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The benefits of aquatic rehabilitation have been demonstrated to promote
wellbeing and facilitate motor recovery in middle-aged adults and geriatrics.
Individualized patient-centered treatment is essential to accelerate and improve
the rehabilitation process of neurological and orthopedic patients. Although
aquatic therapy and rehabilitation are well known to be beneficial to these
populations, it can be challenging for therapists to visualize and monitor
patient progress and provide individualized feedback to ensure correct
movement as planned. To establish the suitability of the developed wearable
device in an aquatic environment, this study compared the extracted features of
the sEMG and IMU data in on-land and aquatic environments for the bicep curls
(BC) and tricep kickback (TK) protocols. We conducted a systematic analysis of
the reproducibility and precision of the sEMG-IMU characteristics to assess the
feasibility of the device for practical applications. While time and frequency
domain features of sEMG were higher in aquatic environments compared to
on-land, the Intraclass Correlation Coefficient (ICC) for these features ranged
from 0.81 to 0.98, and the Coefficient of Variation (CV%) exhibited a range of
5.7% to 14.4%, highlighting reproducibility and correlation across environments in
the two protocols. Environment. Moreover, for frequency domain the
reproducibility and precision of the sEMG recordings for each muscle in this
study were obtained high (ICC � 0.92 − 0.96, CV% � 5.4 − 13.8%). It’s noticeable
that the observed acceleration data is almost similar to the same movement was
maintained throughout the exercise. Eventually, the quantitative result is used to
cluster the protocol types along with various repetitions to promote the
personalized aquatic rehabilitation.
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1 Introduction

Aquatic therapy also known as hydro-kinesitherapy, with its utilization of water’s
unique physical properties such as buoyancy, hydrostatic pressure, and
thermodynamics, holds promise as an effective approach for motor rehabilitation in
individuals with neuromuscular diseases or injuries (Marta et al., 2020; Li et al., 2017;
Silvers and Dolny, 2011; Iliescu et al., 2020). This therapeutic modality not only
enhances motor recovery and wellbeing but also offers a safe and comfortable
environment for rehabilitation, accommodating varying levels of function and
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capacity. Additionally, aquatic rehabilitation, particularly during
the initial phases of musculoskeletal movement, take advantage of
water’s properties to induce distinct physiological and
biomechanical responses, including the alteration of resistance
through drag force (Kaneda et al., 2013). This suggests that
aquatic therapy can play a valuable role in improving motor
function and overall rehabilitation outcomes for patients with
neurological disorders and motor impairments (Marta et al.,
2020; Iliescu et al., 2020). It is inferable that water can be used
as a “rehabilitation tool” by combining the benefits of therapeutic
exercise and immersion.

Despite the increasing popularity and efficacy of aquatic
exercise, there is still a lack of evidence in terms of quantitative
measurement and analysis for the movements during aquatic
therapy and rehabilitation. In the past, underwater activity
measurements were predominantly investigated to monitor
swimming performance. The conventional method for
quantifying underwater movements entails video-based systems,
which require cameras both above and below the water (Komar
et al., 2012). However, because this method is burdensome, time-
consuming, and restricted to specialized instrumented pools, it is
impractical for use in a broader range of rehabilitation settings
(Mooney et al., 2015) and even not direct measurement of aquatic
activities. In addition, the data analysis depends on computationally
intensive computer vision algorithms, making it less accessible to
non-technical users. Besides, in most cases when therapists work on
aquatic therapy and rehabilitation for patients, it is difficult for them
to make accurate assessments of the effectiveness of patient
movements in their rehabilitation. They are reliant on their own
observations and experience and the patient’s subjective response to
the therapy. In addition, no device or system that provides therapists
with quantitative evaluation metrics for physiological and musculo-
kinetic monitoring and analysis in underwater activities that would
allow them to adjust their instructions in real-time to ensure that
exercises are being performed correctly with maximum efficiency
and impact.

In the absence of precise measurement instruments,
quantifying the efficacy of rehabilitation exercises conducted in
aquatic environments becomes a challenging endeavor.
Therefore, the effectiveness of aquatic rehabilitation has been
mostly examined and validated by the comparisons between pre-
and post-treatments outside the water; it led to a lack of data for
meaningful individual follow-up during patients’ aquatic
rehabilitation. These methods are subjective and less include
objective data that can provide quantifiable information about
muscle activity, movement patterns, and overall performance.
This hinders the ability of physiotherapists and exercise
professionals to accurately evaluate and tailor aquatic
rehabilitation programs for individual needs.

As a result, there is a distinct need for continuous data collection
and storage that provides quantitative insights into patients’
movements in the water in order to improve the rehabilitation
process. This not only has benefits for patient care, but also for
scientific research, data analysis, and further field advancements
(Marta et al., 2020). In the other words, a new bioinstrumentation
system that encompasses real-time physiological and motor
monitoring and analysis during aquatic therapy will lead to a
new scientific field that will offer patients personalized

rehabilitation treatment to enhance the quality of their
performance in therapy. By developing a waterproofed wearable
device capable of collecting surface electromyography (sEMG) and
inertial measurement unit (IMU) data, this study aims to provide
objective and quantitative measurements of muscle activity and
movement by designing a system that combines quantitative
analysis of movement using sEMG and IMU data-based features
during aquatic rehabilitation. These measurements can then be used
to analyze the effectiveness of different exercises, identify areas for
improvement, and inform the development of personalized aquatic
rehabilitation programs.

2 Methods and materials

Healthy ten male and five female subjects ([mean ± SD]: age,
25.7 ± 3.1 years; height, 167.6 ± 9.6 cm; body mass, 68.3±7.6 kg)
from the University of Massachusetts (UMass) Amherst were
recruited for this research. To ensure the validity and
dependability of the study’s results, individuals with pre-existing
health conditions that could hinder their functional capacities were
meticulously screened out of the participant pool. Enrollment in the
study was accompanied by informed consent documentation and
thorough information on the research objectives and methodologies
provided to participants in advance. All subjects agreed to
participate in this study and were informed about procedures,
potential risks, and use of human images/videos during the
experiment. They gave their informed written consent to
participate in the study. Institutional Review Board (IRB)
approval was obtained from UMass Amherst (#22010038) to
carry out the experiments.

2.1 Device and electrodes

The device consists of two sensing units operating in
parallel—the IMU, sEMG sensor unit, including flash memory
unit. The device is waterproof and powered up by a 135mAh 3.7V
Li-Polymer battery, providing continuous operation for up to 8 h,
which is rechargeable wirelessly as it is shown in Figure 1a. The
carbon black/polydimethylsiloxane (CB/PDMS) electrodes, as
illustrated in Figure 1b and documented in references (Noh
et al., 2016; 2018; Posada-Quintero et al., 2018; Amin et al.,
2023), are seamlessly linked across both wings via a flexible
segment. This study embraces CB/PDMS electrodes instead of
traditional Ag/AgCl electrodes due to their reliability, waterproof
nature, and resistance to motion, which are essential for sEMG
signal acquisition in aquatic settings. Traditional Ag/AgCl
electrodes, although commonly utilized in dry environments,
experience issues such as hydrogel washout, water infiltration,
and heightened impedance variability when immersed. CB/
PDMS electrodes present a hydrophobic and durable option,
demonstrating stable impedance across various water
conditions, such as fresh, chlorinated, and saltwater
environments (Noh et al., 2018). Prior research indicates that
these electrodes are capable of obtaining high-fidelity bio-signals
without the necessity of adhesive waterproofing layers, commonly
required for Ag/AgCl electrodes (Noh et al., 2016). The superior
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motion artifact resistance of CB/PDMS electrodes is a significant
advantage, particularly for dynamic rehabilitation exercises
(Posada-Quintero et al., 2018). In contrast to Ag/AgCl
electrodes, which are susceptible to displacement and signal
distortion during movement, CB/PDMS electrodes ensure
consistent signal acquisition, even during extended immersion
and active movement. Our previous research confirmed that CB/
PDMS electrodes sustained high-fidelity ECG signals for more
than 6 h of continuous underwater application without any
material degradation (Noh et al., 2016). Considering these
benefits, CB/PDMS electrodes were chosen for this study to
facilitate reliable, long-term sEMG monitoring in aquatic
settings. Their capacity to preserve signal integrity, resist water
infiltration, and reduce motion artifacts renders them optimal for
evaluating muscle activity in rehabilitation contexts.

The meticulously designed rigid-flexible structure enhances
adaptability, ensuring optimal conformity to the body shape
while mitigating the risk of water penetration between skin and
electrode and potential data loss. The side view in Figure 1c
emphasizes the device’s flexibility, showcasing its ergonomic
design for optimal user comfort and functionality. The
accelerometric and gyroscopic data from the IMU sensor and 1-
channel sEMG data were stored in flash memory with capacity of
128Mbit to utilize for further signal processing and
statistical analysis.

2.2 Experimental procedure

Dexterous upper-limb impairments are a substantial cause of
disability in the aftermath of an acquired brain injury or stroke,
affecting approximately half of the patients in this clinical
population (Roby-Brami et al., 2021). The restoration of upper-
limb function following stroke has been the subject of numerous
studies from both fundamental and clinical perspectives. In this
context, our research concentrates on the Bicep Brachii (BB) and
Tricep Brachii (TB) muscles, which are essential for the control of
upper extremity neuromuscular and equilibrium activities. The
device was fastened with elastic belt worn around the subject’s
bicep and the sensor node was positioned on the Bicep Brachii
(BB) and Tricep Brachii (TB) of the subject. Two experiment
protocols- Bicep Curls (BC) and Tricep Kickback (TK) were
performed on-land and aquatic environments to test the
feasibility of the developed device for different numbers of
repetitions (reps) in different directions. At the start of protocol
1, subjects were instructed to stand straight with their elbows fully
extended and their arms parallel to their bodies as it is illustrated in
Figure 1d. Then they were asked to lift the forearm (flexion) with the
palm in the upward direction till the full flexion as it is demonstrated
in Figure 1e and slowly lowered the forearm (extension) back to the
straight position and parallel with the body. On the other hand, in
protocol 2, subjects were asked to follow the same exercise, but the

FIGURE 1
Wearable sEMG and IMU recording device with (a) top view, (b) CB/PDMS electrodes on two wings connected with flexible part and wireless
charging coil (bottom view), (c) flexibility of the device (side view), (d) extension of the activity- Bicep Curls (BC), (e) flexion of the activity- BC, (f) timeline
of the steps during the BC and TK.
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device was placed on Tricep. Each activity had 3, 6, and 9 reps in
5 sets, respectively. As it is depicted in Figure 1f, each experiment
began with a 5-min resting stage to obtain the baseline of the
collected sEMG and IMU data, then transitioned to a contraction
stage, which consisted of isotonic contraction for 30 s. We followed
the same time sequence for the data recording on both protocols
1 and 2. Before each test, subjects were asked to practice the
requested activities until they were familiar with them. All
participants accomplished the protocols successfully, and
completed activities without any physical and mental issues in
both categories.

2.3 Feature extraction

In the analysis of the sEMG signal, features are predominantly
categorized into three main representations: time domain, frequency
domain, and time-frequency/time-scale representation (Du and
Vuskovic, 2004; Oskoei and Hu, 2007; Zecca et al., 2002; Oskoei
and Hu, 2008). In this study, we conducted only first two feature
groups, which are defined in time domain and frequency domain
analysis for sEMG signal in this study, have been considered because
since the features in the last group, time-frequency/time-scale
features, representation cannot be directly used by themselves for
the musculoskeletal interventions in aquatic therapy and
rehabilitation (Englehart et al., 2001; Phinyomark et al., 2009).
Features extracted from time-frequency/time-scale methods
representation should be reduced to their high dimensions before
sending them to a classifier. Additionally, mathematical functions
which were defined in time domain and frequency domain have
been usually used as dimensionality reduction methods for time-

frequency/time-scale domain features (Boostani and Moradi, 2003).
Hence, study of feature extraction properties of time domain and
frequency domain has recently become an important issue in the
sEMG signal classification. There are twelve features that were used
in this evaluation study presented in Table1 (Du and Vuskovic,
2004; Oskoei and Hu, 2007; Zecca et al., 2002; Oskoei and Hu, 2008).
A baseline is established for healthy individuals by determining the
normal range of feature values through our experiments in two
distinct environments, following the given protocols. 6 sEMG
features in the time domain and 3 ones in the frequency domain
were computed in this study, and their mathematical definitions and
the related works are listed in Table1 (Phinyomark et al., 2009;
Rafiee et al., 2011).

As it is illustrated in Figure 2, the increase in acceleration is
utilized as an indication of the initiation of arm extension and
flexion movements. This specific feature is employed to determine
the start and end of limb movement. Consequently, the device is
programmed to commence the collection of sEMG data upon
detecting an increase in acceleration, indicative of the onset of
activity. It then ceases data collection at the next instance of
acceleration increase, marking the completion of the activity.
This method ensures efficient and targeted data acquisition,
focusing on the periods of active muscle engagement. The sEMG
signals underwent normalization using the Maximal Voluntary
Contraction (MVC) as a reference value, obtained from the same
muscle during MVC. Following normalization, the sEMG signals
underwent further processing through rectification and smoothing
via the calculation of the root mean square (RMS) of the signal.
Descriptive statistics, encompassing mean and standard deviation,
were computed for all the defined features in Table 1 across both
protocols and both environments (land and aquatic).

TABLE 1 List of features extracted with definitions and significance (Babu et al., 2022; Cardoso et al., 2017; Abbaspour et al., 2020; Jie et al., 2021).

Features Model Normal
range

Unit Note

Time domain Integrated EMG, (IEMG) ∑N
i�1|xi | 700≤R≤ 900 mV comprehensive measure

of muscle activity

Mean absolute value, (MAV) 1
N∑N

i�1|xi| 0.1≤R≤ 0.4 mV strength of muscle contractions

Simple square integral (SSI) ∑N
i�1x2i 200≤R≤ 350 mV2 energy of the

sEMG signal

Root mean square (RMS)
�������
1
N∑N

i�1x2
i

√
0.1≤R≤ 0.5 mV onset and progression

of muscle fatigue

Average amplitude
change (AAC)

1
N∑N−1

i�1 |xi+1 − xi| 0.01≤R≤ 0.1 mV Variation of muscle activity under different
circumstances

Variance of sEMG (VAR) 1
N−1∑N

i�1x2
i

0.01≤R≤ 0.1 mV2 variability in muscle contractions

Frequency
domain

Mean Power
Frequency (MNF)

∑M

j�1fjPj

∑M

j�1Pj

40≤R≤ 100 Hz indicative of muscle fatigue

Median Frequency (MDF) ∑MDF
j�1 Pj � ∑M

j�1Pj

2

� ∑M
j�MDFPj

40≤R≤ 100 Hz Modulation of muscle activity for specific actions

Peak frequency (PKF) max(Pj) 40≤R≤ 100 Hz dominant frequency

IMU mACC
����������������
Acc2x + Accyx + Acczx

√
1≤R≤ 6 g Limb motion acceleration

mGYR
������������������
Gyr2x + Gyryx + Gyrzx

√
0≤R≤ 100 °/sec Limb motion velocity
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In order to evaluate the differences in sEMG characteristics
between distinct testing circumstances (on-land and aquatic
environments) for each protocol, an independent (two-sample) t −
test with repeated measures was utilized. This statistical technique is
employed to ascertain whether there are any statistically significant
disparities between the means of on-land and aquatic groups which
are corresponding to hypothesis, NullHypothesis, (H0): the
group means are significantly different and
AlternativeHypothesis (HA): the group means are not
different. The purpose of our study was to use a t − test to
compare the means of the sEMG features in different
surroundings. The process entailed determining the average of
each sEMG characteristic for every testing circumstance,
thereafter calculating the fluctuation within each group (within-
subject fluctuation) and the fluctuation between the groups
(between-subject fluctuation). The F-test was subsequently
employed to ascertain whether the variability among groups was
considerably larger than the variability within groups, so showing a
noteworthy disparity between the means of distinct situations. A
p − value below 0.05 in the t − test shows the evidence to reject the
null hypothesis corresponding to the testing conditions.

The reproducibility of sEMG characteristics between testing
circumstances was assessed by calculating the intra-class
correlation coefficient (ICC) for each protocol. The ICC
quantifies the degree of dependability or consistency between
measurements conducted by several observers when assessing the
same variable. Within this particular framework, it measures the
degree to which the same values of sEMG characteristics can be
acquired when subjected to varying testing settings, hence
determining the reproducibility of these features. ICC values

closer to 1 suggest a higher dependability and reproducibility
in the measurements, which can be considered excellent in our
study. Furthermore, the coefficient of variance (CV%) was used
to provide information on the variability within subjects under
different testing conditions. The CV% is determined by dividing
the standard deviation by the mean and then expressing it as a
percentage. The CV% values are utilized to quantify the precision
of the sEMG characteristics. Lower CV% values indicate greater
precision and consistency in the readings.

The utilization of t − test, ICC, CV% in this comprehensive
method offers a strong framework for comprehending and
interpreting the results of the quantitative analysis of the sEMG
signal conducted using MATLABR2024b. The utilization of these
statistical techniques guarantees a comprehensive assessment of the
data’s dependability, accuracy, and importance, providing a strong
basis for the study’s findings.

3 Results

The IEMG is employed to assess the pre-activation index of a
muscle which is defined by the area under the rectified curve (Babu
et al., 2022; Cardoso et al., 2017). The Mean absolute value (MAV) is
calculated by taking the average of the absolute values of the sEMG
signal within a designated time frame. Remarkably, a significant
surge in this feature is observed at the onset and persists at elevated
levels throughout the contraction period (Zecca et al., 2002;
Abbaspour et al., 2020). The integration of the squared sEMG
signal values yields the SSI which represents the energy
characteristics of sEMG signals (Jie et al., 2021). RMS is

FIGURE 2
Illustration of sEMG for muscle activity and limb movement acceleration across BC and TK activities for 3, 6 and 9 reps in on-land and aquatic
environments.
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intricately linked to both muscle contraction force and the state of
muscle fatigue, serving as a valuable metric in assessing and
characterizing these physiological aspects. Moreover, MDF
serves as a frequency domain indicator of muscle fatigue
during isotonic contraction, with a documented correlation
indicating that a decrease in MDF alongside an increase in
sEMG signal amplitude serves as a reliable fatigue indicator
(Jie et al., 2021; Cao et al., 2017). The Average amplitude
change (AAC) is to observe the average variation in the signal
amplitude during the contraction period (Aviles et al., 2023).
The VAR serves as a quantitative measure for both the
concentration and dispersion of signal data values, functioning
as an index of signal energy (Jie et al., 2021). Mean Power
Frequency (MNF) and Median Frequency (MDF), reflecting
average and median power spectrum frequencies, respectively,
are sensitive indicators of shifts in firing rates and recruitment
patterns associated with fatigue. PKF highlights dominant
frequency components, while MNP offers a comprehensive
view of muscle activity dynamics during varying fatigue states.
These features, extracted from the Power Spectral Density (PSD)
of sEMG signals, collectively contribute to understanding the
subtle interplay of neuromuscular factors in fatigue (Corvini and
Conforto, 2022).

The time-domain properties listed in Figure 3 and Table 2
demonstrate a decrease in mean values as the number of
repetitions during on-land activities increases, without
indicating any notable fatigue as no additional load is applied.
Furthermore, it is expected that there would be no substantial
variation in the data across the two arms in both protocols for
both conditions. Nevertheless, the anticipation could vary for
activities conducted in aquatic condition, since the presence of

resistance and drag force may result in elevated readings,
suggesting heightened muscular exertion. Both on-land and
aquatic conditions are expected to show an increasing trend in
the frequency domain, indicating an increase in motor unit
recruitment and potential adaptations to hydrodynamic
pressures. The IMU-based characteristics exhibit an upward
trend in acceleration and gyroscope readings, with no notable
distinction between on-land and aquatic environments.
Ultimately, using this approach, reproducibility metrics will be
generated to assess the feasibility of the designed device for
acquiring sEMG data in aquatic conditions.

The outcomes of an quantitative comparison between on-land
and aquatic environments are detailed in this section. Data were
initially collected for both environments. The outcomes of TK and
BC executed with both limbs under each environment are
subsequently described in detail. Ultimately, a comprehensive
comparison is presented, which includes every evaluated aspect
of the two environments.

These extracted features provide a concise summary of the
descriptive statistics, t − test results, ICC, and CV%. It is worth
mentioning that there were no substantial variations in
Maximum Voluntary Contraction (MVC) scores across the
environments for any of the muscles that were monitored. The
CV% scores for all muscles fell within the range of 2.7% − 6.4%, and
ICC values ranged from r � 0.93 − 0.98; these results demonstrate
the consistency and reproducibility of the measurements across
various environmental environments. Measurement of sEMG
reproducibility, which means how much it is following the trend
of on-land in aquatic. In all cases, the test statistic has an
F-distribution with k −1 numerator degrees of freedom, and N -k
denominator degrees of freedom.

FIGURE 3
Descriptive statistics (mean ± SD) of both protocols of sEMG time domain features over the reps of the activities in both environments. p − values
indicate the statistical significance of the comparison between the on-land and aquatic data. BC-3, BC-6, BC-9 denote bicep curls for 3, 6, and 9 reps,
while TK-3, TK-6, TK-9 represent triceps kickbacks for the same series of reps, respectively.
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TABLE 2 Quantitative result of features for both protocols in both conditions.

Features Environment Protocols Arms

Left Right

3 6 9 3 6 9

IEMG (mV) Land BC 801.173± 27.31 770.07± 23.16 755.45± 22.09 802.05± 27.19 771.22±22.09 756.30± 21.83

TK 748.88± 25.62 723.86± 21.62 709.65± 18.78 748.28± 25.33 724.16± 20.69 710.12± 17.98

Aquatic BC 867.76± 32.16 828.86± 28.01 815.42± 25.02 869.78± 31.88 830.06± 27.82 816.92± 24.82

TK 815.89± 28.88 789.73± 24.90 772.82± 21.74 816.38± 28.16 790.09± 23.94 773.82± 21.07

MAV (mV) Land BC 0.33± 0.016 0.26± 0.012 0.21± 0.009 0.34± 0.015 0.27± 0.011 0.22± 0.008

TK 0.24± 0.013 0.2 ± 0.013 0.17± 0.01 0.26± 0.012 0.21 ± 0.012 0.18± 0.01

Aquatic BC 0.38± 0.017 0.31± 0.014 0.27± 0.01 0.39± 0.015 0.33± 0.013 0.29± 0.009

TK 0.32± 0.018 0.25 ± 0.015 0.22± 0.011 0.33± 0.017 0.26 ± 0.015 0.23± 0.01

SSI (mV2) Land BC 266.33± 15.2 245.58± 11.61 221.81± 10.13 267.02± 14.8 246.08± 11.3 222.14± 9.8

TK 221.42± 11.2 207.56± 9.4 196.36± 8.5 222.25± 10.91 207.89± 9.1 197.66± 7.9

Aquatic BC 321.42± 17.1 295.46± 13.4 277.25± 12.1 323.36± 16.9 295.59± 13.1 279.41± 11.9

TK 261.19± 13.1 239.67± 12.9 221.56± 11.9 262.52± 12.9 239.81± 12.8 222.41± 11.5

RMS (mV) Land BC 0.41± 0.017 0.36± 0.013 0.33± 0.011 0.42± 0.015 0.37± 0.012 0.34± 0.01

TK 0.33± 0.017 0.29 ± 0.015 0.27± 0.012 0.34± 0.016 0.30 ± 0.015 0.28± 0.01

Aquatic BC 0.47± 0.019 0.40± 0.016 0.37± 0.014 0.48± 0.018 0.41± 0.014 0.38± 0.013

TK 0.40± 0.02 0.35 ± 0.017 0.32± 0.016 0.41± 0.019 0.36 ± 0.016 0.33± 0.016

AAC (mV) Land BC 0.069± 0.009 0.064± 0.008 0.059± 0.007 0.068± 0.008 0.064± 0.007 0.058± 0.006

TK 0.056± 0.007 0.051 ± 0.007 0.049 ± 0.006 0.055± 0.006 0.05 ± 0.007 0.049 ± 0.006

Aquatic BC 0.085± 0.008 0.077± 0.007 0.072± 0.006 0.084± 0.007 0.076± 0.006 0.072± 0.006

TK 0.067± 0.008 0.061 ± 0.006 0.055 ± 0.006 0.067± 0.007 0.060 ± 0.006 0.055 ± 0.006

VAR (mV2) Land BC 0.064± 0.005 0.058± 0.005 0.053± 0.004 0.064± 0.006 0.057± 0.005 0.051± 0.004

TK 0.053± 0.006 0.047 ± 0.006 0.043 ± 0.004 0.054± 0.005 0.046 ± 0.006 0.042 ± 0.004

Aquatic BC 0.08± 0.005 0.073± 0.005 0.069± 0.005 0.08± 0.006 0.072± 0.005 0.069± 0.005

TK 0.065± 0.006 0.059 ± 0.006 0.055 ± 0.005 0.064± 0.006 0.057 ± 0.006 0.054 ± 0.005

MNF (Hz) Land BC 62.34± 13 74.65± 14.6 82.45± 16.2 62.34± 13 72.85± 14.6 82.65± 16.24

TK 55.34± 11.2 64.65± 14.2 75.45± 15.8 55.34± 11.2 63.15± 14.2 75.45± 15.8

Aquatic BC 85.34± 15.6 92.65± 17.6 101.45± 18.6 85.34± 15.6 92.65± 17.6 101.45± 18.6

TK 77.34± 13.6 83.65± 14.2 92.45± 16.2 77.34± 13.6 83.65± 14.2 92.45± 16.2

MDF (Hz) Land BC 53.84± 9.8 66.12± 11.8 72.16± 13.72 52.99± 9.1 65.83± 11.2 71.01± 13.21

TK 44.84± 9.6 56.12±11.8 63.16± 13.8 44.02± 8.9 55.72±11.1 62.86± 12.9

Aquatic BC 78.84± 12.4 89.12± 15.2 96.16± 16.2 78.02± 11.8 88.69± 14.7 95.73± 15.7

TK 64.12± 10.4 72.3± 13 86.2± 14.2 63.94± 9.8 71.8± 12.7 85.8± 13.8

PKF (Hz) Land BC 53.84± 9.8 66.12± 11.8 72.16± 13.72 52.99± 9.1 65.83± 11.2 71.01± 13.21

TK 44.84± 9.6 56.12±11.8 63.16± 13.8 44.02± 8.9 55.72±11.1 62.86± 12.9

Aquatic BC 78.84± 12.4 89.12± 15.2 96.16± 16.2 78.02± 11.8 88.69± 14.7 95.73± 15.7

TK 64.12± 10.4 72.3± 13 86.2± 14.2 63.94± 9.8 71.8± 12.7 85.8± 13.8

(Continued on following page)
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3.1 Comparison of features in the
time domain

It is apparent from the time domain analysis that all features in
the time domain are decreasing over repetitions of the activities. In
the case of both Protocol 1 and 2, amplitude of the features gets
intensified in aquatic environment at least 6% compared to on-land
one. Table 2 shows the quantitative values of the features in two
protocols. Based on the obtained results, the correlation and
reproducibility testing are done to verify the acquired data in
aquatic environments compared to on-land one. According to
Figure 3, evidence exists to reject the null hypothesis about the
time domain features found in the two environments, as indicated
by the p-value, with activities conducted under a no-load condition.
However, the presence of female respondents leads to a decrease of
around 2 − 5% in the mean values of the features, as well as an

increase in the standard deviation (SD) of the features when
compared to data solely from male subjects.

3.2 Comparison of features in the
frequency domain

In the frequency domain features, an increase in movement
speed is likely to result in a shift toward higher frequencies in the
sEMG signal, reflected in the median frequency. Moreover, the
increased drag force with increased reps in aquatic environments
results in a higher frequency of motor unit firing, further
contributing to the observed increase in median frequency which
is presented in Figure 4. The MNF and PKF show that protocol 2 is
more than 21% larger than protocol 1 in both environments.
However, in MNF, protocol 2 shows a lower value than protocol 1.

TABLE 2 (Continued) Quantitative result of features for both protocols in both conditions.

Features Environment Protocols Arms

Left Right

3 6 9 3 6 9

mACC (g) Land BC 1.39± 0.14 1.75± 0.16 3.9± 0.26 1.39± 0.14 1.75± 0.16 3.9± 0.26

TK 1.52± 0.18 1.93± 0.2 4.32± 0.33 1.52± 0.18 1.93± 0.2 4.32± 0.33

Aquatic BC 1.3± 0.1 1.65± 0.12 3.7± 0.2 1.3± 0.1 1.65± 0.12 3.7± 0.2

TK 1.43± 0.12 1.81± 0.14 4.07± 0.24 1.43± 0.12 1.81± 0.14 4.07± 0.24

mGYR (°/sec) Land BC 21.32± 4.2 48.78± 8.6 95.12± 16.4 21.32± 4.2 48.78± 8.6 95.12± 16.4

TK 23.46±5.1 53.66± 10.32 104.6± 19.8 23.46±5.1 53.66± 10.32 104.6± 19.8

Aquatic BC 19.2± 3.2 44± 7.2 85.6± 14.2 19.4± 3.17 44± 7.2 85.6± 14.2

TK 23.03±4.16 52.7± 9.3 102.7± 18.4 23.03±4.16 52.7± 9.3 102.7± 18.4

FIGURE 4
Descriptive statistics (mean ± SD) of both protocols of sEMG frequency domain features over the reps of the activities in both environments.
p-values indicates the evidence of rejection of the null hypothesis corresponding to the comparison between the on-land and aquatic data mean value.
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3.3 IMU feature for kinematics

Accelerometer data were bandpass filtered to remove both high
frequency noise and unwanted gravitational acceleration. Here, in
same environments, there is no significant difference in acceleration
of arm movements between two protocols as the subjects were
guided to move in same way. However, the magnitude of mACC is
reduced more than 10% in both protocols which is observed in
Figure 5. Analysis of the IMU-derived mACC showed that
movement velocity increased in line with an increase in
repetition frequency within the same time window. This indicates
that participants increased their repetition speed over time, resulting
in elevated mACC values. Simultaneously, IEMG exhibited a
decline, signifying diminished muscle activation during that
timeframe as a result of reduced contraction intensity. This trend
indicates that reduced resistance from lower drag forces correlates
with decreased muscle effort, consistent with prior research showing
that increased resistance generally results in heightened muscle
activation.

3.4 Reproducibility and reliability of
the features

In case of time domain features, ICC and CV% ranged
between r � 0.93 – 0.98 and 2.7- 6.4%, respectively, between
environments for the two protocols which is presented in
Figure 6. On the other hand, the AAC shows the overall

amplitude change which is 11.21% bigger in the case of
protocol 1 than the protocol 2. Finally, though the amplitude
of the sEMG is higher in aquatic environment, the time domain
features p-values < 5% is illustrating the evidence of rejection of
the null hypothesis corresponding to the comparison between the
on-land and aquatic data mean value. Meanwhile, all the
frequency spectrum features show the agreement and
correlation between on-land and aquatic environments based
on ICC and intra-subject CV% which were reported to
evaluate sEMG reproducibility and precision, respectively, and
shown in Figure 6. Reproducibility and precision of the sEMG
recordings for each muscle in the study were obtained high
(ICC = 0.92–0.96, CV% = 5.4–13.8%). These findings are in
agreement with the activities performed similarly with others
who have performed similar reproducibility trials on-land and in
aquatic environments (Silvers and Dolny, 2011; Pöyhönen et al.,
1999). Here, the frequency domain features were observed high
on land-to-aquatic (ICC = 0.95–0.99, CV% = 3.5–11%) and
reproducibility (ICC = 0.85–0.98, CV% = 11–18%) for
both protocols.

4 Discussion

In technology-assisted rehabilitation, many extant systems
integrate various forms of visual and potentially multimodal
feedback (Marta et al., 2020; Komar et al., 2012). This
feedback-based system, which uses external signals, typically

FIGURE 5
Descriptive statistics (mean ± SD) of both protocols of kinematics features over the reps of the activities in both environments. p-values indicates the
evidence of rejection of the null hypothesis corresponding to the comparison between the on-land and aquatic data mean value.
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visual or auditory, to facilitate the process of motor learning, is a
valuable technique in this domain. This entails the transient
generation of information about a patient’s performance,
intending to improve their motor function control. It serves a
dual purpose: firstly, it facilitates patients in acquiring more
significant control over their motor functions, and secondly, it
provides quantitative assessment parameters for therapists. As a
result, this system improves precision during functional tasks,
increases patient adherence to rehabilitation programs, and
decreases the need for continuous monitoring by healthcare
professionals. This innovation can potentially enhance the
overall effectiveness and accessibility of rehabilitation efforts
(Kaneda et al., 2013).

4.1 Comparison of sEMG-IMU features on-
land and aquatic environments

In our investigation of muscle activation patterns during BC and
TK, time-domain features, presented in Figure 3, revealed a consistent
downward trend in mean values over increasing repetitions, both on-
land and aquatic environments. This reduction could be attributed to
fatigue accumulates in the involved muscle groups due to repeated BC
and TK activities. The progressive decrease in time-domain features
suggests that muscles may exhibit reduced activation levels over
successive repetitions due to fatigue. The statistical significance
uncovered by t − test implies that aquatic conditions induce unique
neuromuscular responses, evident in the increased feature values. For
instance, the aquatic setting consistently exhibited higher values
suggesting that the added resistance and drag forces in water
contribute to elevated muscle activation levels. The p-values for
these comparisons were less than 1%, reinforcing that no
significant differences observed.

Moreover, in the frequency domain depicted in Figure 4 of
sEMG exhibited an upward trend over increasing repetitions, both
on-land and aquatic environments. This trend suggests a
modulation in muscle recruitment patterns, likely influenced by
heightened resistance and drag forces in the aquatic environment
(Yokoyama et al., 2021). The observed differences between on-land
and aquatic feature values underscore the sensitivity of these metrics
to environmental context. For example, the increased mean power of
sEMG in water may reflect the need for additional muscle
recruitment to overcome the resistance, leading to higher
frequency components in the signal. These insights highlight the
relevance of fatigue and drag forces in shaping the frequency domain
response during aquatic activities. The p-values for these frequency
domain comparisons were consistently less than 5%, signifying that
no statistical differences were observed between on-land and aquatic
data feature set.

Examining IMU-based features presented in Figure 5, including
mACC and mGYR values, further revealed an upward trend with
increasing repetitions in both on-land and aquatic conditions. Here,
no significant difference was observed between on-land and aquatic
environments. Notably, for both acceleration and mean gyroscope
values, the on-land measurements consistently exceeded their
aquatic counterparts, reflecting the additional load for moving
the limbs presented by the aquatic medium. The p-values for
these IMU-based feature comparisons were consistently less than
5% for Reps 3, 6 and 9, highlighting the statistical significance of the
evidence of the rejecting null hypothesis (H0).

In our assessment of the reproducibility, correlation, and
agreement between on-land and aquatic features, we observed
encouraging outcomes indicating strong correlation,
reproducibility, and agreement. While there is a general declining
trend in ICC values, coupled with an increasing trend in CV%, it is
crucial to note that our features, particularly ICC values,

FIGURE 6
Descriptive statistics (mean ± SD) of both protocols of kinematics features over the reps of the activities in both environments. p-values indicates the
evidence of rejection of the null hypothesis corresponding to the comparison between the on-land and aquatic data mean value.
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demonstrate robust correlations. For instance, the ICC values for
IEMG show consistently positive correlations even with repetitions,
signifying good measurement reliability over time. The concurrent
rise inCV% across features, though indicative of growing variability,
should be contextualized within the overall positive framework of
our findings. This underscores the importance of monitoring and
accounting for factors such as fatigue, reinforcing the need for
meticulous data interpretation in research and clinical
applications. As we carefully evaluate the feasibility of aquatic
data collection and ensure the accuracy of measurements
compared to on-land scenarios, these subtle trends affirm the
establishment of reliable protocols for assessing movement
accuracy in aquatic rehabilitation settings. These insights not
only provide therapists with valuable information for guiding
patients through their rehabilitation journeys but also support
the broader application of quantitative measurements in
aquatic contexts.

The utilization of aquatic sEMG recordings has produced
persuasive results demonstrating a significant increase in
amplitudes of signals and sEMG/force ratios during isotonic
muscle contractions in comparison to on-land measurements.
There have been numerous hypotheses put forth in an attempt to
explain the documented increases in muscle activity and force
output that occur during water immersion. However, there is one
theory posits that these alterations could be ascribed to the impaired
operation of specific reflex mechanisms or to a compensatory
mechanism within the muscles that impact their ability to
generate force (Silvers and Dolny, 2011; Pöyhönen and Avela,
2002). Furthermore, it has been determined that water
infiltration onto electrode attachments or wires may also
contribute to diminished sEMG amplitudes. Previous studies
have indicated that although attempts have been made to
insulate electrodes, the electrical output of human musculature
may inherently decrease when exposed to water.

Moreover, submerged sEMG recordings may be contaminated
by the effect of water on the skin’s surface, which alters the resistance
of the electrical surface Coulange et al. (2008). Significantly, the
impact of buoyancy-induced weightlessness on the neuromuscular
system, specifically on proprioceptive systems and muscle spindles,
could potentially have a critical influence on the amplitudes of
sEMGs during voluntary contractions that are either maximal or
submaximal. Therefore, in analyzing the results of the current
investigation, it is critical to account for the intricate interaction
of these diverse elements within the sub-aqueous environment.

We found that the amplitudes of sEMG recordings (RMS, MAV
and ARV) from the BB during contractions were increased to
18.7 ± 3.1% of similar muscle contractions recorded in aquatic
environments compared to on-land. In the evaluation of sEMG
reproducibility and precision across three MVC tests for bicep and
tricep muscles in Figure 6, ICC and CV% were employed, following
methodologies from previous research (Norcross et al., 2010;
Rainoldi et al., 2001). This study established that our system can
consistently and effectively acquire data in aquatic environments,
maintaining the reproducibility observed in on-land conditions.
This is substantiated by Figure 6, which displays significant
correlations in extracted features (p< 0.05), underscoring the
system’s robust and reliable performance across different
rehabilitation environments.

4.2 Real-world implications of real-time
tracking motion and muscle activation in
aquatic rehabilitation

One practical advantage of the proposed system in this study is
its standalone nature and convenient location, making it suitable for
load-bearing activities without hindering task performance, aligning
with principles of ergonomic design (Webber and Rojas, 2021;
Shukla et al., 2020). However, its limitation lies in its sole focus
on forearm motion, preventing the measurement of intersegment or
full-body movements. Notably, no single wearable sensor modality
can comprehensively capture all aspects of motor behavior. IMU
sensors are sensitive to motion but lack deterministic connections to
force generation, while sEMG measures muscle activation but is not
directly linked to motion. As technology evolves and more sensors
capable of quantifying various aspects of motor behavior become
available, the understanding of the relationships between sensor data
and function is likely to improve. By combining machine learning
classification methods and multimodal performance data, the
development of more effective algorithms for task discrimination
and better measures for assessing activities of daily living (ADL) and
aquatic activities performance is a possibility. It’s important to note
that the classifiers were not tested on additional gestures outside the
presented protocols and repetitions, and future work should explore
their robustness through evaluation on a broader set of gestures to
provide additional performance metrics.

Our results are in close alignment with the current clinical
practices for upper limb rehabilitation, particularly in the context
of stroke rehabilitation. By offering precise and real-time
feedback on muscle activation patterns, the integration of our
device can improve the efficacy of therapeutic exercises, thereby
supporting established rehabilitation protocols. Our device can be
seamlessly integrated into existing clinical operations, thereby
fostering personalized and data-driven rehabilitation programs,
by adhering to these protocols.

4.3 Activity category prediction through
movement and muscle activation

Though mACC does not differ across task significantly, the sEMG
features are differing across the protocols and environments. These
results are consistent with the mechanisms by which the tasks were
originally separated. An accelerometer filtering and thresholding
approach was used in (Uswatte and Hobbs Qadri, 2009; Totty and
Wade, 2017). Because acceleration was used, we expected it to be useful
in distinguishing between protocol activity classes. Here the sEMG
distinguishing features are higher for Protocol 1 and 2 in aquatic
environment; this is likely due to the nature of drag force of the
water, which exhibits low acceleration. The clusters are constructed by
the combination of quantitative outcome of sEMG,mACC andmGYR.
Eventually, though the mACC shows similar characteristics over the
protocols and environments, sEMG can classify the protocols activities.
The more vigorous motion of Protocol 1- Reps 9 represented the
highest values ofmACCandmGYRwhichwas anticipated based on the
increased intensity of the chosen tasks and it is shown in Figure 5.

It is critical to improve modified and more precise rehabilitation
by integrating a classification technique with adaptive learning and
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real-time analysis. Our system is equipped with the capability of
real-time monitoring via a microcontroller’s quantitative
computation capacity and concurrent data storage in flash
memory for future use. Moreover, in order to encourage
additional classification research, the clustering of the data
utilizing characteristics from sEMG-IMU datasets is presented.
Hence, by incorporating adaptive training models into the design
of this proposed system, aquatic rehabilitation can be enhanced
further. As part of this classification endeavor, we presented the
clustering of the healthy persons dataset’s features.

5 Challenges and opportunities

Our research makes a substantial contribution to the
comprehension of the use of our wearable device for aquatic
rehabilitation, as it demonstrates its capacity to collect data in
aquatic environments with reliability. The research establishes a
strong foundation for future investigation. The findings provide
valuable insights and underscore the potential for a more extensive
application. The external validity and generalizability of our findings
will be improved in future research by diversifying the sample size in
terms of gender and age within the healthy population. Moreover,
the restricted scope to a homogeneous cohort of healthy participants
might impede the direct generalizability of our results to clinical
populations, particularly individuals afflicted with neurological or
orthopedic disorders. The assessment of the device’s efficacy solely
in relation to BC and TK protocols constitutes a fundamental stage.
Nevertheless, it is acknowledged that further research is warranted
to investigate a wider range of exercises frequently utilized in aquatic
rehabilitation. Furthermore, our research provides substantial
insights into the environmental impact and short- and long-term
viability of the wearable device. The longevity, user-friendliness, and
comfort of our device have been evaluated in accordance with the
established protocol. The practical outcomes of the device in aquatic
rehabilitation situations are more comprehensively understood as a
result of these tests.

With a focus on combining technology and human expertise,
our research’s future directions offer promising avenues for
expansion and improvement. In order to incorporate the
wearable system into clinical practice, we have to go through
following steps. Initially, carry out preliminary research in
partnership with rehabilitation clinics to evaluate the practicality
and efficacy of the wearable device in authentic environments. We
shall adhere to conventional physiotherapy techniques for people
with mobility issues. Using these established protocols, we will
collect feedback from both therapists and patients. We will then
score and categorize our dataset with the assistance of
physiotherapists. Additionally, establish training initiatives for
therapists to guarantee their competence in using the wearable
gadget and analyzing the data. This training will encompass the
technical intricacies of the device, along with the most effective
methods for incorporating it into therapeutic sessions. Furthermore,
focus on the task of merging the data obtained from the wearable
device with the current clinical information systems. This would
enable smooth and uninterrupted interchange of data, hence
improving the entire workflow in rehabilitation settings. Lastly, it
is important to recognize and overcome any obstacles that may

hinder the implementation process. These barriers include
guaranteeing the comfort and user-friendliness of the device,
effectively maintaining the privacy and security of data, and
ensuring that the cost is reasonable enough to encourage wider
adoption. By adhering to these procedures, the wearable device can
be seamlessly incorporated into clinical practices, offering a potent
instrument for augmenting rehabilitation therapy and optimizing
patient results. This quantitative analysis even highlights the
potential for real-time monitoring, paving the way for continuous
and adaptive system assessment (Amin et al., 2023).

Incorporating machine learning techniques can significantly
enhance the capabilities of our wearable device, enabling real-
time data analysis and personalized feedback for users.
Furthermore, we envision the inclusion of therapists in the loop,
where their clinical insights and expertise play a pivotal role in
refining the algorithms and tailoring recommendations to individual
patient needs. By fostering a collaborative approach between
technology and human expertise, we aim to develop a
classification system that not only automatically recognizes and
assesses different aquatic exercises but also incorporates valuable
input from rehabilitation professionals. This collaborative model not
only ensures the accuracy of exercise classification but also leverages
the unique skills of therapists in interpreting patients’ responses.
Such innovations align with the evolving landscape of wearable
technology, transforming our device into a dynamic tool for tailored
interventions that seamlessly integrate the wisdom of healthcare
professionals into the digital realm. In our upcoming phase, by
employing the Long Short-Term Memory (LSTM) network (Amin
et al., 2023), we can gain a deeper comprehension of the musculo-
kinetic patterns displayed by patients during aquatic therapy. This
will lead to the creation of rehabilitation programs that are not only
more effective but also customized to meet individual requirements.
Furthermore, the incorporation of machine learning for
classification recommendations has the potential to facilitate the
development of adaptive training programs, which can cater to
individual differences in movement patterns and rehabilitation
progress. These developments enhance the ongoing development
of our wearable technology and promote a more inclusive,
intelligent, and cooperative approach to aquatic therapy.

6 Conclusion

Here, we describe a prototype of a wearable device—unique
among its kind—capable of quantifying patient movements during
aquatic rehabilitation, transferring data to a location other than
water to facilitate prospective physiotherapist monitoring, and
storing data for subsequent analysis. The research aimed to test
and verify the effectiveness of a wearable device in aquatic
environments for rehabilitation exercises like BC and TK. The
study focused on analyzing sEMG and IMU data to categorize
activities and identify the start and end points of exercises based
on limb movement acceleration. The findings confirm the key idea
that this approach is viable for precise, real-time monitoring in
aquatic rehabilitation, enhancing exercise classification and
providing valuable insights for therapists in tailoring patient-
specific rehabilitation programs. Design-wise, robust real-time
feedback utilizing classification techniques, and a machine
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learning strategy based on quantitative analysis are still areas that
require improvement.
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