

This work utilizes the Pt /TaOx /Ta memristor model to
provide the proposed architecture of LIF neurons with
memristive behavior. The proposed architecture is based on the
hybrid CMOS/memristor gates, which enable integration with
existing CMOS-based neurons to support large-scale
neuromorphic systems. The exception of this proposal is the

TABLE 1 A comparison between the number of CMOS-based TFF and the proposed memristive TFF.

TFF Design TGB (Yuning et al., 2018) Modified CMOS
Yuning et al. (2018)

GDI (Yuning et al., 2018) MRL-based TFF

MOSFET 26 24 22 16

Memristor - - - 22

Delay (Ps) 79.1 60.6 50.2 34.1

Power (µW) 55.3 42.7 17.5 12.3

FIGURE 9
Circuit schematic of the memristor-based 4-bit comparator.

TABLE 2 Number of all devices in the proposed design of the memristive LIF neuron.

Design element Up–down counter Up-counter Comparator/synaptic Comparator/core

Device MOSFET 34 32 16 16

Memristor 110 94 66 66
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involvement of the memristor devices in every aspect of the design
since we divided our design into three parts: a synaptic block with a
memristive up-counter, a core neuron circuit with an MRL-based
up-down counter previously published, and a comparator to
generate a spike when the membrane potential exceeds the
threshold value. The circuit of Leak Integrate and Fire neuron is
area efficient due to the MRL-based gates employed in the proposed.
The design was implemented and verified in Cadence Virtuoso at
each stage to confirm its functionality.
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