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Recently, there has been notable progress in the advancement of RRAM-based
Compute-In-Memory (CIM) architectures, showing promise in accelerating
neural networks with remarkable energy efficiency and parallelism. However,
challenges persist in fully integrating large-scale networks onto a chip,
particularly when the weights of a layer exceed the capacity of the RRAM
crossbar. In such cases, weights are distributed across smaller RRAM crossbars
and aggregated using tree adders and shifters in digital flow, leading to increased
system complexity and energy consumption of hardware accelerators. In this
work, we introduce a novel energy-efficient analog domain aggregator system
designed for RRAM-based CIM systems. The proposed circuit has been verified
and tested using Virtuoso Cadence circuit tools in 180 nmCMOS technology with
post-layout simulations and analysis. Compared with the digital adder tree
approach, the proposed analog aggregator offers improvements in three key
areas: it can handle an arbitrary number of inputs not just powers of 2, achieves
lower error through better rounding and improves power efficiency (2.15× lower
consumption). These findings mark a substantial advancement towards the full
implementation of efficient on-chip hardware accelerator systems.
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1 Introduction

The deployment of neural networks (NNs) in machine learning (ML) applications,
including computer vision, speech recognition, and natural language processing, has grown
exponentially over the past few decades (Hertel et al., 2015; Graves et al., 2013; Bahdanau
et al., 2015; Humood et al., 2023). To address the intensive Multiply-Accumulate (MAC)
operations required by these applications, emerging circuit architectures such as Compute-
In-Memory (CIM)modules have been developed (Yu et al., 2021). Resistive RandomAccess
Memory (RRAM)-based neural network (NN) accelerators (Musisi-Nkambwe et al., 2021;
Mittal, 2019; Yao et al., 2020; Marinella et al., 2018; Cai et al., 2019; Bayat et al., 2018; Sahay
et al., 2020; Liu et al., 2020; Mochida et al., 2018; Shafiee et al., 2016; Xue et al., 2020;
Prezioso et al., 2018; Ankit et al., 2017; Wang et al., 2015; Narayanan et al., 2017; Hung et al.,
2021; Tang et al., 2017; Ming et al., 2017; Chen et al., 2019; Su et al., 2017; Wang et al., 2024)
have attracted considerable attention due to their utilization of Ohm’s law for multiplication
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and Kirchhoff’s law for accumulation. By leveraging an RRAM
array, these engines can execute parallel in-memory MAC
operations, offering substantially enhanced speed and energy
efficiency compared to von Neumann computing approaches
(Amirsoleimani et al., 2020; Mittal, 2019).

However, despite recent advances in RRAM-based accelerators,
there remain several challenges at the system level that need to be
addressed in order to effectively implement large-scale NNs, such as
AlexNet (Krizhevsky et al., 2017), VGG-16 (Simonyan and
Zisserman, 2015), and ResNet (He et al., 2016) on chip. A
notable challenge arises when the necessary fan-in within an NN
exceeds the capacity of the RRAM crossbar, limiting hardware
implementability of large-scale networks (the “aggregation
problem”). Simply increasing the size of the RRAM crossbar is
not an efficient solution due to constraints related to write/read
errors (Yuan et al., 2019), sneak path currents (Humood et al., 2019),
and latency (Xia et al., 2018), which tend to worsen with larger
array sizes.

Instead, the ISAAC architecture reported in (Shafiee et al.,
2016) distributes the weights of large NNs across multiple RRAM
arrays to execute partial sum product computation quickly and in
parallel (Huo et al., 2022). Subsequently, the outputs from each
array on the same column are aggregated/accumulated using
adder trees and shifters in the digital domain before being
transmitted to the next layer or output registers. Several other
architectures have also adopted similar adder tree- and shifter-
based approaches, (Yuan et al., 2019; Wang et al., 2021; Xia et al.,
2018; Zhang et al., 2019; Chi et al., 2016; Nag et al., 2018; Yao
et al., 2020; Wang et al., 2023). Other research efforts have
implemented aggregation on FPGAs (Liu et al., 2020; Hung
et al., 2021; 2023; Huo et al., 2022), however, this limits the
concept of having a full system on chip.

However, the aforementioned studies do not address the
performance and implementation of the aggregation system,
hence, the practical overhead of accumulating inputs from
different crossbars at the system level remains unknown.
Additionally, the digital approach using adder trees and shifters
can only accumulate outputs from 2N arrays (where N represents the
number of aggregated inputs) limiting the practical implementation
of certain neural networks.

In this work, we present a novel analog-domain aggregator
circuit for RRAM-based accelerators. The proposed circuit is
designed to accumulate the digital outputs of N number of sub-
arrays within the hardware NN accelerators via charge
redistribution/sharing techniques. First, the digital output of each
array on the same column is converted from the digital domain to
the analog domain through C-2C DAC ladders. Subsequently, the
analog outputs of the C-2C ladders are accumulated and shared
across a single line. Finally, the aggregated analog signal is converted
back to the digital domain using a SAR ADC to be processed for the
next NN layer or to the output registers. Furthermore, considering
that most NNs generate signed outputs, positive and negative sub-
array outputs are individually accumulated and subsequently
subtracted from each other during the aggregation process.
Figure 1 shows the proposed approach along with other
approaches in the literature for “aggregators” used in RRAM-
based NN accelerators.

The proposed aggregator is validated via Cadence Virtuoso in a
commercially available 180 nm CMOS technology. Post-layout
simulation and analysis have been performed to evaluate the
circuit’s performance and characteristics. To validate the
performance of the proposed system, we also implemented and
simulated the adder tree and shifter system utilized in ISAAC
(Shafiee et al., 2016) using digital Register Transfer Level (RTL)

FIGURE 1
Mapping a large-scale neural network on multi-core RRAM CIM chip. To the right, we illustrate the proposed approach to aggregate partial sums
(green outline) along with Adder Tree (Yuan et al., 2019; Wang et al., 2021; Xia et al., 2018; Zhang et al., 2019; Chi et al., 2016; Nag et al., 2018; Yao et al.,
2020; Wang et al., 2023) and FPGA (Liu et al., 2020; Hung et al., 2021; 2023; Huo et al., 2022) approaches.
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methodology on Application Specific Integrated Circuits (ASIC)
design flow, providing a direct comparison vs. a fully digital
approach. Results demonstrate improved flexibility, precision and
power performance of the proposed analog aggregator. The
demonstrated aggregator version is capable of accumulating
outputs from up to 8 different arrays, which is sufficient to
accommodate the majority of large RRAM-based NN accelerators
such as ISAAC (4 arrays per bank) (Shafiee et al., 2016) and PRIME
(8 arrays per bank) (Chi et al., 2016). However, expanding the
number of digital outputs that the proposed aggregator can
accumulate is easily achieved by increasing the number of C-2C
DAC ladders. To the best of our knowledge, we are the first to
successfully demonstrate the design of an analog domain aggregator
specifically tailored for CIM architectures.

The remainder of this paper is organized as follows: Section 2
provides an overview of the proposed aggregator architecture.
Section 3 describes the methodology of the charge-sharing
operation and analog sharing mechanism and the transition of
the signal from input to output along with design constraints
and design parameters. Simulation results and performance
evaluation are provided in Section 4, followed by conclusions
in Section 5.

2 System overview and methodology

The proposed aggregator schematic and layout are shown in
Figures 2A, B, respectively. This section discusses the mode of
operation and circuit design, including the exploration of design
parameters and system specifications.

2.1 Mode of operation and charge sharing

The numbers and arrows in Figure 2A denote the signal flow.
Given that the outputs of a neural network layer can vary in sign, the
outputs of an RRAM-based accelerator are represented as a signed
digital number (S). Step 1: 5-bit, signed digital numbers (IN0 to
INN) enter a sign detection block. Where the signed number has a
4-bit magnitude (Q0 to Q3) and a sign-bit (Z). The block separates
the numbers by sign into positive (P0 to PN) and negative (N0 to
NN) and applies 2’s complement on the negatives. Step 2: The
resulting unsigned numbers are fed into either the positive or the
negative bank of C-2C ladder DACs, which present their results at
terminals “VaN+” and “VaN−” respectively. Step 3: The DACs
connect to the positive and negative “aggregation lines” and
share their charges, thus being aggregated in the analog domain,
i.e., producing the analog aggregated sum (∑Nact

i�0
Vai
Nact

) where Nact is
the number of aggregated inputs. Step 4: The aggregated analog
values are converted back to digital using SAR ADCs. The source
followers are based on two series NMOS transistors and act as
buffers. Step 5: The aggregated positive and negative numbers are
subtracted using a digital subtractor.

This aggregator can accumulate up to 8 digital numbers but
expanding to in principle arbitrary numbers of input blocks is easily
achieved by increasing the number of C-2C DAC units (not just
powers of 2). This results directly from the nature of charge-sharing,
where every contributor is implicitly equally weighted, thus
enhancing versatility vs. conventional digital aggregation
techniques. Each DAC unit is equipped with a switch (Lx) that
determines whether the DAC participates in the aggregation or not.
Moreover, this aggregator supports a resolution of 5-bit for both

FIGURE 2
Proposed aggregator architecture. (A) Schematic view. See text for description of signal flow steps (numbers in green). (B) Layout view
(211 × 338 μm2).
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inputs and outputs. Changing input resolution entails modifying the
resolution of the C-2C DAC, while increasing output resolution
involves adjusting the SAR ADC resolution.

2.2 System overview

2.2.1 Sign detection
The sign detection block utilized in this study is shown in

Figure 3. It receives a 5-bit digital number (Q0-Q3 for magnitude
and Z for sign). When the input number is positive, the equivalent
positive number corresponds to the magnitude of the signed number
([P0, . . . , P3] � [Q0, . . . , Q3]. The corresponding input to the
negative C-2C DAC is set to 0 ([N0, . . . , N3] � 0). Similarly, if

the input number is negative, the two’s complement’s magnitude is
passed to the N terminals, while the P terminals remain at 0. The
two’s complement is implemented using a series of inverters and
half-adder (HA) blocks, where the digital bits are first inverted and
then incremented by 1.

2.2.2 C-2C DAC
In this work, the digital-to-analog conversion at the input

side is performed using a modified version of the textbook C-2C
DAC circuit (Singh et al., 1987). A C-2C DAC is a data converter
that uses a binary-weighted capacitor network to convert digital
inputs into analog voltages. The name “C-2C” refers to its use of
unit (C) and double unit (2C) capacitances. Two DAC ladders
are employed, one for the positive aggregating side and one for
the negative side. Figure 4 displays a single DAC unit from the
positive aggregating side, with a corresponding DAC unit
implemented on the negative aggregating side. The value of C
is minimized to 100 fF to reduce area and power while
maintaining good linearity and minimizing the effect of
parasitic capacitances. The RST signal resets the analog line
to 0 V before the start of the conversion. The positive equivalent
numbers are transformed into an analog voltage represented as
Va, ranging between VREF1 and VREF2. The multiplexers used in
the proposed C-2C DAC are based on transmission gates. The
selection process for VREF1 and VREF2 is addressed in Section 2.3.

2.2.3 SAR ADC
The SAR-ADC circuit, referenced in (Sharuddin et al., 2016;

Alpman et al., 2009) and illustrated in Figure 5, constitutes the
largest component within the proposed aggregator. The
implemented SAR-ADC consists of 4 main components. First,
the sample and hold circuit (S/H), as shown in the inset of
Figure 5, is used to sample and hold the analog voltage obtained
from the averaging DAC ladders when CLKSH is activated. The
capacitance value of CSAMP is set to 1 pF, and the width-to-length

FIGURE 3
Sign detection circuit used in the proposed Aggregator. HA,
Half-Adder.

FIGURE 4
C-2C DAC Unit Used on the Positive Side of the Proposed Aggregator, with an Identical Unit Implemented on the Negative Side. Capacitance Value
(C) is 100 fF.
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(W/L) ratio of the transistors is chosen as 68/1 to minimize kickback
noise at the comparator inputs.

Second, The comparator employed in the implemented SAR-
ADC is based on the strong-ARM latch comparator reported in
(Almansouri et al., 2017; Kobayashi et al., 1993) due to their low
offset, low power consumption, and high input impedance. The
comparator is needed to compare the analog sampled value with the
DAC output. In order to operate at a low common-mode voltage, a
PMOS-input latch comparator is used in this work. The comparator
design, along with the width-to-length ratio of the transistors, is
shown in the inset of Figure 5. Transistors were sized to minimize
the offset, as evidenced by post-layout Monte Carlo simulations
demonstrating an offset of less than 5 mV at a common-mode
voltage of 0.1 V.

Third, The SAR logic shown in the inset of Figure 5 is
implemented using two shift registers composed of chains of
standard D-Flip Flops (D-FFs). The shift register at the top
serves as a sequencer and operates synchronously with the
internal clock. Meanwhile, the bottom register stores the
conversion value. The final component of the SAR ADC is the
C-2C DAC unit, as described earlier in Section 2.2.2 and depicted in

Figure 4. However, the value of C in this C-2CDAC is set to 720 fF to
minimize kickback noise from the strong-ARM latch comparator.

2.2.4 4-bit subtractor
This is used to subtract the negative aggregated output from the

positive aggregated output, here a standard 4-bit subtractor unit. Its
output represents the final digital result of the accumulation process.

2.3 Design parameters

In the proposed aggregator, there are four design parameters,
namely, VREF1, VREF2, VREF3, and VREF4, which demand careful
consideration. The parameters are highlighted in red in Figure 2A.
VREF1 and VREF2 denote the minimum and maximum reference
voltages for the averaging C-2CDAC ladders, whileVREF3 andVREF4

represent the minimum and maximum reference voltages for the C-
2C DAC of the SAR ADC.

Figure 6 provides a graphical representation of the balancing
process, illustrating the signal range transition from input to
output. As the averaging DAC ladder is connected to an NMOS-
based source follower before going to SAR ADC block, VREF1 and
VREF2 are chosen to fall within the linearity range of the source
follower to mitigate conversion errors. Consequently, VREF1 and
VREF2 are set to 0.6 V and 1.6 V, respectively, This defines the
input DAC range, as shown in red in Figure 6. To determine
VREF3 and VREF4, the average DAC ladder was simulated with zero
active inputs (all digital inputs set to 0) and full active inputs (all
digital inputs set to 1). The voltage of the source follower was
recorded for both cases resulting in a value of 0.186 V and
0.919 V, respectively. These values correspond to the source
follower (SF) range that passes as an input to the SAR ADC,
with a least-significant bit (LSB) step size of 49 mV (Figure 6,
purple). If we set VREF3 and VREF4 to match the SF range, it
balances the aggregator such that the digital output rounds down
to the nearest integer, similar to the digital approaches. However,
a more accurate approach would be to balance VREF3 and VREF4 to
ensure that the SAR ADC output corresponds to the nearest
integer, rather than rounding down. This can be achieved by
setting VREF3 as the minimum SAR ADC input range value minus
0.5 LSB step, resulting in 0.161 V, and VREF4 as the maximum
SAR ADC input range value minus 0.5 step, i.e., 0.894 V
(Figure 6, blue). This method improves rounding accuracy,
demonstrating an advantage of the analog approach over the
adder tree and shifter method.

3 Results

The proposed aggregator circuit has been validated in Cadence
via post-layout simulations at 180 nm commercial CMOS and under
a 1.8 V power supply.

3.1 Post layout transient simulation

Figure 7 presents a SPICE post-layout simulation of the
proposed circuit using a randomized set of 8-signed digital

FIGURE 5
SAR-ADC design utilized in the proposed aggregator. Also
shown: schematics of the sample and hold circuit, the comparator,
and the SAR logic.
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inputs (IN1-IN8). The two clock signals, CLKCOMP and
CLKADC, are operating at frequencies of 200 MHz and
100 MHz, respectively. RST is an active-high signal that resets
the averaging C-2C DACs. Once it transitions from high to low,
relevant DACs proceed to convert the digital inputs to analog
signals and aggregate them on the same shared line. VANALOGP

and VANALOGN represent the aggregated positive and negative
analog values, respectively. The analog aggregated values are

sampled when the CLKSH signal is high. Upon the signal
transitioning from high to low, the values are retained in the
S/H circuit within the SAR ADC. Subsequently, the conversion
from analog to digital commences. Finally, the unsigned 4-bit
positive and negative aggregated digital outputs (PAVG and
NAVG) and the final 5-bit signed output after the subtraction
(OUT) are shown. To the right, the 8 digital input combinations
alongside the calculated and simulated averages are shown.

FIGURE 6
Aggregator VREF1 - VREF4 design parameters balancing. Left - inputs DAC signal rage, through middle - after source follower to right - input range of
SAR ADC. The SAR’s input range is 0.5 LSB downshifted from the output of the SF range to ensure decision borders fall in themiddle of the range between
exact bits.

FIGURE 7
Example of post-layout simulation of the proposed aggregator system using a randomized set of 8-signed digital inputs.
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3.2 Corner and temp analysis

Table 1 presents a summary of the process corner and
temperature analysis across three different process corners (nmos-
pmos) and five temperatures (ranging from −55°C to 125°C). The
analysis is based on the simulation of three randomized digital input
combinations. Table 1 shows the LSB deviation between the simulated
output and expected output (expected - simulated) for each corner
and case. A deviation of 0 LSB indicates a correct conversion,
highlighted in green in the table. Red-highlighted cells indicate
incorrect conversions, along with the extent to which the
simulated output deviates from the expected output. Overall, the
systemdemonstrates excellent performance, passingmost corners and
only failing in extreme corners with a deviation of only ±1 LSB.

3.3 Monte Carlo analysis

Monte Carlo analysis and simulations were carried out on the
proposed aggregator circuit to examine the influence of transistor
mismatch. Figure 8 presents histograms of the aggregated outputs
under four randomized sets of digital inputs. The random inputs
were chosen to correspond to exact aggregation results of 6, 6.25,
6.5 and 6.75 (decimal), i.e., in 0.25LSB increments (Case 1 - Case 4).
Hence, the correct nearest-integer-rounded results would be 6, 6, 7, and
7, respectively. We ran the test 200 times and recorded the results of the
aggregation. Results in Figure 8 show the vast majority of trials
returning the correct answer (0 LSB error), with Case 3 (exact
answer = 6.5, rounded answer = 7) showing the biggest incidence of
imprecisions with 6% of total trials resulting in code 6 instead of 7
(Figure 8C). We note that this is a borderline case and as such the
absolute error vs. the exact answer is 0.5 LSBs in for both code 6 and 7.
Another observation is that the worst error appears in Case 1, where
0.5% of trials result in 1 full LSB difference from the exact answer.

3.4 Power and area breakdown

Table 2 presents the average power consumption and area
breakdown of each component in the proposed aggregator. The
metrics in Table 2 are based on post-layout extracted simulation
under a random set of digital inputs. The average power
consumption was measured while operating at a CLKCOMP frequency
of 200 MHz and a CLKADC frequency of 100 MHz. It is dominated by
the SARADC blocks. The SARADC block in the proposed aggregator is
responsible for the majority of the average power consumption,
accounting for 92.58%. Innovations in SAR ADC designs could play
a crucial role in reducing the overall power consumption of the system.

3.5 Performance comparison with
digital approach

Table 3 presents a comparison of performance and specifications
between the proposed analog aggregator and the digital adder tree
aggregator proposed in (Shafiee et al., 2016; Yuan et al., 2019; Wang
et al., 2021; Xia et al., 2018; Zhang et al., 2019; Chi et al., 2016; Nag
et al., 2018; Yao et al., 2020). However, the aforementioned studiesT
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do not provide details about how a circuit block with the function of
digital aggregator might be built or how it might perform. Hence, the
digital aggregator has been implemented using an RTL digital flow
implementation using the same CMOS technology node, input/

output resolution, and number of aggregated inputs of the proposed
aggregator. The digital ASIC flow applies standard cells provided by
the foundry. Its output loading is set to 50 fF, the same as the analog
flow implementation for comparison.

FIGURE 8
(A-D) Monte Carlo post-layout simulation of the proposed aggregator system using a randomized set of 8-signed digital inputs. X-axis: Top row
(red): Rounded output code, i.e., final output of aggregator. Middle row (blue): Deviation from expected output code. Bottom row (purple): Difference of
aggregator output code from exact answer. Percentage of each count is shown above each bar.

TABLE 2 Proposed Aggregator area and power breakdown.

Block Number of
units

Average Power per
Unit

Average Power per
Block

% of Total
Power

Area

Sign Detection 1 9.76 nW 9.76 nW 0.0045% 10 × 16 μm2

Averaging C-2C DAC 16 155 nW 2.48 μW 1.16% 48 × 30 μm2

Source Follower 2 6.22 μ W 12.44 μW 5.81% 4 × 11 μm2

SAR ADC 2 99.14 μW 198.28 μW 92.58% 102 × 99 μm2

Subtractor 1 0.98 μW 0.98 μW 0.46% 120 × 4 μm2

Total Power 214.18 μW 100% 211 × 338 μm2
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The proposed analog aggregator offers three key advantages over
its digital counterpart. Firstly, it can accumulate a higher number of
inputs (arbitrary up to N), whereas the digital aggregator is limited to
power of 2 inputs due to the limitations of shift operations used to
average the sum of inputs. Secondly, the analog aggregator is designed
to round the final sum to the nearest integer, reducing the error to
0.5 LSB, while the digital approach rounds down, resulting in
“natural” errors up to 1 LSB. Finally, the analog aggregator system
demonstrates an improvement of approximately 2.15× in average
power consumption compared to the digital implementation, despite
being physically larger. We further note that the layout area of the
proposed aggregator can be further optimized by utilizing more
advanced technology nodes with additional metal layers. For
example, the capacitors in the C-2C ladder can be integrated
above the logic, leading to a more compact design. The digital
approach, on the other hand is front-end limited so additional
metals are unlikely to appreciably improve its footprint.

4 Conclusion

In this work, we presented a novel energy-efficient analog
domain aggregator circuit designed for RRAM-based neural
network accelerators. An Aggregator system is needed when the
weights of a neural network layer exceed the capacity of the RRAM
crossbar. The proposed aggregator is designed to accumulate the
digital outputs of the subarrays within the hardware NN accelerators
via charge distribution and sharing techniques in analog flow. We
implemented and verified the proposed circuit using Cadence circuit
tools. The functionality and performance of the system were
evaluated through post-layout simulations using a commercially
available 180 nm CMOS technology and compared with the digital
approach used in the state-of-the-art. The proposed system offers a

more flexible design, higher precision (at 5 bits), and improved
power consumption compared to the digital approach. While the
proposed aggregator design aims to enhance the performance of
pipelining in RRAM-based accelerators, the design itself neither
incorporates RRAM technology nor is directly influenced by RRAM
devices, as the system’s inputs and outputs are in digital format. In
fact, the aggregator can be adapted for use with any compute-in-
memory technology, such as SRAM-based or DRAM-based CIM.
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