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With the rapid development of machine learning, Deep Neural Network (DNN)
exhibits superior performance in solving complex problems like computer vision
and natural language processing compared with classic machine learning
techniques. On the other hand, the rise of the Internet of Things (IoT) and
edge computing set a demand on executing those complex tasks on
corresponding devices. As the name suggested, deep neural networks are
sophisticated models with complex structures and millions of parameters,
which overwhelm the capacity of IoT and edge devices. To facilitate the
deployment, quantization, as one of the most promising methods, is proposed
to alleviate the challenge in terms of memory usage and computation complexity
by quantizing both the parameters and data flow in the DNN model into formats
with shorter bit-width. Consistently, dedicated hardware accelerators are
developed to further boost the execution efficiency of DNN models. In this
work, we focus on Convolutional Neural Network (CNN) as an example of DNNs
and conduct a comprehensive survey on various quantization and quantized
training methods. We also discuss various hardware accelerator designs for
quantized CNN (QCNN). Based on the review of both algorithm and hardware
design, we provide general software-hardware co-design considerations. Based
on the analysis, we discuss open challenges and future research directions for
both algorithms and corresponding hardware designs of quantized neural
networks (QNNs).
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1 Introduction

Convolutional Neural Network (CNN) is one of the fundamental building blocks in
modern computer vision systems proven to be effective in image classification, video
processing, and object detection. The state-of-the-art CNNs are capable of performing very
complex image classification tasks with an accuracy comparable to or even outperforming a
human (Krizhevsky et al., 2017; Simonyan and Zisserman, 2014; He et al., 2016; Pham et al.,
2021). However, the size of a state-of-the-art CNN can reach hundreds of megabytes
preventing it from being deployed on edge or IoT devices for vision-related applications.
Moreover, a 32-bit floating-point format is used for data representation in state-of-the-art
CNN models. This leads to the challenges of deployment of these models to edge/IoT
devices with restricted memory bandwidth, throughput, computation resources, and battery
life, especially for real-time applications. Hence, there is an increasing demand for compact
efficient CNN hardware maintaining acceptable performance.
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Due to redundant parameters of state-of-the-art CNN models
(Han et al., 2015), pruning and quantization techniques can be used
to reduce the size or number of CNN weights (Janowsky, 1989;
Fiesler et al., 1990; Courbariaux et al., 2015). The conceptual
comparison between quantization and pruning is shown in
Figure 1. Quantization is a compression technique, that reduces
the number of bits used for computation leading to CNN size
reduction and hardware-friendly operations, e.g., integer
arithmetic or bit-wise operations, rather than full precision
floating-point operations (Neill, 2020; Guo, 2018; Qin et al.,
2020; Kulkarni et al., 2022; Rokh et al., 2022; Gholami et al.,
2021). Both pruning and quantization are important techniques
for reducing model size and computational complexity. However, in
this work, we specifically focus on quantization techniques and their
impact on hardware implementations.

In addition to quantization and pruning, which facilitate the
hardware implementation of CNNs, dedicated hardware
accelerator designs can further improve energy and
computation efficiency. The major motivation to develop
specific neural network hardware comes from the memory
bottleneck of the traditional von Neumann architectures
(CPUs/GPUs), especially noticeable when deploying memory-
dense applications, e.g., CNNs with millions of parameters.
Specific hardware accelerators, e.g., FPGA-based (Umuroglu
et al., 2017; Zhang et al., 2021), ASIC-based (Chang and
Chang, 2019; Biswas and Chandrakasan, 2018) or In-memory
computing (IMC) based (Sun et al., 2018b; Ankit et al., 2019)
designs, help to address von Neumann bottleneck issues and
deploy CNNs on low-power devices. Therefore, in this work, we
try to provide a comprehensive review of specific hardware
designs of quantized CNNs (QCNNs) and connect software-
based QCNN methodologies with hardware deployment.

While previous studies have primarily reviewed neural network
compression and quantization techniques from an algorithmic
perspective (Neill, 2020; Guo, 2018; Qin et al., 2020; Kulkarni
et al., 2022; Rokh et al., 2022; Gholami et al., 2021), they barely
pay attention hardware implementations and often overlook the
critical interplay between these algorithms and their hardware
implementations. In contrast, our work bridges this gap by
surveying both quantization algorithms and a wide range of
QCNN-specific acceleration hardware. Furthermore, we offer
insights into the challenges and open problems in QCNN
hardware accelerator design, along with general guidelines for

effective software-hardware co-design. Our main contributions
are as follows:

• Integrated Review of Algorithms and Hardware: We survey
various quantization techniques for CNNs alongside a detailed
review of dedicated hardware accelerators—such as ASIC- and
FPGA-based designs—that implement these methods. This
dual perspective highlights how algorithmic choices impact
hardware performance and vice versa.

• Guidelines for Software-Hardware Co-Design: We discuss
practical strategies for co-designing quantization algorithms
and hardware architectures. By outlining design trade-offs and
optimization strategies, we provide a roadmap for developing
CNN systems that maintain high performance under strict
energy and resource constraints.

Both quantization algorithms, QCNN acceleration hardware
design, and even network structure designs are rapidly evolving
research topics. Hence, it is challenging to encompass an exhaustive
survey of all relevant literature. The focus of this work is specifically
narrowed to hardware accelerators for QCNNs that are tailored to

FIGURE 1
Comparison between the original, quantized and pruned models. w, a are weight, activation tensors respectively.

FIGURE 2
Overview of the scope of this work.
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maximize energy efficiency (e.g., ASIC- and FPGA-based designs),
as opposed to those designed with an emphasis on scalability and
peak performance. In alignment with this focus, the review of
quantization algorithms and CNN models is mainly on those
that are prevalently adopted by energy-efficient QCNN hardware
accelerator designs. Given the defined scope of this paper, it is
noteworthy that some cutting-edge CNN models (e.g., Vision
Transformer + CNN(Guo et al., 2022), RegNet (Xu et al., 2022),
DPN(Chen et al., 2017), Res2Net (Gao et al., 2019)), quantization
techniques (e.g., codebook quantization, gradient quantization), and
QCNN hardware platforms (e.g., GPUs, CPUs) will not be reviewed
in extensive detail, as they are not common for energy-efficient on-
edge processing. An overview illustrating the scope of this paper is
provided in Figure 2. Nonetheless, we acknowledge and value the
significant contributions of researchers in both fields who are missed
by this work and extend our apologies to our readers for the
inevitable limitations in coverage.

The remaining part of this paper is organized as follows. Section
2 introduces the basics of convention CNN and QCNN. Section 3
presents different quantization methods commonly used to quantize
CNNs. In Section 4, different methods to generate a QNN are
illustrated and benchmarked. In Section 5, various hardware
accelerator designs are reviewed. Section 6 presents the future
outlook on algorithms leading to more efficient QCNNs and
corresponding hardware accelerator implementations. Section 7
concludes the paper.

2 Convolutional neural network

2.1 Full precision convolutional
neural network

2.1.1 Convolution layer and fully connected layer
Inspired by the hierarchy model of the visual nervous system,

Fukushima proposed the first neural network similar to modern-day
convolution layers (Fukushima, 1980). LeCun et al. introduced the
“LeNet-5” CNN in (LeCun et al., 1989; Lecun et al., 1998) for
handwritten digit recognition systems, which is referred to as the first
modernCNN trainedwith gradient-based backpropagation including all
the essential building blocks in modern CNNs (convolution layers,
pooling layers, and fully connected layers). Convolution layers are
used to extract spatial features due to their spatial invariance.

Following the convolution layers, the fully connected layers are
used to classify the abstracted features from the convolution layers
and generate the final classification output.

2.1.2 Other auxiliary layers
In modern CNN architectures, additional auxiliary layers,

including pooling, normalization, and dropout layers, are used
along with the main convolution and fully connected layers. The
pooling layers reduce the sizes of the convolution layers by sub-
sampling the output feature maps with max/average operations.

As CNNs are becoming deeper andmore complex, they also tend to
be hard to be trained. To solve this problem, Ioffe et al. proposed the
batch normalization technique in (Ioffe and Szegedy, 2015). Batch
normalization normalizes the data over a mini-batch during training as
xBN � x−μ

σ · γ + β, where x, xBN ∈ RNbatch×1 are the data before and after

batch normalization respectively, Nbatch is the batch size, μ, σ are the
mean and standard deviation of the inputs over the mini-batch. Two
optional trainable parameters γ, σ are called affine parameters and
involved in the final output computation enabling an affine
transformation on the normalized data, restoring the representation
capability of the neural network.

The other challenge in deep CNN training is overfitting.
Srivastava et al. proposed the dropout technique in (Srivastava
et al., 2014). By inserting dropout layers after convolution and
fully connected layers, a certain portion of neurons is randomly
chosen and dropped out during training, equivalent to training an
ensemble of networks with different connections.

2.2 Typical convolutional neural networks

The design of CNNs has been widely explored recently.
However, due to the limitation of IoT and edge devices, to the
best of our knowledge, the latest CNNmodels like the RegNet family
(Xu et al., 2022) and CNN-transformer hybrid architectures (Guo
et al., 2022) are not implemented on dedicated hardware
accelerators. Instead, only limited types of CNNs are referred to
in the study of QCNNs. In this section, the commonly used CNNs in
the study of hardware-related and mobile device-related QCNNs are
introduced rather than the state-of-the-art CNN models.

2.2.1 LeNet-5
LeNet-5 (LeCun et al., 1989) is one of the earliest modern CNN

architectures. It is designed for handwritten digit recognition with
the Modified National Institute of Standards and Technology
(MNIST) dataset. The structure of LeNet-5 can be shown in
Figure 3a. It is often introduced in the studies as a case of light-
weighted CNN.

2.2.2 VGG family
Supported by GPU acceleration, CNNs have become deeper.

One such network is AlexNet (Krizhevsky et al., 2017), which can
support large datasets classification, e.g., Imagenet. AlexNet adapts a
rectified-linear unit (ReLU) as the non-linear activation function.
The other example of deep CNN is VGGNet, which achieves high
accuracy using small convolution kernel sizes. Such deep networks
contain up to a hundred million parameters overwhelming the edge/
IoT-based implementations of these networks due to the limited
memory and resources. Therefore, a simplified version of VGGNet,
VGG-small (VGG-9), is designed for a smaller dataset (CIFAR-10)
(Courbariaux et al., 2015). The structure of the VGG-small is shown
in Figure 3b.

2.2.3 ResNet family
The challenges of deep neural networks with simply cascaded

layers are vanishing or exploding gradient issues during the training.
To address this issue, the ResNet CNN model was proposed, which
is divided into small blocks (He et al., 2016). Each block consists of a
few (usually 2 or 3) convolution layers, with an identity bypass
connecting the input and output of the block to alleviate vanishing
and exploding gradient problems. This allows the implementation of
narrower but deeper networks, showing better performance than
wider, shallower networks. Due to the modular design, the ResNet
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architecture can be scaled to up to a thousand layers. Figure 3c shows
the network structure of a ResNet-18 modified for the CIFAR-
10 dataset.

2.2.4 CNNs for mobile devices and TinyML
To achieve better power efficiency and lower inference latency

on modern mobile devices, the complicated CNNs need to be
redesigned. MobileNet (Howard et al., 2017) proposes a network
design with depth-wise separable convolution layers (Sifre and
Mallat, 2014). Compared with traditional convolution layers, the
depth-wise separable convolution layers reduce both the number of
computations and the number of parameters by 1

Cout
+ 1

k2Cin
times.

Additionally, most computations in the depth-wise separable
convolution layers are contributed by the point-wise convolution
with a kernel size of 1 × 1, which can be executed by a highly
optimized general matrix multiplication (GEMM) function. While
for other convolution layers, the feature map needs to be rearranged
in the memory before it can be processed by GEMM functions. To
improve the performance further, the inverted bottleneck block
requiring less computation compared with the traditional bottleneck
block was introduced in MobileNetV2 (Sandler et al., 2018).

To scale up a CNN further, compound scaling factors are
introduced in EfficientNet (Tan and Le, 2019). They scale up the
width, depth, and resolution simultaneously leading to higher
accuracy when more floating point operations (FLOPs) are
allowed by the hardware setup. To generate a baseline CNN
model with a certain target number of FLOPs, Neural
Architecture Search (NAS) can be used. Then, a grid search can

be performed with the generated baseline model to acquire the
compound scaling factors for this model.

To further extend AI towards the edge, the concept of TinyML
was proposed (Warden and Situnayake, 2019). TinyML includes
hardware, software, and algorithms that enable on-device sensor
data analysis on the edge. It also includes network structure design
and optimization targeting low-power edge devices like
microcontroller units (MCUs). Even though MobileNet and
EfficientNet are optimized towards compactness, they still
overwhelm the RAM size of typical MCUs. To overcome this
memory bottleneck challenge, the MCUNet framework is
proposed in (Lin J. et al., 2020). MCUNet adopts a two-stage
NAS to generate an optimized model towards throughput and
accuracy while meeting the memory constraint. The two-stage
NAS is co-designed with a memory-efficient inference library
supporting code generator-based compilation, model-adaptive
memory scheduling, computation kernel specialization, and in-
place depth-wise convolution. MCUNetV2 (Lin et al., 2021)
introduces patch-by-patch inference scheduling in the inference
library and receptive filed redistribution in NAS to further reduce
peak memory consumption caused by the imbalanced memory
distribution in CNNs.

2.3 Quantized convolutional neural network

To enable efficient deployment of CNNs on edge or IoT devices,
CNNs need to be compressed. Various techniques have been

FIGURE 3
Network structure of (a) LeNet-5, (b) VGG-small, and (c) ResNet-18.
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developed for neural network compression, including pruning
(Janowsky, 1989; Han et al., 2015; Guo et al., 2020), low-rank
tensor approximation (Denton et al., 2014; Jaderberg et al.,
2014), and quantization (Teng et al., 2019; Gong et al., 2014;
Courbariaux et al., 2015; Hubara et al., 2017; Sun et al., 2020). In
this work, we focus on quantization methods, which can be
independently applied with other compression methods.

We summarize the achieved accuracies of various full-precision
CNNs targeting different datasets in Figure 4. Due to the small
memory size of MCUs and FPGAs, full-precision CNNs are too
large to be deployed on such devices. To reduce the memory
footprint, the parameters in the neural network can be quantized
into a format with a shorter bit-width compared with the original
32-bit floating-point format. In (Gupta et al., 2015; Zhou et al., 2016;
Rastegari et al., 2016), the authors quantize the weights of CNN into
different bit-width formats achieving up to 32 times the size
reduction with a cost of mild accuracy degradation. To reduce
the issues of limited computation ability and power in IoT/edge
devices, activation quantization has been proposed leading to more
efficient computation kernels. For instance, when using binary
quantization, multiply-accumulate (MAC) operations in a
traditional full-precision neural network can be replaced by
energy-efficient combination of XNOR and bit counting
operation (Hubara et al., 2017; Rastegari et al., 2016; Zhou et al.,
2016). Similar to weight quantization, accuracy degradation caused
by quantization is acceptable.

Generally, QCNN is commonly referred to as a CNN with a
quantized format of parameters (weights) and data flow
(activations) to achieve a smaller network size and more efficient
computation.Weights in CNN account for the majority of the size of
the neural network. As the number of weights in the convolution
and fully connected layers are in the order of O(N2), while the rest
of the parameters (biases, affine parameters) are in the order of
O(N), with N being the number of neurons in the layer. Hence,

most of the published works focus on quantizing the weights of
convolution layers and fully connected layers.

3 Quantization methods

Quantization maps a continuous interval into a set of discrete
values. There are various mapping algorithms, which can be
categorized into two subsets, deterministic quantization, and
stochastic quantization. In deterministic quantization, the
quantized value and original value have a one-to-one mapping.
While the stochastically quantized value is sampled from a certain
probability distribution parameterized by the original value.
Sampling from a distribution requires more computation than a
deterministic calculation. Additionally, gradient estimation is
difficult with stochastic quantization leading to training
complexity (Bengio, 2013). Hence, we focus on deterministic
quantization algorithms.

3.1 Uniform quantization

Uniform quantization is the most commonly used quantization
algorithm, which divides an interval into equal sub-intervals where all
the data is represented by a single value. Each sub-interval corresponds
to a set of linear uniformly distributed discrete values. Uniformly
quantized value wq is represented as (Equation 1):

wq � quant wc( ) � clamp ⌊wc + b

s
⌉, vmin, vmax( )

clamp x, vmin, vmax( ) �
vmin x≤ vmin

x vmin <x< vmax

vmax x≥ vmax

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1)

FIGURE 4
Comparison of convolutional neural network (CNN) model sizes against the memory capacities of various hardware platforms. For FPGA, memory
capacity corresponds to on-chip block random access memory (BRAM), while standard random access memory (RAM) for other platforms.
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where �.� is a round function to the nearest integer, wc, b, s and
vmin/vmax are full-precision value, bias, scale factors and boundary
values respectively. The simplest case of uniform quantization is
binary quantization (with b � 0, s � min(|x|), vmax � 1, vmin � −1)
(Equation 2):

wq � quant2 wc( ) � Sign wc( ) � −1, wc ≤ 0
1, wc > 0

{ (2)

Another widely used uniform quantization is n-bits integer
quantization (Equation 3):

wq � quantk wc( ) � clamp �wc�,−2n−1, 2n−1 − 1( ) (3)

In practice, the full-precision parameter wc is passed through a
bounded non-linear function before quantization. For instance, in
(Hubara et al., 2017), a hard clip function is applied to the parameter
to be quantized before actual quantization. In (Zhou et al., 2016),
parameters are passed through a hyperbolic tangent function
limiting the range of the parameters into the quantization range
[−1, 1]. Therefore, the ability to update all the parameters is retained,
even if the parameters are outside the quantization range. However,
it is not always optimal to update all the parameters, this topic is
detailed studied and discussed in (Sakr et al., 2022).

Generally, uniform quantization is simple, as all operations on
the quantized parameters are either integer or bit-wise operations,
suitable to be executed by arithmetic logic units (ALUs) in von
Neumann systems, gate-level circuits in ASICs, and lookup tables
(LUTs) in FPGA. However, uniform quantization inherently
exhibits a poor dynamic range. With n-bit uniform quantization,
the ratio r between the largest positive value and the smallest positive
value can be expressed as r � 2n−1

1 � 2n−1. To mitigate this drawback,
a full precision scale factor is attached to the quantized values (Zhou
et al., 2016; Rastegari et al., 2016), at the cost of computation
complexity. For instance, full precision scale factors are
multiplied with corresponding quantized values and summed up
during convolution operations, which requires full precision floating
point arithmetic support on the hardware. Besides, other
quantization methods have better dynamic range (discussed in
the following section).

3.2 Low-precision floating point format and
logarithmic quantization

One of the straightforward approaches to reduce data precision
(reduce bit-width) while maintaining dynamic range is to truncate
the commonly used IEEE-754 single-precision floating-point format
to half-precision format. Examples of low-precision floating point
formats are presented in Table 1. To further reduce the bit-width

and computation complexity while maximizing the dynamic range,
a 4-bit radix-4 logarithmic quantization algorithm (Sun et al., 2020)
can be used in the format of [sign, exponent] � [1, 3]:

|wq| �
4n−1, 4n−1 ≤ |wc|≤ 4n + 4n−1

2

4n,
4n + 4n−1

2
< |wc|≤ 4n

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n � −3,−2,−1, 0, 1, 2, 3
sign wq( ) � sign wc( )

(4)

Derived from Equation 4, the ratio between the largest and smallest
magnitude can be expressed as r � 43

4−3 � 46. Compared with 4-bit
uniform quantization (r � 24−1 � 23), the logarithmic quantization
has a much larger dynamic range r. This makes it suitable for the
quantization of data with a large dynamic range, e.g., gradients.
Neural network training with the 4-bit radix four logarithmic
quantization can achieve comparable results as using a 32-bit
floating-point format (Sun et al., 2020).

From the hardware point of view, the multiplication operation of
logarithmically quantized data can be simply implemented with shift
operations. However, the sum operation puts high requirements on
accumulators due to the high dynamic range. Therefore, to support
logarithmic quantization, the accumulator usually has large bit-
width of the output or supports a floating point sum operation.

3.3 Codebook quantization

The parameters of a well-trained neural network follow a certain
distribution, which is neither linear nor logarithmic. To represent
these parameters, the quantized value set and corresponding
mapping rules can be customized resulting in a codebook-style
quantization. In (Gong et al., 2014), the quantized value set is found
by k-mean clustering (Equation 5):

min
c

∑N
i

∑k
j

‖wi − cj‖22, w ∈ R1×N, c ∈ R1×k (5)

Then, each value cj can be assigned an index to form a codebook. The
index requires log2k bits to be represented. With the quantized value set,
the parameter can be quantized and represented using indexes, with
CB(x) being the inverse codebookmapping (value to index) (Equation 6):

wq � CB argmin
cj

‖wc − cj‖22( ) (6)

A similar method is adopted and implemented on hardware in (Lee
et al., 2017). In (Han et al., 2015), a network is quantized by

TABLE 1 Examples of different floating point format and logarithmic quantization format (* Log4 is a radix-4 format).

Format Bit-width Bit allocation (sign, exponent, fraction)

IEEE-754 Half precision 16-bit (1, 5, 10)

FP8 (Wang et al., 2018) 8-bit (1, 5, 2)

Log4* (Sun et al., 2020) 4-bit (1, 3, 0)
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codebook quantization using Equation 6 and finetuned. In (Teng
et al., 2019), codebook quantization is applied, where the most
frequent values form a quantization value set instead of the cluster
centroids. The codebook is updated after every epoch during
training. Uniform quantization and logarithmic quantization can
be treated as a special case of codebook quantization with the
quantized value showing uniform or logarithmic distribution.

The hardware requirements to implement codebook
quantization depend on the values in the codebook. For instance,
if these values are floating-point values, the hardware should support
floating-point operations. Compared to uniform and logarithmic
methods, codebook quantization brings additional overhead of
reading the codebook.

3.4 Mixed-precision quantization

Different parts of the neural network tend to exhibit different
levels of abstraction and expression ability (Chu et al., 2021). Hence,
different quantization parameters can be chosen for different parts
of the neural network to ensure optimum model size without
accuracy degradation, which is named mixed-precision
quantization (MPQ) (Rakka et al., 2022). MPQ can provide a
full-precision accuracy while maintaining the same model size as
extremely low bit-width quantization (Nguyen et al., 2020; Kim
et al., 2020). In MPQ, quantization parameters (bit-width, scale
factors, quantization boundaries, etc.) for different parts of the
neural network can be determined by some specification/metrics
of the corresponding part (Ma et al., 2021; Yao et al., 2021), by
differentiable optimization (Li et al., 2020; Habi et al., 2020), or by
reinforcement learning (Wang et al., 2020; Elthakeb et al., 2019).

MPQ implementation requires additional hardware support and
creates hardware overhead to handle the heterogeneity brought by
MPQ (Nguyen et al., 2020; Wu et al., 2021). Any quantization
method, e.g., uniform, logarithmic or codebook, can be used to
create a mixed-precision model.

4 How to generate a quantized
neural network?

There are two main approaches to generate a quantized neural
network (QNN) model: (1) quantizing a well-trained full-precision
model, known as Post-Training Quantization (PTQ), and (2) training
or fine-tuning the model with quantization effects incorporated,
referred to as Quantization-Aware Training (QAT). PTQ is typically
faster and more efficient in terms of runtime, energy consumption, and
computation cost because it uses a small calibration dataset without
modifying the model weights. However, PTQ often results in lower
performance compared to QAT (Jiang et al., 2022; Gholami et al., 2021;
Rokh et al., 2022). As discussed in subsequent sections, current edge-
oriented hardware accelerators do not fully support neural network
training. Consequently, in edge-oriented vision applications (where
QCNNs are commonly deployed), models are usually prepared
offsite—on servers where runtime, energy consumption, and
computational cost are less critical—making the extra overhead of
QAT acceptable in exchange for improved accuracyMenghani (2023).
To fully exploit the advantages of PTQ, instead of applying it to edge-

oriented vision tasks, PTQ is frequently employed in domains like large
language models, where updating weights is prohibitively expensive
even with modern computational resources Shen et al. (2024a). Given
these considerations, we focus on QAT methods in this paper.

Themajor challenge for trainingQNNs is the stair-like nature of the
quantization function, resulting in zero gradients. Therefore, traditional
stochastic gradient descent (SGD)-based training methods cannot be
applied directly for QNN training. Hence, the key challenge in QNN
training is backpropagation methods. Based on the backpropagation of
the loss, QNN training methods can be categorized into (1)
approximated gradient methods with exact gradients and (2) exact
gradient methods with gradual quantization (Figure 5).

4.1 Approximated gradient under exact
quantization

One of the solutions to the zero-gradient problem of the
quantization function is to generate an approximated gradient to
update the weights. The most straightforward approximation
strategy is called the straight-through estimator (STE), which
offers a simple and efficient way to backpropagate gradients
through quantization functions. In STE, the Jacobian matrix J∂wc

∂wq

is set to be a diagonal matrix, where all diagonal entries equal to 1

(with C being the cost) ∂C
∂wc

� ∂C
∂wq

. STE is used in all approximated

gradient methods highlighted below.

4.1.1 Binary-connect and QNN
One of the first CNNs with binarized weights trained using STE

is presented in (Courbariaux et al., 2015) (shown in Figure 6). This
model achieved the accuracy comparable with floating-point
models. Following the idea of training QNN using STE, this
method is extended to n-bits uniform quantization of both
weights and activations in (Hubara et al., 2017). In n-bit
quantization (Hubara et al., 2017), the constraints are added to
the weights and gradient values (a binary case example)
(Equation 7):

wc t + 1( ) � clip wc t( ) − η∇wcC,−1, 1[ ]
gac � gaq · 1|ac|< 1 (7)

where gac, gaq are gradients with respect to continuous activation
and quantized activation, η is the learning rate, and 1|ac |< 1 equals to
1 when condition satisfied otherwise 0. Constraints on the weights
and gradients of the activations avoid extremely large values,
improving the training performance.

4.1.2 DoReFa-Net
In (Zhou et al., 2016), the method to quantize weights,

activations, and gradients is presented (Figure 6) (Equation 8):

wq � 2quantk,0,1
tanh wc( )

2max |tanh wc( )|( ) +
1
2

( ) − 1

aq � quantk,0,1 clip ac, 0, 1( )( )
gq � 2max |gc|( ) quantk,0,1

gc

2max |gc|( ) + 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(8)
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where quantk,0,1 is the k-bits uniform quantization function
bounded between 0 and 1. The binary quantization case with
E(|wc|) being the mean of all the weights in the same layer can
be formulated as:

wb � sign wc( ) · E |wc|( )
ab � sign ac( ) (9)

As shown in Equation 9, a layer-wise scale factor E(|wc|) is attached
to the binarized weights. Therefore, the DoReFa-Net can not achieve
a fully binarized inference. Similar to (Hubara et al., 2017), a
hyperbolic tangent function and a clip function are applied to
weights, and activations, respectively before quantization to avoid
extremely large values and guarantee good performance. The first
and last layers in the DoReFa-Net are not quantized.

4.1.3 LQ-Net
Even though Binary-Connect and Dorefa are based on uniform

quantization, the data distribution of weights and activations in a
well-trained neural network is non-uniform. In (Zhang et al., 2018),
to reduce the quantization error, a quantized value is obtained as:

wq ∈ bTv|b ∈ −1, 1{ }K{ }, (10)

where v is a vector representing the basis of the quantized value
space, b is a vector where all elements are either −1 or 1, andK is the
number of quantization bits. This method brings a more flexible
quantized value space while being compatible with the bit-wise
operation (BwBT

a ):
wT

q · aq � vTwBwB
T
a va (11)

FIGURE 5
General training flow based on approximated gradient and exact gradient.

FIGURE 6
Visualization of weights before and after quantization during training using different training methods. (a) Basic STE. (b)DoReFa. (c) LNS-Madam. (d)
ANA. (e) nBitQNN. (f) ProxQuant. (g) Sigmoid QN.
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Training using this method consists of optimization of the quantizer
(vector v and b) and optimization of the neural network parameters.
Quantizer optimization is performed during the forward pass by
minimizing the mean squared quantization error. For better
efficiency, two vectors are optimized in a block coordinate
descent fashion (two vectors are optimized alternatively). During
the backward pass, neural network parameters are updated using the
traditional SGD method with gradients passed through the
quantizer via STE. To avoid adding considerably more
parameters to the neural network, the learned quantizer is
assigned channel-wise for weight and layer-wise for activations.

4.1.4 LNS-Madam
As logarithmic quantization offers a better dynamic range than

uniform quantization, tailored logarithmic number system (LNS)
with fractional exponents is proposed in (Zhao et al., 2022) and
represented as (Equation 12):

xq � sign xc( ) · s · 2x̂
γ

x̂ � clip round log2
|xc|
s

( ) · γ( ), 0, 2b−1 − 1( ) (12)

where xc, xq are the value before and after quantization respectively,
γ is the base factor controls the quantization gap, b is the
quantization bit-width, and s is a scale factor related to the
magnitude of xc. By selecting γ from powers of 2, the overhead
of hardware complexity is reduced while maintaining a variable
quantization gap. In this LNS, the multiplication of the quantized
values is easy to implement as the traditional power-of-2-based LNS.
To efficiently perform add operations, the exponents are
decomposed x̂ � x̂i + x̂f

γ , with 2x̂i being processed by lookup
tables and x̂f

γ being processed by the approximation 2
x̂f
γ ≈ 1 + x̂f

γ .
Low-precision LNS training framework based on a modified

Madam optimizer presented in (Bernstein et al., 2020) directly
optimizes the exponents in the LNS enabling 8-bit low-precision
training. Figure 6 visualize the relation between quantized weightwq

and original weight wc with γ � 2, b � 3, s � 2.

4.1.5 PACT
In (Choi et al., 2018), the parameterized clipping activation

(PACT) algorithm to quantize an activation to low bit-width
without significant accuracy drop is proposed. One of the
challenges of activation quantization is to decide the clipping
range of a quantizer. A manual-designed clipping range is hard
to adapt to different activation value distributions from various
neural network architectures. An excessively small or large clipping
range causes important values to be clipped or vanish in a
quantization step size. PACT determines the clipping range
automatically via gradient update (Equation 13):

â � QPACT ac( ) � clip ac, 0, α( )

aq � round
â

α
· 2k − 1( )( ) · α

2k − 1

∂aq
∂α

� 1a≥α

(13)

where ac, aq are activation values before and after quantization, α is a
learnable clipping range parameter and 1a≥α is 1 if a≥ α and

0 otherwise. PACT replaces the clipped values with α in the
computation graph so that α can be automatically learned via
gradients. PACT exhibits better accuracy over manually designed
clipping ranges on various datasets.

4.1.6 Summary
The relations between the continuous and quantized versions of

the weights for both forward and backward passes are visualized in
Figure 6. Overall, approximated gradient based training methods
approximate the gradient according to a “trend line” (red line in
Figure 6). Also, these training methods execute the forward pass
using quantized values, showing the potential of being deployed to
low-end devices. However, most of the methods use full precision
weights to aggregate the full precision gradients. The possibilities of
training QNNs using low-precision latent weights (Banner et al.,
2018; Gupta et al., 2015; Zhao et al., 2022) and gradients (Zhou et al.,
2016; Rastegari et al., 2016; Sun et al., 2020) have been explored.
Such methods make approximated gradient-based training methods
to be good candidates for deployment on low-end devices.

4.2 Exact gradient with a gradual
quantization

Besides approximated gradient methods, the other solution to
the zero-gradient problem is a “soft” quantization using the time-
evolving quantization function with non-zero derivatives, which
converges to a “hard” quantization function as training proceeds.

4.2.1 Additive noise annealing (ANA)
In (Spallanzani et al., 2019), the expectations of quantized values

and corresponding gradients are defined and derived considering a
noise being added to the full-precision values. Consider
quant: R → Q being a multi-step quantization function, v being
a zero-mean noise with probability density μ(−v):

wq � Eμ quant wc + v( )[ ] � quant wc( )pμ wc( )
∂wq

∂wc
� ∂Eμ quant wc + v( )[ ]

∂wc
� quant wc( )p∂μ wc( )

∂wc

(14)

where Eμ is the expectation over μ, and (p) is the convolution
operation. Equation 14 can be used to perform forward and
backward passes of a noise-injected neural network. If μ(wc) is a
continuously differentiable function, the expectation
Eμ[quant(wc + v)] of the quantization function with noise
injected is not a multi-step function anymore, instead, a function
with non-zero gradient, which can be expressed as ∂wq

∂wc
in Equation

14. When the probability density function of the noise is a delta
function μ(x) � δ(x), the expectation Eμ[quant(wc + v)] �
quant(wc) matching the case of exact quantization. Hence, the
key strategy of ANA is to construct a time-dependent noise
probability density function μ(x, t), whose gradient is not always
zero and converges to delta function as training proceeded:
lim
t→∞ μ(x, t) � δ(x). Practically, after a certain number of training
steps, a hard quantization function is applied (i.e., no noise is
injected), to generate QNN for inference.

Figure 6 shows an example of different expectations wq �
E[quant(wc + v)] with different μ(−v) and quant(x) being a
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ternary quantization function. μ(−v) is considered to be a uniform
distribution μ(−v) ~ U[−σ, σ]. Large σ at the beginning of the
training results in a piece-wise linear function with non-zero
gradients, enabling the backpropagation of the gradient through
the quantization function. As training proceeds, σ decreases towards
zero, meanwhile, the expectation converges to a ternary
quantization function.

4.2.2 ProxQuant
Unlike other methods, the ProxQuant algorithm (Bai et al.,

2018) does not modify traditional SGD-based training, being
directly compatible with SGD optimizers, e.g., Momentum SGD
and Adam. The key point of the ProxQuant algorithm is adding a
regularization process after each SGD update (Equation 15):

wt+1 � proxλ·R wt − η∇C wt( )[ ]
proxλ·R x( ) � arg min

x̂

1
2
‖x̂ − x‖22 + λ · R x̂( )[ ] (15)

where R(x̂) is a regularizer, which achieves minimum value when
x ∈ Q with Q being a set containing quantized values. By applying
proxλ·R(x) function, the weight is updated considering both SGD
result and distance from the quantized set. The weights converge to
the values in the quantized set Q after applying proxλ·R(x) several
times. Figure 6 shows a special binary quantization (i.e., Q � −1, 1)
case when the weights are updated by appllying proxλ·R(x) for
several times. The weight distribution gradually converges to the
binary hard quantized case. To force the weights update towards the
quantized set and to improve the performance, the parameter λ �
λ(t) can be increased as training proceeds.

Since the proxλ·R[wt − η∇C(wt)] is applied iteratively, there is
no closed form of the equivalent “Soft Quant” function shown in
Figure 6. However, we can still use a generalized time-dependent
“Soft Quant” function, which converges to a hard quantization
function, to describe the effect of iteratively applying proxλ·R(x).

4.2.3 nBitQNN
In (Chen et al., 2020), a QNN training method that mixes the full

precision weights and quantized weights to generate mixed-
precision QNN is applied as (Equation 16):

wq � q̃uant wc( ) � αwc + 1 − α( )ŵq

ŵq � quantk wc( )
α ∈ 0, 1( )

(16)

where q̃uant is a pseudo-quantization function mixing the full
precision weight wc and the hard quantized weight ŵq.
∂wq

∂wc
� α ≠ 0, enables the gradient to back propagate through

q̃uant(wc). The parameter α adjusts the ratio between full
precision weights and hard quantized weights. Under a sufficient
number of training steps, the weights converge to the hard quantized
values even though α is a finite constant. The radix-2 logarithmic
quantization is used to hard quantize the weights, while the
activations are not quantized.

4.2.4 Quantization using sigmoid and
hyperbolic tangent

In (Yang et al., 2019), the quantization function reformulated
using a combination of shifted and scaled step functions:

wq � ∑n
i�1

siH βwc − bi( ) − o, (17)

where H(x) is the standard unit step function, si, bi are the scale
factor and shift of the corresponding unit step function, and o �
1
2∑n

i�1si is a global offset zero-centering the distribution of quantized
parameter wq. To overcome the zero-gradient problem of the step
functions during training, the unit step functions in Equation 17 are
replaced by temperature-modulated sigmoid functions σ(Tx):

wq � α ∑n
i�1

siσ T βwc − bi( )( ) − o⎡⎣ ⎤⎦
σ Tx( ) � 1

1 + e−Tx

(18)

where α is a layer-wise scale factor for the output. With Equation 18
being a differentiable function, the gradient can be backpropagated
through the neural network. As the training proceeds, the
temperature T grows, reducing the gap between σ(Tx) and unit
step functions (Figure 6). Once the training is finished, the unit step
functions are used in inference and validation. To guarantee high
accuracy, training is divided into three phases: training a full
precision neural network, training with weight quantization only,
and training with activation quantization while fixing weight
quantization.

In (Gong et al., 2019), the differentiable soft quantization
framework (DSQ) is proposed, which shares a similar idea of
quantizing data piece-wisely using a series of evolving hyperbolic
tangent basis functions. Different from (Yang et al., 2019), the
evolution of the basis functions is not performed explicitly with
the training progress. A characteristic variable (describing the error
between hard quantization and basis functions) is calculated and
minimized during training. Additionally, DSQ adopts trainable
clipping ranges similar to PACT (Choi et al., 2018).

4.2.5 Summary
Exact gradient methods adopt evolving quantization functions

to guarantee a feasible gradient during training and reach hard
quantization at the end of training. However, this implies that these
methods need to be operated with full precision data. Hence, they
are more suitable for a cloud-based execution generating QNNs to
be deployed on edge devices.

4.3 Fake and real quantization

Most quantization studies implement their algorithms in
software (e.g., using Pytorch, Tensorflow) (Li et al., 2021).
Therefore, all the quantization operations and quantized data are
simulated in floating-point format, which can be referred to as “Fake
Quantization”. On the contrary, when the quantized models are
deployed on hardware, the quantized data is processed by executors
supporting the corresponding format (e.g., 8-bit integer arithmetic
unit for 8-bit uniform quantization). This can be referred to as “Real
Quantization”. The data format mismatch between fake and real
quantization may cause unavoidable data value differences.
Adaption from fake quantization to real quantization considering
different hardware architectures is discussed in Section 5.
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4.4 Benchmarking

In this section, the training methods mentioned in Section 4 are
benchmarked under different configurations using corresponding
open-source codes modified where required.

4.4.1 Network and training configurations
In the aforementioned works, different configurations of either

the network or training are used. In all the original works, the affine
operation of the batch-norm layer is enabled and all the trainable
parameters for affine operation are not quantized. While in our

TABLE 2 Benchmark settings for training methods.

Index Bit Width (W,A,G)* Epochs Bias BNAffine DataAug Notation*2

BNN (Hubara et al., 2017)

1 (1,1,32) 900 Yes Yes Yes [1,1,1]

2 (1,1,32) 900 No No No [0,0,0]

3 (1,1,32) 900 Yes Yes No [1,1,0]

DoReFa (Zhou et al., 2016)

4 (1,1,32) 500 Yes Yes Yes [1,1,1]

5 (1,1,32) 500 No Yes No [0,1,0]

6 (1,1,32) 500 No No No [0,0,0]

7 (1,2,4) 500 No Yes No [0,1,0]

ANA (Spallanzani et al., 2019)

8 (T*3,T,32) 1000 No Yes Yes [0,1,1]

9 (T,T,32) 1000 Yes No No [1,0,0]

10 (T,T,32) 1000 No No No [0,0,0]

ProxQuant (Bai et al., 2018)

11 (1,32,32) 200 + 700*4 No Yes Yes [0,1,1]

12 (1,32,32) 200 + 700 No Yes No [0,1,0]

13 (1,32,32) 200 + 700 No No No [0,0,0]

nBQNN (Chen et al., 2020)

14 (L2*5,32,32) 500 Yes Yes Yes [1,1,1]

15 (L2,32,32) 500 No No No [0,0,0]

16 (L2,32,32) 500 No No Yes [0,0,1]

LQ-net (Zhang et al., 2018)

17 (1,1,32) 400 Yes Yes Yes [1,1,1]

18 (1,1,32) 400 No Yes Yes [0,1,1]

19 (1,1,32) 400 Yes No Yes [1,0,1]

20 (1,1,32) 400 Yes Yes No [1,1,0]

Sigmoid-QN (Yang et al., 2019)

21 (1,32,32) 100 + 100*6 Yes Yes Yes [1,1,1]

22 (1,32,32) 100 + 100 No Yes Yes [0,1,1]

23 (1,32,32) 100 + 100 Yes No Yes [1,0,1]

24 (1,32,32) 100 + 100 Yes Yes No [1,1,0]

*W/A/G: weights/activations/gradients,*2 (ifbias, ifAffine, ifAug).

* 3 ternary quantization, * 4200/700 epochs for FP/with quantization.

* 5 2-bits logarithmic quantization.

* 6 100/100 epochs for FP/with quantization.
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experiments the affine operation is only enabled according to
configurations. Affine operation adds two full precision trainable
parameters at each output channel. They do not affect the
performance during inference with batch normalization fusing,
however, during training they degrade the compression rate and
increase the computation complexity. To improve generalization
ability, all the aforementioned methods involve data augmentation.
To analyze the influence of each setting, we benchmark the
aforementioned training methods using the settings summarized
in Table 2.

4.4.2 Experiments
The dataset and neural network structure adopted in the

experiments are CIFAR-10 and VGG-small, respectively. We
prioritize the official code provided by the authors during the
benchmark and keep a minimum modification. For a fair
comparison, the data augmentation conducted in the experiments
only includes random cropping and random horizontal flipping.
The number of training epochs is chosen to be large enough for each
case to be well-trained.

The results of different cases are visualized in Figure 7. To
compare the relative size of the networks in different cases, we
calculate the averaged bit-width using the following equation
(Equation 19):

BWAvg � ∑l∑i,wi∈lBWwi

N1b, 0,0,0[ ]
, (19)

where BWwi is the bit-width of weights wi in layer l andN1b,[0,0,0] is
the number of trainable parameters in the 1-bit QNN without bias
and batch normalization affine parameters.

Overall, all the methods can achieve an accuracy higher than
85%. The BNN (Hubara et al., 2017), ProxQuant (Bai et al., 2018),
LQ-net (Zhang et al., 2018) and Sigmoid-QN (Yang et al., 2019)
methods result in accuracy over 90%, close to the full precision
model baseline (Lee et al., 2016). DoReFa and nBitQNNmethods are
more robust against different bias and affine operation settings.
DoReFa introduces scale factors to each layer, and nBitQNN uses
logarithmic quantization, which brings them extra representation

abilities. ANA, DoReFa, and nBitQNN are not sensitive to the
presence of data augmentation. The BNN method is more
vulnerable to the absence of data augmentation. Comparing Case
1 and Case 3 (Table 2), the BNN method experiences an accuracy
drop of 6.92% when data augmentation is removed.

An average bit-width is represented by the diameter of the circles
in Figure 7, which shows that the additional parameters from the
biases and affine operations occupy a small portion of the network
size. Even though shift-based batch normalization is introduced in
(Hubara et al., 2017) and realized in (Zhijie et al., 2020), batch
normalization still brings overhead during training.

LQ-net and Sigmoid-QN achieve the best accuracy close to the
full precision baseline model at the cost of additional scale factors
and the first and the last layers are not quantized. The BNN method
can achieve an accuracy of over 90% while maintaining the size of a
binary neural network with all the layers quantized without scale
factors. However, it is sensitive to bias and batch normalization
parameters. ProxQuant and nBitQNN also achieve high accuracy,
but they do not quantize the activations. The ANA method also
demonstrates high accuracy but has a larger model size and is
sensitive to changes. DoReFa is robust against configuration changes
and supports gradient quantization. However, the first and last
layers are not quantized in DoReFa, and layer-wise scaling
factors are adopted bringing overhead in terms of compression
rate and computation complexity.

4.5 Strategies to improve QNN performance

This section introduces general strategies helping to improve the
performance of QNN, including learning rate scheduling and trade-
offs between accuracy and model complexity.

4.5.1 Learning rate scheduling
For QNNs, the selection of learning rate is more critical than

full precision networks. A low learning rate leads to slow
convergence, while a high learning rate causes an unstable
weight update. Figure 8 shows the gradient descent process for
both full precision and quantized networks. In full precision
models, the loss surface is smooth, the gradients shrink down as
the loss approaches the minima (Figure 8a). In QNNs, the loss
surface is stair-liked. If the gradients are calculated and referred
to as the quantized value (methods using approximated gradients
in Section 4.1), the gradient preserves a constant value regardless
of the current position on the flat plateau of the loss surface,
causing a cross over the minimum (Figure 8b). Hence, without
gradient shrinking down as in the full precision case, the training
of QNNs must be performed with lower learning rates compared
with a full precision case. This phenomenon is confirmed by
experiments in (Tang et al., 2017).

QNN training usually starts with lower learning rates compared
to full-precision networks. For instance, the learning rate for
training full precision VGG network in (Simonyan and
Zisserman, 2014) starts at 10−1, while for training a small VGG
network for CIFAR-10 dataset in (Hubara et al., 2017) starts at
5 × 10−3. Besides the difference in the starting learning rates,
different learning scheduling methods are adopted for QNN
training, including exponential decaying (Courbariaux et al.,

FIGURE 7
Visualization of the benchmark results, with important cases
marked using “Index” and “Notation” in Table 2. The circle diameter
represents the size of the model.
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2015; Hubara et al., 2017; Spallanzani et al., 2019; Chen et al., 2020),
and manual assigning (Bai et al., 2018; Zhou et al., 2016).

4.5.2 Trade for a higher accuracy
The majority of QNN training methods are offline methods,

which can be performed on high-performance computation
platforms, e.g., cloud servers. Meanwhile, some QNN
applications are not strictly constrained by computation power
or computation time. Hence, there are some strategies to increase
the QNN accuracy at the cost of computation complexity or
computation time.

The easiest way to improve accuracy without increasing a
model size is to increase activation precision. For example, if the
same network is trained with the DoReFa-Net method, a model
trained with 2-bit activations achieves the accuracy of 86.5%
with SVHN dataset (Netzer et al., 2011), while the model with 1-
bit activations results in 84.1% accuracy. In (Tang et al., 2017),
instead of directly increasing activation precision, multiple-
quantization of the activations is performed. This method is
more suitable for CPU/GPU-based computation platforms,
while directly increasing the number of bits is more
preferred by FPGA/ASIC-based platforms. In (Liu et al.,
2018), a full precision bypass is introduced in each layer. The
activation of l-th layer in this architecture can be expressed as
(Equation 20):

al � AF zl + zl−1( ) � AF L Wl, zl−1( ) + zl−1[ ], (20)

where zl and al are the layer outputs before and after the
quantization and activation, AF() represents quantization and
activation function, and L is the operation the layer performs
parameterized by Wl. By introducing the bypass, a binary
ResNet-34 network can achieve a top-1 accuracy of 69.7%,
showing an accuracy boost compared with the case without the
bypass (67.9%).

In (Tang et al., 2017), a new regularization term substituting
commonly-used L2 norm regularization is proposed. In binary
QNN, the ideal quantized parameters take the values of {-1, 1}.
However, the traditional L2 norm regularization term forces the
parameters to approach zero, which contradicts the distribution of
the parameters in a binarized network, resulting in frequent weight
fluctuation during training. Hence, new regularization biases the
update of parameters toward their designated quantized value (e.g.,
in binary quantization case, the parameters are biased toward −1, 1)
The new object function for QNN training using the proposed

regularization term in binary quantization case can be expressed
(Equation 21):

J W( ) � L W( ) + λ∑L
l�0

∑D
d�0

1 − Wl,d( )2[ ], (21)

where L(W), ∑L
l�0∑D

d�0[1 − (Wl,d)2], λ are the loss term,
regularization term, and trade-off hyperparameter respectively.

The other QNN training strategies, including two-stage
optimization (TS), progressive quantization (PQ), and guided
training, are shown in (Zhuang et al., 2018). TS consists of two
steps: (1) weight quantization during training, and (2) activation
quantization with trained weights. TS helps to avoid local minima
when training a network from scratch. Moreover, instead of
quantizing directly to the fixed bit-width (e.g., 2 bits), the
network is quantized progressively (e.g., 32-bits→16-bits . . . 2-
bits) with the parameter in the higher precision model being the
initial value for the lower precision model training. This guided
training refers to QNN training using guidance loss from a teacher
model, which shares the same structure as the quantized model.
More specifically, at the output of each layer in the quantized model,
the loss from the label (back propagated from the network output) is
combined with the loss between the full precision and quantized
model at the same position. This is called layer-wise knowledge
distillation (Hinton et al., 2015; Heo et al., 2019; Leroux et al., 2020).
With the proposed set of training strategies, the accuracy of the
trained 4-bits AlexNet (Krizhevsky et al., 2017) outperforms the
same network trained using DoReFa-Net (Zhou et al., 2016) by 2.8%.

The other method to improve QNN accuracy is relaxing the
compression rate if the application is not strictly constrained by
memory size. In (Chu et al., 2021), mixed-precision QNN is
proposed. As the features propagate along the network, they
become more abstract and separable. Therefore, each layer of
QNN can be quantized using a set of decreasing bit-widths as
the layer goes downstream. For example, VGG-7 is quantized
using {8-4-2-1-1-1}-bits for each layer from the input to the
output, respectively. For the CIFAR-10 dataset, this network
shows an accuracy of 93.22%, while the full-precision model
achieves an accuracy of 92.48%. Also, the size of such QNN is
1.06 times the size of the binarized network.

In (Sakr et al., 2022), tensor clipping during QNN training is
considered. Commonly, the tensor values are scaled based on the
maximum in this tensor; however such scaling results in a large
quantization step (especially for uniform quantization). As most of
the tensor values are small, maximum scaling makes quantization

FIGURE 8
Gradient descent process for (a) full precision and (b) quantized neural networks.
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FIGURE 9
(a) Floating-point versus fixed-point operations. (b) Off-chip memory bottleneck. (c) An example of moving from floating point operations to
approximate operations in a processing element (Wei et al., 2019). (d) Reducing thememory space with low-precision computation. (e) Example of QNN
accelerator (PE-processing element), modified from (Chang and Chang, 2019). (f) PE preference for different hardware architecture under different
bit-width.
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bit-insufficient. In (Sakr et al., 2022), an algorithm to determine the
optimal clipping and scaling factor for each tensor during each
iteration of neural network training is shown. The optimal clipping
factor minimizes the overall mean squared error including
quantization error and clipped error.

For conventional quantization-aware training methods, it is
common to use STE for gradient estimation. However, STE can
cause gradient explosion by assigning clipped values with constant
gradients. Though assigning zero gradients to the clipped values can
avoid such explosion, the clipped values are prevented from being
trained equivalent to shrink model size. To mitigate these two
challenges, a magnitude-based gradient estimator, which assigns
smaller gradients to the clipped values away from the threshold, is
proposed in (Sakr et al., 2022). By applying both the optimal clipping
values and gradient estimator, < 1% accuracy degradation on the
ImageNet dataset using 4-bit quantization compared to the full
precision model is achieved in (Sakr et al., 2022).

5 Hardware implementation of QNNs

Efficient hardware implementation of a deep neural network for
low-resource hardware requires compression techniques, including
quantization, pruning, and Huffman coding (Chen et al., 2020).
Usually, reduction of energy consumption, memory access, and data
transfers between memory and computation units is achieved by
simplifying computationally complex operations, e.g., floating-point
computations. In this section, we discuss three main types of QNN
implementations: FPGA-based solutions, ASIC solutions, and
emerging non-volatile memory (NVM) based CNN
implementations. This review focuses on state-of-the-art works
considering the studies from the last 5 years with systematic
neural network evaluations on hardware.

In QNN hardware, different quantization schemes require
different bit configurations (Ryu et al., 2020). QNN hardware can
be divided into 3 main groups based on the quantization scheme: (1)
fixed-point arithmetic, (2) power-of-two quantization (logarithmic
quantization), and (3) binary representation. Compared to the
floating-point representation, fixed-point arithmetic keeps the
location of the radix point fixed (Figure 9a). The power-of-two
scheme represents the weights in the form of 2i, which allows
replacing computationally expensive multipliers with a shift
operation. In binary representation, 1-bit weights and activations
are used; however, most of the implemented binary hardware still
requires multi-bit support for the input layer and weight update
(Hashemi et al., 2017). Compared to floating-point operations,
QNNs improve energy efficiency significantly. For example, the
4-bit fixed-point representation and binarized neural networks allow
for more than 90% of power savings compared to the 32-bit floating-
point representation of weights.

QNN hardware accelerators focus on different issues affecting
hardware efficiency, including data movement, hardware efficiency,
memory consumption, and hardware utilization.

Similar to any neural network hardware design, one of the main
challenges of QNN hardware is data movement between the QNN
accelerator and off-chip memory storing QNN weights (Figure 9b).
Typically, data movement is more energy-consuming than
computation (Chen et al., 2016). This problem is targeted by in-

memory computing-based QNN accelerators (Krestinskaya et al.,
2023). The other challenge is to improve the energy efficiency of
QNN hardware while preserving the performance accuracy. This
can be addressed by combining fixed-point approximate operations
with floating-point operations to create mixed-type processing
elements (Figure 9c) (Wei et al., 2019). Memory consumption
problem is tackled by lowering data (weights) precision
(Figure 9d) (Wei et al., 2019). Various data reuse strategies are
explored to improve memory efficiency (Ankit et al., 2019; Yao et al.,
2020; Song et al., 2017; Shafiee et al., 2016). Hardware efficiency
often comes with the cost of hardware utilization, when some
processing elements (PEs) remain unused (Figure 9e). Data
utilization, data flow complexity, and resource allocation along
with resource parallelisms should be considered in any QNN
design, especially for FPGA-based QNNs (Chang and Chang,
2019). Different processing engine designs are summarized in
Figure 9f. For FPGA-based accelerators, the “on-chip” part only
refers to the parallel acceleration parts implemented on FPGA
fabrics. For some FPGA accelerator designs, the host CPU is
either implemented using on-chip ARM processors or directly
synthesized using resources on FPGA fabrics.

The other challenge of translating QNN to hardware
implementation is relate to algorithm-hardware co-design
challenges (Zhang et al., 2021). This involves finding the trade-
offs between performance accuracy and hardware cost. The
transition from software design of QNN to hardware
implementation involves loops unrolling in a software algorithm,
mapping software computations to particulate hardware blocks,
array partitioning, matrix decomposition, loop pipelining, etc. In
addition, it is also important to accommodate the quantization and
processing differences in different types of layers. For example,
convolution layers are computational-centric (few parameters
requiring many computations), while fully connected layers are
memory-centric (many parameters used once requiring loading
from external memory in some cases contributing to the
hardware efficiency limitations) (Qiu et al., 2016). The other
challenge is to accommodate layer-wise and mixed-precision
quantization implemented in software into the hardware, which
varies from one QNN design to the other.

This section focuses on QNN architectures implemented on
FPGA and ASIC, and related open challenges. Also, designs with
emerging non-volatile memory devices are considered. Table 3
shows the summary of QNN hardware architectures. Figure 9
illustrates the area and power efficiency of different QNN
architectures with respect to the precision of weights. The
performance of RRAM-based architectures and SRAM-based
ASIC implementations of QNNs are comparable in terms of
power efficiency, while FPGA-based designs compromise energy
efficiency due to hardware reconfigurability. This section also
provides general guidelines on software-hardware co-design of
QNN accelerators.

5.1 FPGA-based implementations of QNNs

Field Programmable Gate Arrays (FPGAs) are designed for fixed
point computations implemented using lookup tables (LUTs). Even
though floating-point computation is possible to implement on
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TABLE 3 Summary of QNN hardware.

Work Main features Quantization Implementation
and hardware
parameters

Performance,
Power, power/
Area efficiency

Network
architecture
(database)

Training
support

FPGA architectures

Umuroglu et al.
(2017)

FINN: Binary
inference accelerator

1b-[U*6,A*7] Xilinx Zynq 706
186 BRAM, 200 MHz

11.6 TOPS
408 GOPS/s/W

BinaryNet, VGG-16
CIFAR-10,SVHN)

no

Guo et al. (2018) FBNA: Binarized
neural network
accelerator

1b-[U,A] Xilinx Zynq 702
103 BRAM

722 GOPS
219 GOPS/s/W

2 conv and 3 FC
(CIFAR10,SVHM)

no

Chen et al. (2020) QNN framework for
FPGA

16b* − [L, E] (W/A) Xilinx ZCU102 (only conv.
for inference)
200 MHz

957.4 GOPS, 19.6W
48.85 GOPs/W

ResNet, DenseNet,
AlexNet (MNIST,
CIFAR-10/100

SVHN, ImageNet)

yes*4

Chang et al.
(2021)

Mix and Match: QNN
with mixed scheme
quantization

4b-[N,A] (W/A) Zynq XC7Z020
Zynq XC7Z045, 100 MHz

77.0-360 GOPS (depends
on FPGA)

ResNet-18, MobileNet-
v2 (CIFAR10/100,

ImageNet)

yes

Zhang et al.
(2021)

FracBNN: all binary
BNN implementation
with fractional
activations

2b-[U,A] Xilinx Ultra96 v2 (for
inference), 250 MHz

6.1 W MobileNetV2
(ImageNet)

yes, QAT

Wei et al. (2019) Hybrid-type QNN on
FPGA

Hybrid 4-6b-[U,A]
(W/A in conv.)

+ floating in outputs

FPGA Xilinx
xc7k325tffg900-2

100 MHz, 73.5 36 Kb BRAM
11.91 Gbps

- Lenet-5 (MSTAR) yes, QAT

Sun et al. (2022) Intra-layer mixed-
precision quantization
based accelerator

4b,8b-[U,A] (W)
5b-[U,A] (A)

Xilinx ZCU102
150MHz, 440 BRAM

12W, 24.8/69 GOPs/s/W
(ResNet-50/MobileNet),

320/891 GOPS

ResNet-18, ResNet-50
MobileNet-v2

QAT

ASIC

Chen et al. (2016) Eyeriss: CNN
accelerator based
on NoC

16b-[U,-] (W/A) SIMD, 65nm, 181.5 Kb
SRAM

12.25mm2, 200 MHz

153.6 GOPS, 0.82–1.17V
278 mW (AlexNet),
236 mW (VGG-16)

AlexNet, VGG-16
(ImageNet)

no, PTQ

Biswas and
Chandrakasan
(2018)

CONV-SRAM: IMC
architecture for
convolution operation

1b W
6b A-[U,-]

Crossbar array IMC
65nm, 16KB SRAM,

250 MHz

51.3 TOPS/s/W
57 GOPS/mm2, 4 GOPS

Lenet-5 (CIFAR-10) no, PTQ

Chen et al. (2019) Eyeriss v2:
Hierarchical mesh
NoC based accelerator

8b-[U,-] (W/A)
20b PS*2

SIMD
65nm, 246Kb SRAM,

200 MHz

253.2 GOPS/s/W
(AlexNet)

193.7 GOPS/s/W
(MobileNet)

AlexNet
MobileNet

no, PTQ

Yin et al. (2020) XNOR-SRAM: Mixed-
signal
IMC architecture with
ternary operation

1b-[N,-] W*3 Crossbar array IMC with
SRAM

65nm, 256 × 64 SRAM

403 TOPS/s/W
5461 GOPS/mm2

CIFAR-10 no, PTQ

Chang and
Chang (2019)

2D systolic array
based QNN

8-16b-[U,-] (W/A) Systolic array, 144 Kb SRAM
1024 PEs

- Yolov3-tiny
VGG-16, AlexNet

no, PTQ

Liu et al. (2021) VWA: Vectorwise
CNN kernel
accelerator based on
systolic array

16b-[U,-] (W/A) Systolic array
40nm, 1.56 mm2 (core),

267mm2 (logic)
191Kb SRAM,

500 MHz,168PEs

168 GOPS, 1.084 TOPS/s/
W

154 mW (per core,
VGG-16)

VGG-16, ResNet-34
GoogLeNet, Mobilenet

(ImageNet)

no, PTQ

Moons et al.
(2017)

Envision: variable
precision
CNN processor

4b,8b,16b-[U,-] SIMD, 28nm, 200 MHz
144KB SRAM, 1.87 mm2

0.41 TOPS (4b/4b),
4.3 TOPS/s/W (4b/4b)

0.43 TOPs/s/mm2 (4b/4b)

AlexNet
VGG-16 (conv. only)

no, PTQ

Lee et al. (2018),
Shin et al. (2017)

UNPU: Variable bit
precision accelerator
for CNN and RNN and
FC layers

Variable
1–16 b-[U,-]

SIMD, 65 nm CMOS
16 mm2 die, 256 KB SRAM

0.63–1.1V, 200 MHz,
13.18 mm2

345.6 GOPS (16b),
7372 GOPS (1b)
297 mW @1.1V

3.08 TOPS/s/W (16b),
50.6 TOPS/s/W (1b)

AlexNet
VGG-16 (ImageNet)

no, PTQ

(Continued on following page)
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TABLE 3 (Continued) Summary of QNN hardware.

Work Main features Quantization Implementation
and hardware
parameters

Performance,
Power, power/
Area efficiency

Network
architecture
(database)

Training
support

Lin et al. (2020a) Dual-core deep-
learning accelerator in
5G Smartphone SoC

8b, 16b-[U,-] SIMD, 7nm, 290–880 MHz
2176 kB SRAM, 3.04 mm2

3.6 TOPS (8b),
6.83 TOPS/s/W (8b)
1.19 TOPs/s/mm2 (8b)

Inception-v3
MobileNet-v1

no, PTQ

Jiao et al. (2020) Programmable
Convolution- Efficient
Neural-Processing-
Unit chip

8b, 16b-[U,-] SIMD, 12 nm, 290–880 MHz
196,608 kB SRAM, 709 mm2

825 TOPS (8b/8b),
2.95 TOPS/s/W (8b/8b)
1.17 TOPs/s/mm2 (8b/8b)

ResNet50-v1 no, PTQ

Ryu et al. (2022),
Ryu et al. (2019)

Bitblade: Variable bit-
precision accelerator

2b,4b,8b-[U,-] (W/I) SIMD, 28nm, 44–195 MHz
144KB SRAM, 0.71 mm2

1.42 TOPS (2b/2b),
44.1 TOPS/s/W (2b/2b)
3.3 TOPs/s/mm2 (2b/2b)

AlexNet, VGG-16
ResNet-18, MobileNet

no

Liu et al. (2021) Multi-precision RRAM
CNN architecture for
layerwise quantization

6–10 b-[U,A] (W) Crossbar array IMC with
RRAM

45nm, 100 MHz

3.44 TOPS/s/W (only
crossbars)

Lenet-5, VGG-16
ResNet-18

part.*5

Ueyoshi et al.
(2018)

QUEST: Inference
Engine with s 3D
stacking SRAMs
for CNN and RNN and
FC layers

Variable
1-4b-[L,-] (W/A)

MIMD, 40nm, 113 mm2

7680 KB SRAM
1.1 V, 330 MHz (max)

1.98 TOPS (4b),
7.49 TOPS (1b), 3.3W
2.27 TOPS/s/W (1b)
0.59 TOPS/s/W (4b)

AlexNet (ImageNet)
LeNet (MNIST)

VGG-11 (CIFAR-10)

no
PTQ

Ryu et al. (2020) Deep QNN accelerator
with precision
scablable PEs

Scalable precision
4-16b-[U,-] (W/A)

SIMD, 28nm, 0.71 mm2

144 KB SRAM
44 MHz @0.6V,
195 MHz@1V

1.42 TOPS for 2b/2b
7.8 mW@0.6V and

74 mW@1V, 44.1 TOPS/
s/W

VGG-16, ResNet
AlexNet (ImageNet)

no
PTQ

Shafiee et al.
(2016)

ISAAC RRAM-based
accelerator

16b-[N,-] Crossbar array IMC with
RRAM

32nm, 128 × 128 tiles

446 GOPs/s/mm2,
380 GOPs/s/W

VGG no
PTQ

Song et al. (2017) Pipelayer RRAM-
based accelerator

16b-[U,-] Crossbar array IMC with
RRAM

128 × 128 tiles

1485 GOPs/s/mm2,
142 GOPs/s/W

AlexNet, VGG yes
on-chip

Sun et al. (2018b) XNOR-BNN with SAs 1b-[U,-] Crossbar array IMC with
RRAM

45nm, 128 × 128 tiles

141 TOPs/s/W 6 conv, 3FC no
PTQ

Sun et al. (2018a) Binary CNN 1b-[U,-] Crossbar array IMC with
RRAM, 65 nm

137 TOPs/s/W 4 conv, 3FC QAT (6b)

Zhu et al. (2019) CNN with layer-wise
quantization

8b/6b-[U,-] (W/O) Crossbar array IMC with
RRAM

45nm, 256 × 256 tiles

3440 GOPs/s/W Lenet, VGG-16,
ResNet

no
PTQ

Ankit et al.
(2019)

PUMA RRAM-based
accelerator

16b-[N,-] Crossbar array IMC with
RRAM

32nm, 128 × 128 tiles

577 GOPs/s/mm2,
837 GOPs/s/W

VGG, LSTM no
PTQ

Wang et al.
(2019b)

RRAM-based QNN
inference architecture

8b-[U,-] Crossbar array IMC with
RRAM

65nm, 256 × 64 tiles

5.9 TOPs/s/W VGG-16, MobileNet no
PTQ

Yao et al. (2020) Fabricated RRAM-
based CNN
implementation

3b-[U,A] (W)
8b-[U,A] (I/O)

Crossbar array IMC with
RRAM

130nm, 126 × 16 tiles

1164 GOPs/s/mm2,
11 TOPs/s/W

2 conv, 1 FC hybrid
PTQ

Gi et al. (2022) RRAM-based CNN
accelerator with analog
layer normalization

1b-[U,-] (W)
12b (O)

Crossbar array IMC with
RRAM

180nm, 25 × 25 tiles (PCB)

10 TOPS/W 4-layer CNN (MNIST) no
PTQ

(Chen et al.,
2022)

RRAM-based CNN
accelerator with
capacitive coupling

1b-[U,-] (W)
1–8b (O)

Crossbar array IMC with
RRAM
28 nm

400 TOPS/W Customized CNN
(MNIST)

no
PTQ

*W/A/I/O: weights/activations/inputs/outputs, * 2 PS:partial sums, * 3 binary/ternary inputs, * 4based on reconstructed gradient,5 partially, retraining CNN, after quantizing * 6U/L/N: uniform/

logarithmic/non-uniform quantization, * 7A/E/-: approximated gradients/exact gradients/not mentioned.
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FPGA using Digital Signal Processing (DSP) blocks, this is expensive
and inefficient. To convert a QNN design into FPGA-based
hardware implementation, different frameworks can be created to
automate such conversion (Umuroglu et al., 2017; 2020). For
example, LogicNets framework converts trained QNNs into
equivalent netlists of truth tables for FPGA including network
sparsity exploration to reduce neuron fan-in (Umuroglu et al.,
2020). Fan-in reduction contributes to efficient LUT-based QNN
implementations on FPGA.

5.1.1 Binarized and multi-bit precision neural
networks on FPGA

Binarized Neural Networks (BNNs) are the most resource-
efficient QNN designs on FPGA (Figure 10) (Umuroglu et al.,
2017; Guo et al., 2018; Zhang et al., 2021; Qin et al., 2020). One of
the most well-known BNN accelerators on FPGA is FINN
(Umuroglu et al., 2017), which automatically converts
Theano-trained BNN to synthesizable C++ description with
optimized hardware blocks to synthesize a bitfile through
High-Level Synthesis (HLS) software to deploy to FPGA. The
binarization of neural network weights reduces memory
consumption and improves computation speed. Typically, the
input layer of BNN is not binarized to preserve input features and
accuracy. To binarize the input layer in BNN, binary padding can
be used to provide resource parallelism and scalability for FPGA-
based implementations, as in (Guo et al., 2018; Zhang
et al., 2021).

Maintaining high accuracy after binarization is one of the main
challenges of BNN, which requires specific training methods. Real-
to-Binary Net framework proposed in (Martinez et al., 2020)
performs progressive teacher-student training. Starting with a
full-precision teacher model and a student model with soft-
binarized activations (using tanh function), the student model is
trained with additional guidance from the teacher model. In the
following steps, the student model from the previous step becomes
the teacher model in the current step, and the activations and
weights of the new student model are progressively quantized in
each step. By performing progressive teacher-student training, the

resulting BNN experiences less accuracy degradation. The other
method to preserve BNN accuracy is precision gating, where the
important features are computed using higher precision. In
FracBNN (Zhang et al., 2021), a dual-precision activation
quantization is implemented where activations are quantized with
either 1-bit or 2-bit based on their contribution to network accuracy
(determined by a trainable parameter). An additional sparse binary
convolution for the additional bit is performed for those critical
activations that need to be quantized with 2 bits.

There have been several multi-bit FPGA-based implementations
of QNN proposed recently (Ding et al., 2019; Hu et al., 2022; Chen
et al., 2020). One of the most common quantized weights
representations used for FPGA-based QNNs is the power-of-two
method quantization method, as in FlightNN (Ding et al., 2019). To
improve hardware efficiency further, the multiplication operations
can be replaced by a lightweight shift operation (Ding et al., 2019) or
be approximated by a different number of shift-and-add operations
(Chen et al., 2020). To improve QNN efficiency further, the design of
DSP blocks for quantized MAC operations can be optimized (Hu
et al., 2022).

5.1.2 Mixed-precision and hybrid neural networks
on FPGA

Mixed-precision and hybrid QNN designs require additional
design considerations for efficient implementation. Inconsistent
precision throughout the neural network layers can affect the
utilization of heterogeneous FPGA hardware resources (Chang
et al., 2021). In the Mix-and-Match FPGA-based QNN
optimization framework (Chang et al., 2021), this problem is
avoided using mixed quantization, combining sum-of-power-of-2
(SP2) and fixed-point quantization schemes for different rows of
weight matrix due to different distribution of weights in different
rows. The quantization scheme can also be adjusted for the
distribution of the weights. For example, the Mix-and-Match
framework uses the quantization scheme suitable for Gaussian-
like weight distribution, where multiplication arithmetic is
replaced with logic shifters and adders that can be implemented
on FPGA using LUTs.

FIGURE 10
Power (a) and area (b) efficiency of QNN hardware implementations with respect to weight precision.
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Hybrid quantization can also be used to improve QNN accuracy
and efficiency in FPGA-based implementations. For example, in
hybrid-type inference in (Wei et al., 2019), both convolution kernels
(feature maps) and parameters are quantized to a signed integer,
while integer/floating mixed calculations are used for the outputs. In
the inference phase, the weights and activations in convolution
layers are quantized, while the dot product output is de-quantized
and represented as a 32-bit floating-point number before batch-
normalization operation. The floating-point batch normalization
output is fetched to the activation function, and the activation
function output is quantized to integer representation. This helps
to reduce the number of LUTs, flip-flops, DSP blocks, and BRAM
blocks in the design.

Mixed-precision can also be used for intra-layer quantization. In
(Sun et al., 2022), a mixed-precision algorithm combines a majority
of low-precision weights, e.g., 4 bits, with a minority of high-
precision weights, e.g., 8 bits, within a layer. The weights leading
to high quantization errors are assigned to be of high precision.
Moreover, in (Sun et al., 2022), quantization optimization
techniques, including DSP packing, weight reordering, and data
packing, are used.

5.2 ASIC implementations of QNNs

ASIC implementations of QNNs can be broadly categorized into
conventional digital and mixed-signal designs, such as systolic
arrays (Chang and Chang, 2019; Liu et al., 2021) or single/
multiple instruction multiple data (S/MIMD)-based architectures
with multiple cores (Lee et al., 2018; Shin et al., 2017), as well as
designs leveraging emerging technologies like In-memory
computing (IMC) (Krestinskaya et al., 2022; 2024a) and
neuromorphic computing (Shen G. et al., 2024; Matinizadeh
et al., 2024). Among these emerging technologies, SRAM- and
RRAM-based IMC implementations have advanced the most,
therefore, this work primarily focuses on them. The key
distinction between IMC-based designs and traditional von
Neumann architectures, where memory and processing units are
separate, is that computation occurs directly within the memory.
IMC designs can be based on either volatile (SRAMs and DRAMs)
or non-volatile memory devices, e.g., resistive random-access
memory devices (RRAMs), phase-change memory devices (PCM
or PCRAM), etc (Krestinskaya et al., 2023).

5.2.1 Fixed-precision ASIC implementations
of QNN

Based on Figure 9, ASIC implementations of QNNs are more
efficient than FPGA-based implementations, as they are usually
hardwired in an optimum way and cannot be reconfigured. Same as
FPGA-based designs, ASIC-based implementations also use a shift
operator instead of the multipliers via power-of-two quantization to
improve energy efficiency. The multiplication can also be converted
to two shift operations and one addition, as in LightNN (Ding et al.,
2017; Ding et al., 2018). Also, approximate multiplication can be
used, which drops the least significant powers of two limiting the
number of shifts and adds (Ding et al., 2018). Some ASIC accelerator
designs retain a certain level of flexibility (Moon et al., 2022; Lee S. K.
et al., 2021). In (Moon et al., 2022), a framework supporting from

1 to 4-bit of arbitrary base quantization (Park et al., 2017) is
proposed. For arbitrary base quantization, hardware blocks
performing sorting, grouping, and population counting are
adopted. In (Lee S. K. et al., 2021), an accelerator supporting
both 8/16-bit floating point format and 2/4-bit integer format,
where data pipelines for these formats are separated and
implemented in dedicated hardware, is proposed. This accelerator
supports both training and inference using floating point and integer
data correspondingly.

The hardware efficiency of QNN accelerators is affected by
architecture hierarchy, organization of processing elements (PEs),
network-on-chip (NoC) structure, and the type of NoC. For
example, Eyeriss is the other accelerator using 16-bit fixed-point
computation, where data movement and DRAM access are reduced
by reusing data locally (Chen et al., 2016). The improved version of
Eyeriss, Eyeriss v2 (Chen et al., 2019), has a hierarchical mesh NoC
with sparse PE architecture adaptable to the different amounts of
data reuse and bandwidth requirements aiming to improve resource
utilization.

CONV-SRAM (Biswas and Chandrakasan, 2018) and XNOR-
SRAM (Yin et al., 2020) architectures are the other ASIC QNN
accelerators to improve energy efficiency and reduce the number of
computations. In (Yin et al., 2020), binary weights and ternary data
representation [-1,0,1] for XNOR-and-accumulate operation are
used. To improve computation speed and reduce memory access,
systolic array-based CNN implementation can be used (Chang and
Chang, 2019; Liu et al., 2021). In (Chang and Chang, 2019), a systolic
array-based CNN, VWA, aiming for high hardware utilization with
a low area overhead and suitable for different sizes of convolution
kernels with 8-bit fixed point computation is shown. In (Liu et al.,
2021), the systolic array-based accelerator with 8/16-bit integer
linear symmetric quantization of both activations and weights in
convolution and fully connected layers is illustrated.

In IMC-based implementations, SRAM-based QNN
architectures, such as CONV-SRAM (Biswas and Chandrakasan,
2018) and XNOR-SRAM (Yin et al., 2020), offer greater energy
efficiency than traditional designs. Meanwhile, RRAM-based QNNs
provide high computational density, energy efficiency, non-
volatility, and scalability (Krestinskaya et al., 2022; Smagulova
et al., 2023). With non-volatile multi-level memories, MAC
operations occur in the analog domain, enabling higher storage
density and faster computations (Krestinskaya and James, 2020). In
IMC architectures, memory devices in a crossbar structure multiply
row voltages by device conductances (weights), with accumulated
column current as the MAC output. Quantization in multi-level
IMC arises from the limited conductance levels per device (Zhu
et al., 2019). Activation quantization is managed by peripheral
DACs and ADCs. However, non-volatile IMC devices face
variations, non-linear switching, and conductance drift, which
require mitigation techniques.

In IMC-based binarized neural networks (BNNs), weights are
represented using 1-bit or multi-level devices, utilizing only a high-
resistive state (HRS) and a low-resistive state (LRS). Low-bit IMC
designs are simpler, more robust, and less susceptible to device
variations than higher-bit IMC architectures. Several RRAM-based
BNN implementations have been proposed, including those in (Sun
et al., 2018b; a). In (Sun et al., 2018b), MAC operations are
performed using XNOR logic, enabling the replacement of
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complex, power-hungry ADCs with 1-bit sense amplifiers (SAs)
(Sun et al., 2018a). To enhance area efficiency (Chen et al., 2022),
introduces an RRAM-based accelerator using capacitive coupling
(1T1R1C) cells with binary weights and multi-bit output. In (Gi
et al., 2022), an RRAM-based accelerator with analog layer
normalization is proposed, eliminating the need to store
intermediate layer outputs in external memory. Meanwhile (Kim
et al., 2022), presents an ADC-free RRAM-based BNN, reducing
hardware overhead compared to conventional RRAM-based IMC
architectures with ADCs (Sun et al., 2018b).

Multi-bit IMC-based QNN implementations have the advantage
of higher computation density, however, may suffer from ADC
complexity (Krestinskaya et al., 2022). In IMC architectures, high-
precision neural network weights are often formed by combining
several low-bit IMC devices in a crossbar (Krestinskaya et al., 2023).
The design combining several 1-bit RRAM cells for higher precision
weights are shown in (Shafiee et al., 2016; Song et al., 2017; Ankit
et al., 2019; Wang Q. et al., 2019), where higher bit weight, e.g., 8 or
16 bits, are represented by 2-bit and 4-bit devices. Most IMC-based
QNN accelerators process high-precision inputs using low-precision
DACs and serial encoding, as seen in ISAAC (Shafiee et al., 2016),
Pipelayer (Song et al., 2017), and PUMA (Ankit et al., 2019). ISAAC
reduces ADC precision requirements by storing weights in both
original and flipped forms to maximize zero-sums (Shafiee et al.,
2016). Pipelayer enhances efficiency by leveraging intra-layer
parallelism for training and inference (Song et al., 2017). PUMA
employs a Network-on-Chip (NoC) architecture, where multiple
cores, each integrating an RRAM crossbar and CMOS peripherals,
facilitate scalable computation, additionally, its specialized
instruction set architecture (ISA) and spatial architecture
explicitly capture various access and reuse patterns, reducing the
energy cost of moving data (Ankit et al., 2019). A fabricated CNN
architecture presented in (Yao et al., 2020) adopts hybrid training to
mitigate device variations and uses multiple copies of identical
kernels in different parts of the memristor array so that the same
weight data can be applied in parallel to different inputs. The
network is first trained off-chip and then fine-tuned on-chip to
improve robustness against hardware non-idealities.

5.2.2 Variable-precision and layer-wise
quantization in ASIC implementations of QNN

Variable precision in ASIC QNN implementations aims to
optimize the energy efficiency and the number of memory
accesses without reducing the performance accuracy (Jiao
et al., 2020; Ueyoshi et al., 2018). Fully fabricated CNN
accelerators with variable precision are demonstrated in (Lin
C.-H. et al., 2020; Jiao et al., 2020). State-of-the-art variable-
precision QNN designs support flexibility and can vary the
precision of neural network weights, as in a unified neural
processing unit (UNPU) (Lee et al., 2018; Shin et al., 2017)
supporting convolution, fully connected, and recurrent
network layers. UNPU also explores the full architecture
hierarchy of QNN accelerator, including 2-D mesh type NoC
with the unified DNN cores including weights memory and PE
performing MAC operation, 1-D SIMD core, RISC controller for
instructions execution, aggregation core, and two external
gateways connected to this NoC. The main aim of UNPU is to
achieve the trade-off between accuracy and energy consumption.

Variable precision configuration can be controlled by additional
circuit blocks supporting the variable quantization and additional
hardware modifications. For example, in Envision (Moons et al.,
2017), a dynamic-voltage-accuracy-frequency-scalable (DVAFS)
multiplier switching on and off sub-multipliers to control the
precision is used. The main drawback of such an approach is
inefficient hardware utilization for low-precision operation, e.g.,
for 4-bit precision configuration, only 25% of sub-multipliers are
utilized. In the other variable-precision accelerator, Bit Fusion
(Sharma et al., 2018), bit-level processing elements dynamically
fuse to match the bit-width of individual DNN layers aiming to
reduce computation and communication costs. It divides the MAC
operations into multiple operations to support variable precision
reducing the number of required resources. In BitBlade (Ryu et al.,
2022; 2019), a bit-wise summation method based on 2 × 2-bit
multiplications followed by shift-addition operations supporting
bit-widths of input activations and weights, is used aiming to
reduce the number of memory accesses. In addition, some QNN
accelerators can read only required data bits in the memory
datawords depending on the precision, as in Quant-PIM (Lee Y.
S. et al., 2021), which also reduces the number of memory accesses.

IMC-based QNN designs with layer-wise quantization and
variable precision are demonstrated in (Zhu et al., 2019; Liu
et al., 2021; Umuroglu et al., 2020).

5.3 QNN hardware challenges and
open problems

5.3.1 Memory access issues
The complexity of state-of-the-art network models and the

number of weights stored in the memory grows exponentially
with the network size. Therefore, memory access and
communication between memory and processor becomes the
main bottleneck for speed and energy consumption rather than
computation. According to (Wang J. et al., 2019), the bus bandwidth
between the memory and processing unit is around 167 GB/s, while
the reading operation bandwidth in traditional SRAM memories is
328 TB/s. The trend is the same for the energy spent on data
transmission between the memory and processing unit. If the
readout operation requires an energy of 1.6pJ, the data
transmission may take up to 42 pJ in the same system (Wang
J. et al., 2019). Overall, the problem with memory access is common
for all types of neural network hardware implementations. Even
though QNN designs target the reduction of memory accesses by
lowering the computation precision, thus reducing the number of
stored bits, the memory access problem is still relevant.

The problem of memory access is addressed by IMC-based
designs keeping the processing of MAC operations close to the
memory. However, the local or external memory is required to store
the outputs of intermediate layers in the inference and preserve the
gradients during the training. Even though the memory access
challenge is reduced in IMC-based QNN implementations, IMC-
based architectures can experience other problems related to the
immaturity of non-volatile memory, which is the cause of device
non-idealities. In addition, thorough design considerations are still
required to create efficient QNN architectures, especially for on-chip
QNN training.
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5.3.2 Hardware overhead and hardware utilization
in variable and reconfigurable precision designs

Flexibility and reconfigurability of the architecture are key for
moving from task-specific to general-purpose neural network
architectures. However, this reconfigurability leads to area overhead
and hardware underutilization (Ryu et al., 2020). In QNN designs with
variable bit precision and layer-wise quantization, the implementation
of bit-reconfigurable designs and circuits is necessary to ensure
minimum hardware overhead and the efficient utilization of
hardware resources. Several mixed-precision quantization
frameworks mentioned in previous sections focus on improving
energy efficiency; however, they do not consider the control circuits
overhead to implement mixed-precision models. For example, FPGA-
based QNN architecture FlightNN is based on mixed-precision
convolution filters on FPGA, while does not discuss the challenges
of a full architecture implementation and scheduling (Ding et al., 2019).

Variable precision within and between QNN layers and adaptive
quantization based on the distribution of weights and activations
(Ding et al., 2018) may also lead to inefficient resource utilization. In
many cases of variable bit precision in QNNs, the extra weights are
simply switched off causing hardware utilization inefficiency. This
problem is also valid for QNN on-chip training, where full precision
computation is often required for weight update while the inference
is typically quantized. To implement this, a QNN accelerator should
support both full-precision and fixed-precision quantization. While
full-precision computations are not used during the inference
leading to inefficient hardware utilization.

5.3.3 Lack of efficient on-chip training on
quantized hardware

Training complexity and duration are the other QNN challenges.
The lack of differentiable gradients in QNN training leads to more
training iterations compared to full-precision networks. Moreover,
QNN training algorithms use full-precision computations for weight
updates (Ding et al., 2018). Therefore, transferring such an algorithm to
low-power hardware for on-chip training is complicated leading to the
lack of QNN on-chip training architectures. In addition, such
architectures may require variable precision support, and additional
hardware overhead for routing, computation, and additional memory
to store intermediate outputs during the training.

Several QNN frameworks make attempts to simplify the on-chip
training on QNNs (Wei et al., 2019). For example, the reconstructed
gradients in backpropagation can be used to solve the vanishing
gradient problem instead of STE (Chen et al., 2020). Merging
quantization and de-quantization operations can be used to
perform “fake quantization” to improve QNN accuracy with low
bit-precision (Liu et al., 2021). However, some functions still require
full-precision computation. Implementation of QNN training
algorithms with low-precision weight updates is also possible. For
example, in LNS-Madam training precision is reduced to 4 bits
combining a logarithmic number system (LNS) and a multiplicative
weight update (Zhao et al., 2022). However, such algorithms and
related hardware implementation for low-precision QNN training is
still an open challenge.

5.3.4 Automated mixed-precision quantization
In some cases, it may be difficult to find the optimum

quantization precision within or between the layers manually.

Therefore, the automated mixed-precision quantization
techniques are used to convert a software-based QNN to a
hardware implementation (Benmeziane et al., 2021). Automated
mixed precision quantization is a part of hardware-aware neural
network search (HW-NAS). Various optimization techniques, from
constrained problem optimization to reinforcement learning and
evolutionary algorithm-based methods, which automatically assign
multiple bits to the layer, can be applied for automated mixed-
precision quantization. The main problems in this domain include a
large search space and the high computational cost required for such
a search. Also, many approaches do not consider hardware-related
metrics in such optimization.

5.4 General considerations for hardware-
software co-design in QNN

Hardware-software co-design implies efficient mapping and
optimization of a software-based neural network to hardware
Krestinskaya et al. (2024a), Krestinskaya et al. (2024b). For full-
precision networks, this can be accomplished by compilers and
software development kits (SDK), e.g., GLOW (Rotem et al., 2018),
ONNX (ONNX, 2024), and TensorRT (for Nvidia GPUs) (Nvidia,
2024), focusing on the optimization of instruction scheduling and
memory allocation based on the target platform specifications.
Similarly, this can be done for QNNs with moderate bit-widths
(≥ 8). AIMET (Siddegowda et al., 2022) is one of the toolkits
supporting different model compression techniques (pruning,
quantization) and corresponding optimization and evaluation
with target hardware runtime configuration provided. However,
highly specialized QNN hardware accelerators require software-
hardware co-design targeting specialized QNN accelerators.

A QNN accelerator can be divided into two parts: the off-chip
hosting computer and the on-chip acceleration hardware. The off-
chip host computer runs the software application, transmits the data
between off-chip storage (e.g., DRAM) and on-chip data buffers, and
reconfigures the on-chip hardware by sending control signals. The
on-chip hardware executes neural network operations parallelly
with arrays of processing engines. The interaction between these
two parts should be optimized. By the level of operation executed
on-chip each time, the accelerator designs can be divided into three
categories: network-level acceleration, layer-level acceleration, and
tensor-level acceleration. In network-level acceleration designs, a
complete neural network is implemented on-chip achieving the best
throughput and efficiency while being capable of processing only
simple QNN models due to the limited on-chip storage capacity.
With increased complexity and quantization bits, the accelerator
design alternates to layer-level or even tensor-level acceleration with
lower throughput and efficiency due to the frequent loading of data
for different layers/tensors. Different accelerators require specific
hardware-software co-design and optimization techniques to reach
the optimum efficiency.

5.4.1 Processing element (PE) optimization
According to Table 3, FPGA-based accelerator designs favor low

bit-width quantization (Umuroglu et al., 2017; Guo et al., 2018;
Zhang et al., 2021). With binary quantization, the MAC operations
can be replaced by XNOR and bit count operations, which can be
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efficiently implemented using LUTs. While with higher bit-width
uniform quantization, the MAC operation is more efficient on DSP
blocks (Chang et al., 2021). Meanwhile, some designs adopt
logarithmic quantization on weights simplifying multiply
operation to the shift operation carried out by LUTs (Chen
et al., 2020).

The PE implementation of an ASIC QNN accelerator can be
divided into two categories based on the domain where the
computation is performed: (1) analog domain-based IMC with
SRAM and RRAM (Biswas and Chandrakasan, 2018; Yin et al.,
2020), and (2) digital domain with classical digital adders and
multipliers (Chen et al., 2016; 2019; Chang and Chang, 2019). In
the first category, an SRAM and RRAM cell stores one or more bits
of data requiring analog or mixed-signal computation level
optimizations (e.g., crossbar and peripheral circuits). SRAMs
have fast and efficient writing capabilities, in turn, the design can
be easily reconfigured to different weight values. Therefore, the
SRAM-based accelerators perform layer-level or tensor-level
acceleration. Different from SRAMs, the non-volatile memory
elements do not support runtime write operation; however, such
cells are more area-efficient and dense. Hence, network-level
acceleration with higher bit-width is more suitable for non-
volatile memory-based crossbar designs.

In the second category, the ASIC implementation of adders and
multipliers can benefit from explicit optimization. Therefore,
compared with FPGA-based accelerators, the ASIC
implementation favors a data format with a higher bit-width
(≥ 4) for highly accurate QNNs leading to larger storage
requirements. Consequently, such accelerators are more suitable
to perform layer-level or tensor-level acceleration rather than
network-level acceleration. In ASIC accelerators, approximate
arithmetic logic can be adopted to reduce computation
complexity and power consumption. (Hanif and Shafique, 2022;
Mrazek et al., 2019; Venkataramani et al., 2014). In addition to the
adder and multiplier, local memory/buffers can be assigned to the
PEs as well as an optional accumulator especially when the PEs are
arranged to form a systolic array (Liu et al., 2021). Like FPGA
implementations, some ASIC-based accelerators adopt logarithmic
quantization (power-of-2) to achieve a more efficient computation.

5.4.2 Auxiliary operations optimization
Except for the major matrix-vector multiplication operations in

neural network inference, other operations like batch normalization,
activation, pooling, etc., are noted as auxiliary operations in this
section. In ASIC- and FPGA-based designs, one of the optimizations
of auxiliary operations in QNN is the operation fusion. For example,
the batch normalization layer first normalizes the tensor based on
historical statistical data and then linearly affines the tensor. During
inference, these two operations can be fused into one linear
transform of the tensor, with both the normalization and affine
parameters being constant:

xBN � γ

σ
· x + β − μ · γ

σ
( ) (22)

In Equation 22, μ, σ are statistic mean and standard variation
respectively, γ, β are affine parameters. Such linear operation can
be further fused with the prior linear or convolution layers. The
fusion of batch normalization layers is called batch normalization

folding. Different from inference, the statistical data (μ, σ) and affine
parameters (γ, β) are updated with different mechanisms during
training making it difficult to simulate batch normalization fusion
during training. Hence, various batch normalization folding
strategies are developed considering the trade-off between
training quality and training cost. (Li et al., 2021;
Krishnamoorthi, 2018; Jacob et al., 2018)

The other possible fusion is binary quantization and ReLU,
where the scale term in the fused operation can be omitted if the
output is directly quantized (e.g., not a bypass in a ResNet). The
ReLU activation function can be implemented as a compare-with-
zero logic. It should be noticed that such compare-with-zero logic is
not equivalent to the sign function (returns zero when input is zero)
used to perform binary quantization in the software training phase.
Hence, it is important to explicitly output either 1 or −1, especially
when binarizing activations with values being 0.

Compared to FPGA, crossbar-based accelerators can efficiently
execute most operations, e.g., convolution, linear operations, etc.
However, operations like pooling, activation, and batch
normalization need to be performed in the peripheral auxiliary
blocks, commonly in the digital domain (rarely in analog
(Krestinskaya et al., 2018)). Hence, crossbar array-based designs
typically do not involve batch normalization fusion.

5.4.3 Data routing and reconfigurability
As the ASIC-based accelerators focus mostly on layer-level or

tensor-level acceleration, to maximize the throughput and hardware
utilization, the data flow should be routed efficiently and the PE
arrangement should be reconfigured flexibly. To reduce unnecessary
data movement, different levels of data reuse are implemented by
broadcasting and multi-casting the common input to multiple PEs.
Additionally, the inputs to the PEs are multiplexed increasing the
reconfigurability of the PE array. Furthermore, the PEs can be
organized into a network-on-chip which substantially increases
both data routing efficiency and the reconfigurability of the PE
array (Chen et al., 2019). In general, a data reuse strategy should be
designed according to the accelerated operation. For instance,
traditional convolution should have a different data reuse
strategy from depth-wise separable convolutions.

5.4.4 Data value mismatch
Different from FPGA or ASIC implementations, the crossbar

array-based accelerators perform computation in the analog
domain. Therefore, there is a performance gap when pre-trained
QNNs are directly deployed on the crossbars, due to device and
circuit non-idealities of the crossbar and IMC cells. These non-
idealities cause data mismatches between software and hardware.
These non-idealities include device variation, non-linear switching,
conductance drift, ADC/DAC non-linearity, mismatch, etc
(Krestinskaya et al., 2019). To reduce the performance gap, these
non-idealities should be modeled and explicitly considered during
neural network training (Xiao et al., 2022).

6 Discussion and future directions

In this paper, we discuss different types of quantization and
QNN training methods. These methods can generate well-trained
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QNNs featuring comparable accuracy as full-precision models.
However, high accuracy is achieved at the cost of involving full-
precision parameters (like scale factors). Even though these full
precision parameters do not cause an obvious model size increase
(shown in Figure 7), they introduce computation overhead,
especially when there’s no dedicated floating-point unit in the
hardware accelerators. Meanwhile, during backward propagation,
all the aforementioned methods rely on full-precision weights or
fixed-point weights with large bit-width to accumulate the gradient.

Various hardware accelerator designs (introduced in Section 5)
can achieve higher computation efficiencies compared with
traditional general-purpose computation units (GPU/CPU).
However, most of the accelerator designs only support efficient
neural network inference rather than training. Additionally, higher
reconfigurability is expected from the accelerator designs, which is a
key component for edge online learning or federated learning.

From algorithm and hardware co-design perspectives, we
propose future directions for both the QNN algorithms and
accelerator designs as summarized in Figure 11.

6.1 Extreme low bit-width quantization

Figure 12 shows the influence of quantization precision on
power consumption and latency with different hardware
platforms. For MCU-based platforms, the latency and power

consumption scale down with the quantization precision due to
the fixed length of the arithmetic units. While for ASIC-based
accelerators, the latency and power consumption scale down
drastically with the quantization precision. With a simple
dataset (CIFAR-10), the model accuracy experiences less
degradation than a complex dataset (ImageNet) as the
quantization precision decreases. Figure 12 shows that a close-
to-FP accuracy can be obtained as the quantization bit-width is
larger than 4-bit. Consequently, the majority of the QNN hardware
designs shown in Table 3 adopt a quantization precision higher
than 4-bit. Hence, there is a demand to improve model accuracy
under sub-4-bit quantization scenarios. With low-bit quantization,
the hardware platforms can be more energy efficient and fast,
especially with ASIC-based platforms.

6.2 Study of the quantization of biases and
batch normalization parameters
during training

Compared to training, biases and batch normalization
parameters can be fused into the following layer during
inference. There are no studies offering a systematic discussion
or implementation of quantization towards biases or batch
normalization parameters during training. Meanwhile, comparing
the accuracy resulting from cases with and without biases or affine
operations (Figure 7), these operations play an important role in
guaranteeing high performance accuracy. Hence, there is a strong
demand for a systematic study of the quantization algorithms
towards biases and batch normalization parameters during
training. Only with quantized biases and batch normalization
parameters expensive floating-point operations can be completely
removed from the data path, which is a key point for efficient
hardware accelerator design that supports training.

6.3 QNN training methods relying only on
hardware-friendly operations (integer
arithmetic operation, shift, bit-
wise operation)

All QNN training methods depend on floating-point or long bit-
width fixed-point parameters to accumulate the gradient preventing

FIGURE 11
Technology advancements towards efficient edge machine learning (algorithm, hardware co-design).

FIGURE 12
Qualitative study on relative power consumption per operation
and latency under different precision quantization with MCU-oriented
acceleration kernel (Garofalo et al., 2021) and ASIC-based NN
accelerator (Ryu et al., 2022). Accuracy relative to full precision
models is shown with the corresponding bit-width tested with CIFAR-
10 (Yang et al., 2020) and ImageNet dataset (Zhang et al., 2018).
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them from being deployed on low-end edge or IoT devices. At the
same time, out of privacy concerns, machine learning methods, e.g.,
federated learning, require local training on low-end devices. Since
there are some existing works (Sun et al., 2018b; Zhou et al., 2016;
Sun et al., 2020) supporting the quantization of gradients during the
backpropagation, the critical part of developing QNN training
methods relying only on hardware-friendly operations is finding
a substitution of the floating-point format in accumulating
gradients. Therefore, it is worth exploring the fusion of new
gradient accumulating methods and existing gradient
quantization methods.

6.4 Hardware accelerator design supporting
both efficient inference and training

The existing hardware accelerator designs focus more on
inference rather than training assuming that costly training can
be performed on powerful servers or clusters. However, as IoT
technology, edge computing, and corresponding privacy
concerns arise, it is required to switch neural network
training from a centralized manner to a more distributed one.
This trend puts a requirement on the hardware design to support
not only the inference but also training. As analyzed in the
previous sections, different data in the neural network, like
weights, activations, and gradients, possess different ranges
and distributions. This results in different types of
quantization methods being applied to different data. To
support both inference and training, the hardware
architecture should be based on a heterogeneous design and
compatible with various quantization methods and support
arithmetic operations and corresponding data formats while
maintaining high efficiency.

6.5 Dynamically reconfigurable
accelerator designs

In addition to inference and training support, hardware
reconfigurability is also critical. The edge device (e.g., mobile
phone) may be required to run different applications and tasks.
Neural networks running on the hardware accelerator could have
different network structures, quantization methods, precision,
and execution time requirements. All these factors bring
challenges to the hardware design to be dynamically
reconfigurable, especially in ASIC and non-volatile memory-
based hardware architectures.

7 Conclusion

In light of the swift advancement of edge computing, this paper
undertakes a comprehensive, integrative survey on CNN
architectures, quantization algorithms, and QCNN accelerators
with a focus on energy-efficient on-edge applications. Various
existing QNN accelerator designs based on ASIC, FPGA, and
non-volatile memory together with commonly adopted CNN
models and quantization algorithms are introduced and analyzed.

On top of that, we highlight general guidelines regarding QNN
software-hardware co-designs and give future research directions
considering both algorithm and hardware perspectives.
Concurrently, notable advancements in CNN architectures and
quantization algorithms, which have yet to find common
application in QCNN accelerators and thus fall outside the ambit
of this review, have been made. It is anticipated that these
developments will significantly influence the future evolution of
QCNN accelerator designs.
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