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The increasing significance of machine learning (ML) has led to the development
of circuit architectures suited to handling its multiply-accumulate-heavy
computational load such as Compute-In-Memory (CIM). A big class of such
architectures uses resistive RAM (RRAM) devices, typically in the role of neural
weights, to save power and area. In this work, we introduce SPIKA, a novel RRAM-
based ML accelerator implemented in 180nm CMOS technology. The design
features a 64×128 crossbar array, supports 4-bit inputs, ternary weights, and 5-bit
outputs. Post-layout analysis indicates a remarkable performance of the
proposed system compared to state-of-the-art with a peak throughput of
1092 GOPS and energy efficiency of 195 TOPS/W. The key innovation of
SPIKA lies in its natural signal domain crossing, which eliminates the need for
power-hungry data converters. Specifically, digital input signals are converted to
pulse-width modulated (time-domain), then applied on the RRAM weights that
convert them to analog currents, and then aggregated into digital values using a
simple switch capacitor read-out system.
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1 Introduction

The deployment of neural networks (NNs) in machine learning (ML) applications such
as computer vision, speech recognition and natural language processing has grown
exponentially in the past few decades (Hertel et al., 2015; Graves et al., 2013; Bahdanau
et al., 2015; Humood et al., 2023b). The biggest challenge in implementing such algorithms
is the constant data movement between the compute units and memory units (Yu et al.,
2021). Today’s computing systems, primarily built based on the von Neumann architecture
where data must be moved to a processing unit, have shown inefficiency in implementing
ML algorithms (Amirsoleimani et al., 2020). The latency and energy associated with this
bottleneck present a key performance concern for a range of applications in artificial
intelligence (AI) workloads. For example, the cost of multiplying two numbers is orders of
magnitude lower than accessing them from the memory at 45 nm CMOS technology
(Sebastian et al., 2020). Another key challenge is that NNs carry out copious calculations of
Multiply and Accumulate (MAC) operations which require high-performance GPUs,
consuming a great amount of power. Thus innovation in computing architectures is
expected to play a major role in the future of ML hardware.
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Recently non-volatile compute-in-memory (nvCIM) technology
has shown prominent results in solving the data movement and
MAC operation bottleneck of ML algorithms and running parallel
analog vector matrix multiplication (VMM) operations in memory
arrays. This is achieved by configuring the physical characteristics of
the memory devices, the array level organizations, the peripheral
circuitry and the control logic (Yu et al., 2021; Sebastian et al., 2020).
RRAM-based VMM engines in particular have attracted
considerable attention by directly using Ohm’s law for
multiplication and Kirchhoff’s law for accumulation, an RRAM
array is capable of implementing parallel in-memory MAC
operations with greatly improved throughput and energy
efficiency over digital computing approaches (Mittal, 2019;
Amirsoleimani et al., 2020; Yu et al., 2021). For example, the
ISAAC structure (baseline nv-CIM) has demonstrated a 14.8×
increase in throughput and a 5.5× improvement in energy
efficiency compared to DaDianNao (Shafiee et al., 2016).

Previous works on RRAM-based nvCIM architectures (Musisi-
Nkambwe et al., 2021; Mittal, 2019; Yao et al., 2020; Marinella et al.,
2018; Cai et al., 2019; Bayat et al., 2018; Sahay et al., 2020; Liu et al.,
2020; Mochida et al., 2018; Shafiee et al., 2016; Xue et al., 2020;
Prezioso et al., 2018; Ankit et al., 2017; Wang et al., 2015; Narayanan
et al., 2017; Kadetotad et al., 2015; Hung et al., 2021; Tang et al.,
2017; Li et al., 2015; Ming et al., 2017; Chen et al., 2019; Su et al.,
2017; Xia et al., 2016; Chi et al., 2016; Li et al., 2021; Khaddam-
Aljameh et al., 2022; Wan et al., 2022; Jiang et al., 2023) have been
proposed to accelerate NN. These works can primarily be divided
into 2 approaches: Current-domain (CD) designs and Time-domain
(TD) designs. The majority of the reported VMM engines are CD
approaches (31, 29, 50, 6?, 24, 30, 38, 47, 33, 3, 44, 32, 20, 42, 22, 28,
8, 41, 45, 9) in which the inputs of the neural network are mapped as
voltages with different amplitudes using digital to analog converts
(DACs) and are applied at the row of the RRAM crossbar. After that,
the current passing in each bit-line is converted to a digital value
using general-purpose analog-to-digital converters (ADCs) such as
SAR ADC, Flash ADC or sigma delta ADC. In such approaches, the
precision of the VMM engine and the array size is very limited as
higher precision requires power-hungry and expensive DACs and
ADCs at each row/column. For example, the ADCs in ISAAC
structure account for 58% of total power and 31% of total Area
(Shafiee et al., 2016).

Nevertheless, a recent approach proposes a time-domain
encoding scheme where the inputs of the neural network are
time-modulated by applying fixed amplitude voltage pulses but
with varying duration, then, the charge in the bit-line is
integrated by a switched capacitor and converted to digital using
ramp ADCs or current integrators, such an approach is referred as
TD approach (Amirsoleimani et al., 2020). Reported TD designs
(Marinella et al., 2018; Cai et al., 2019; Sahay et al., 2020; Hung et al.,
2021; Alemdar et al., 2017) have demonstrated great potential in
reducing the cost of area and energy consumption of encoding the
inputs and overcoming the I-V non-linearity of RRAM devices
which affects the output accuracy significantly (Amirsoleimani et al.,
2020). However, current approaches include complex output
circuity including high-resolution ramp ADC and current
integrators (Marinella et al., 2018) or high-resolution
accumulators (Sahay et al., 2020) which limits the area and
energy efficiencies of these approaches.

In this work, we present SPIKA, an energy-efficient TD RRAM-
nvCIM macro designed for accelerating inference tasks. SPIKA
includes a passive modified 1T1R crossbar and is fully integrated
with all the necessary interface and communication circuitry using a
commercial 180 nm process. SPIKA has a crossbar size of 64 × 128
and supports a 4-bit/ternary/5-bit (input/weight/output) resolution.
Every 2 columns share one output, where one column holds the
positive weights and the one column holds the negative weights,
thus, a total of 64 outputs per core. Two novel circuit techniques are
implemented in SPIKA to significantly improve energy and
throughput efficiency. First, the efficient conversion of the input
signal to the output signal featuring 3 domain crossings: digital-time,
time-analog and analog-digital using minimum area and energy
overhead. This is achieved by introducing the “clicking mechanism”

in which during the VMM process, the column capacitor voltage
resets every time it reaches a threshold voltage and the number of
clicks/resets per column represents the digital output that is tracked
by a digital counter. In contrast to the switched capacitor design by
Sahay et al. (2020), the clicking mechanism in SPIKA effectively
reduces the size of the switched capacitor in each column and
simplifies the readout circuitry, thereby improving both density and
power consumption.

The second technique is the negative weight representation. The
majority of prior nv-CIM approaches that support real weight
representation position positive and negative weights in adjacent
columns/rows, where the contribution of negative weights is
subtracted from positive weights after the analog to digital
conversion leading to additional subtracting units at each output
which adds more energy and area overhead to the design (Chen
et al., 2019; Su et al., 2017; Yu et al., 2016; Xia et al., 2016; Chi et al.,
2016). Other works use differential input encoding, in which the row
drivers send input voltage pulses with different polarities for positive
and negative weights. This would require two different drivers, one
for positive weights and one for negative weights which decrease the
power efficiency of the system (Wan et al., 2022). On the other hand,
SPIKA places positive and negative weights in adjacent columns but
applies the same pulse voltage (both in magnitude and polarity).
Each pair of columns shares a single counter (output circuit), and
the subtraction of the positive and negative weights occurs inside the
counter naturally.

Ultimately, the key linchpin of SPIKA is that it leverages the low-
resolution niche it addresses to allow each domain to play to its
strengths (time-domain for fixed-voltage, multi-level input encoding,
analog for power and space efficient computation and digital for
reliable communications) whilst using simple and efficient domain
converters. This makes for a highly functional and simultaneously
energy and area-efficient implementation. Circuit simulations reveal
that the SPIKA core, operating on a 180 nm process, achieves a peak
normalized throughput of 1092 GOPS and an energy efficiency of
195 TOPS/W, competing with prior works running on more
advanced technology nodes. A detailed comparison between
SPIKA and previous designs is provided in Table 6.

The remainder of this paper is organized as follows: Section 2
provides a system overview of the SPIKA core architecture. Section 3
describes the methodology of the clicking mechanism and the
transition of the signal from input to output along with design
constraints and design parameters. Post-layout simulation results
and performance evaluation are provided in Section 4. Section 5
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provides circuit level bench-marking and comparisons with the state
of the art, followed by conclusions in Section 6.

2 System overview

The SPIKA circuit architecture is summarized in Figure 1. The
SPIKA core can be divided into 5 parts, namely, the input circuit, the
1T1R crossbar array and column capacitors, the output circuit, the
I/O interface and driving units and the clock module. SPIKA is a
fully integrated core with all the necessary interface and
communication circuitry using a commercial 180 nm process.
RRAM cells designed in this work are based on an experimental
model developed by our research group (Maheshwari et al., 2021a;

Maheshwari et al., 2021b). SPIKA has a crossbar size of 64 × 128 and
supports a 4-bit input resolution (per row), ternary weights and 5-bit
output resolution (per column). All system components except the
charging circuit are powered with a 1.8 V power supply rail (VDD).
In this section, we provide a description of the system components
and circuits, along with their respective functionalities. More
detailed information about the system operations is discussed
in Section 3.

2.1 Input circuit

Here, row-wise digital-pulse-converter (DPC) units (label 1,
Figure 1) convert incoming 4-bit digital inputs to a

FIGURE 1
SPIKA macro architecture showing the input circuit (blue dashed rectangle), 1T1R array (green dashed rectangle, output circuit (red dashed
rectangle), clock module (yellow dashed rectangle) and I/O interface and driving (purple dashed rectangle).
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corresponding number of regularly-spaced voltage pulses at fixed-
level VWL, as set by an external power supply. The circuit schematic
of one DPC unit is shown in Figure 2. The counter utilized in the
DPC unit is a parallel load counter, capable of initiating any desired
counting sequence once the inputs are loaded (via the LOAD enable
signal) (Humood et al., 2023a). The D-FF used in the DPC unit is
based on the true single-phase-clock FF (TSPC-FF) (Ji-Ren et al.,
1987). The number of output pulses is determined by the value of the
digital input. The duration of the pulse is set by the input clock
(INPUT_CLK). VSL once designed is fixed and it is applied to the
word-lines (WLs) of the 1T1R array and thus controls the voltage
drop on the RRAM device. This configuration allows the design to
utilize a low-power row driver instead of a high-resolution DAC
circuit. For more information on DPC circuit used in this work,
please refer to our previous study (Humood et al., 2024).

2.2 1T1R array and column capacitors

The weights of the NN are mapped as resistances in the RRAM
cells. In SPIKA, we use a ternary encoding scheme for the weights
where positive and negative weights are stored in adjacent columns.
The high resistive state (HRS) represents weight 0 and the low
resistive state (LRS) represents weight 1 on positive columns
and −1 on negative columns. Note that while the weight range is
ternary, the RRAM devices are only required to be able to assume 2×
states in total; a deliberately very loose requirement intended to
lower the entry bar for various RRAM technologies being developed
around the world. The LRS is selected to be 40 KΩ and the HRS is
selected to be 3 MΩ.

A modified structure of the conventional 1T1R crossbar
(Humood et al., 2019) is configured in SPIKA (label 2, Figure 1),
this allows the crossbar to act as a current sink to the column
capacitors (label 3, Figure 1). WLs are shared across the row and
connect to the gate terminal of the access transistor in the 1T1R cell.
Source-lines (SLs) are connected to a driver that determines the
memristor (MR) mode of operation (writing/reading/erasing). Bit-

lines (BLs) are shared across the columns and connect the column
capacitors with the drain of the access transistors and the output
circuits. Table 1 provides a summary of the array mode of operation
in relation to the WL/BL and SL voltages. In addition, the table
includes the voltage across the RRAM device in each mode and the
peak current passing through the device.

2.3 Output circuit

2.3.1 Charging circuit
The charging circuit in SPIKA (label 4, Figure 1) is used to

charge the column capacitors (C1−N) after a clicking operation. The
charging circuit consists of a current mirror supplying constant
currents to all the BL branches of the 1T1R array. The sizing of the
transistors Wref, Wout and EN were designed to supply a charging
rate of 0.6 V/ns under a bias of Iref = 0.35 μA.

2.3.2 Comparator
A low-power double-tail dynamic comparator presented by

Babayan-Mashhadi and Lotfi (2014) is designed in SPIKA (label
5, Figure 1). The comparator schematic is shown in Figure 3A. The
sizing of the comparator was optimized for area, power, offset and
decision time. Figure 3B summarizes the comparator performance
generated by post-layout and Monte-Carlo simulations. The
comparator in SPIKA tracks the BL voltage and issues requests
for clicking once the capacitor voltage falls below the
threshold value.

2.3.3 5-Bit UP/DOWN counter
The output analog to digital conversion in SPIKA is realized

through synchronous 5-bit UP/DOWN counters (label 6, Figure 1)
without the need for power-hungry ADCs as a result of the novel
clicking mechanism implemented in this work. Every 2 adjacent
columns in the array share one counter, when a column requests a
click, the counter value is incremented or decremented whether it is
the positive weight column or the negative weight column that

FIGURE 2
Digital-pulse-converter (DPC) circuit schematic.
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issued the click. If both columns issue a click at the same cycle, the
counter remains at its value which is implemented by clock gating.
The final output of the counter is a signed 5-bit digital value.

2.4 I/O interface, registers and drivers

SPIKA is a fully integrated macro and includes several
registers, drivers and control units for I/O communication and
configurations as shown in Figure 1 (purple color rectangle box).
There are 4 I/O units used in SPIKA. First, from the input circuit, a
256-bit serial in parallel out (SIPO) register (label 7, Figure 1) is
designed to stream the digital inputs of the neural network to the
input circuit units. Besides, the input registers can also be used to
activate selected WLs for writing or erasing operations of the
RRAM cell. Second, the BL configuration SIPO registers and BL
driver units (label 8 and label 9, Figure 1) are used to configure the
selected BLs of the 1T1R crossbar for writing/reading or erasing
operations. Third, the SL driver unit (label 10, Figure 1) is used to
configure the SLs of the 1T1R crossbar to either writing/reading or
erasing modes. Finally, a 320-bit parallel in serial out (PISO)
register (label 11, Figure 1) is used to stream out the outputs of
the column counters.

2.5 SPIKA clock module

In SPIKA, the clock distribution can be divided into two
sections: first, an external clock supply for the I/O interface and
serial registers which runs at a lower frequency (e.g., 10 MHz) as
the control configuration signals are loaded once during the setup
time. The other clock module (core clock module) is generated
internally and it supplies the core computation elements (label
12, Figure 1). The core clock module is shown in Figure 4 and can
be divided into three parts. The first part is defined as CLK
Generation where three clock signals are generated from a single
ring oscillator (RO) that feeds different blocks in the core. The
RO is powered by an external DC current source (ICLK) and
produces a clock with a frequency of 500 MHz under a bias of
8.84 μA. The second part is CLK Synchronization, where the three
clock edges are synchronized by current-starved buffers that are
controlled by two external current sources IDELAY1 and IDELAY2.
The third part is called CLK Buffer Tree where the three clock
signals are buffered by increasing size buffers before being fed to
the core elements.

TABLE 1 RRAM mode of operations with relation to the WL/SL/BL voltages. X denotes do not care.

Mode WL voltage SL voltage BL Prechage BL voltage VMR (LRS/HRS) IMR (LRS/HRS)

Reading/VMM VDD GND VDD VCap 0.12 V/0.251 V 3.3 uA/82 nA

Writing VDD GND X VDD 0.8 V/1.06 V 19 uA/350 nA

Erasing VDD VDD X GND −0.962 V/-1.15 V −24 uA/−0.4 uA

OFF GND X X X 0 0

FIGURE 3
(a) SPIKA double tail dynamic comparator schematic, the ratios
on the transistors (W/L) are in comparison with minimum size
transistor. (b) Summary of the comparator performance.
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3 Operation and design methodology

3.1 VMM process and clicking mechanism

The VMM process is the main operation mode in NNs. In order
to achieve a highly efficient system, it is important to perform low-
power and low-latency VMM operations. Figure 5 presents a
simplified view of SPIKA architecture highlighting the VMM
process by showing the necessary blocks to compute one 5-bit
output (Oj). For an NxM VMM engine, the output vector (Oj)
can be expressed as in (Equation 1) where xi andWij are the digital
inputs and weights of the NN, respectively.

Oj � ∑
N

i�0
xiWij. (1)

In SPIKA, the VMM process is realized through a memory read
operation. Once the inputs are loaded, the VMM operation is
enabled where the digital inputs are modulated as discrete pulses
through the DPC blocks. Then, the capacitor starts discharging

through the activated 1T1R rows across the same column
(integration time). The discharge rate of the capacitor is directly
related to the combination of the inputs and weights where stronger
inputs (higher number of pulses) and stronger weights (lower
column resistance) lead to a higher discharge rate. When the BL
voltage VBLj reaches a threshold voltage VTH1, the comparator
issues a clicking request. This means that the column BLj will
only issue a charging request when its voltage drops below the
comparator threshold, and not for every individual one-bit input
multiplied by one-bit weight. Note that although the column
requested a click, the clicking only occurs during periodic
clicking time intervals. This allows for clicking synchronization
from different columns and leads to a lower latency than
asynchronous clicking as during charging time, the integration of
inputs needs to be paused. More information about the column
capacitor’s charging and discharging process and design choices of
threshold voltages is discussed in Section 3.2. Columns that
requested a click increment or decrement the output counter.
Additionally, the charging circuit is enabled for those columns
and the capacitor is charged to refill the BL. Processes - are

FIGURE 4
SPIKA core clock generation and distribution module.
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repeated until all input pulses are consumed. Once the VMM
process is over, the outputs of the counters represent the
multiplication output of the VMM process.

The timing diagram in Figure 5 shows the discharge rate of
column j (BLj) with respect to the maximum and minimum
discharge rates (input boundary cases). The maximum discharge

FIGURE 5
SPIKA simplified circuit schematic highlighting the VMM process and clicking mechanism.
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rate corresponds to the maximum output (15 clicks) which happens
when all inputs (64 rows × 4-bit = 256-bits) are high, and all weights
(64 weights per column) are in the (LRS) state. Conversely, the
minimum discharge rate corresponds to the minimum output
(0 clicks) where all inputs are high and all weights are in the
HRS state. More details about input boundary cases are discussed
in Section 3.2.4.

In SPIKA, every two adjacent columns share one counter. While
one column stores positive weights and increments the counter, the
other column stores the negative weights and decrements the counter
once it requests a click. Hence, there is no need for additional subtractor
units to implement the negative weights. The latency of one VMM
operation in SPIKA is 60 ns and it is divided equally between integration
time (active time) and clicking time (inactive time).

FIGURE 6
Transient simulation of the BL voltage (VBLj) during (a) Capacitor discharge operation (b) Capacitor charge operation.
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3.2 SPIKA constraints and design parameters

The key design objective in the VMM process is to ensure that
the discharge rate of each column capacitor can be assumed
linear, leading to linearly map the matrix product: Output =
Inputs × Weights. Similarly, with an optimized current mirror
design, the charging rate of the capacitor can also be assumed
linear, leading to approximately lossless conversion. This section
provides a summary of the design parameters and constraints
in SPIKA.

3.2.1 WL voltage and RRAM read voltage
TheWL voltage (VWL) is supplied to the rows of the 1T1R array

and controls the RRAM read/write voltage. To overcome the I-V
non-linearity of the RRAM cell and reduce energy, the RRAM
desired read voltage is selected to be between 0.1 V (LRS) and
0.2 V (HRS). Circuit simulations show that is achieved when (VWL)
is 0.525 V.

3.2.2 Capacitor-discharge operation and VTH2

The discharge rate of the switched-based capacitor in this work
controls the number of total clicks where higher discharge rates lead
to a higher number of clicks. During integration time, the BL voltage
of output j can be expressed by Equation 2.

VBLj � −N × VREAD × tactive
R × C

(2)

where N is the number of activated rows, VREAD is the RRAM read
voltage, tactive is the total active time of the combined pulses, R is the
RRAM resistance and C is the column capacitance. Among the
design parameters, VREAD is controlled by VWL which is an external
voltage source. This allows for balancing the discharge rate even
post-chip fabrication. Figure 6A shows a transient simulation of the
BL voltage during integration time where the capacitor is fully
discharged. The discharge rate of the capacitor during integration
time can be assumed linear (with a maximum error percentage
~10% compared to a fitted line) approximately until the BL voltage
fall below VTH2 = 0.6 V, thus, we use this value as the lower
operating bound for VBL, i.e., columns should click before VBL

falls below it.

3.2.3 Capacitor charge operation
The current mirror shown in Figure 1 is responsible for charging

the capacitor after a click. An external DC current reference is fed to
the current mirror to provide appropriate current to the columns of
the 1T1R array. Hence, the charging rate can be controlled even
post-chip fabrication. Similar to the discharge operation, the design
parameters of the current mirror must be precisely designed to
ensure that the charging rate of the capacitor is linearly
approximated. By ensuring this, the capacitor will be charged
with the same amount of charge regardless of the voltage it
clicked at. Since the BL pre-charged is at 1.8 V, linearity needs to
be presumed up to 1.8 V. This is implemented by powering the
current mirror at a voltage higher than 1.8 V. In SPIKA, the
minimum power supply required to maintain linearity (with a
maximum error percentage ~5% compared to a fitted line) is
found to be 2.3 V (VDD2) as shown in Figure 6B. This
arrangement means that after a successful click, the voltage on

the column capacitor increases by a very precise amount,
underpinning lossless conversion.

3.2.4 Input boundary cases and system balance
In order to balance the system and the number of clicks, three

boundary cases highlighted in Figure 7 need to be considered. The
first case is denoted as Max input Max weight case (Case 1, Figure 7).
In SPIKA each output is a 5-bit signed output which means that the
maximum number of clicks a column can request is 15 clicks. In
addition, since the number of rows is 64, the maximum number of
active rows (N) is 64. The maximum row active time (30 ns) is
achieved when the digital input is maximum, i.e. 4′b1111. The
second case is denoted as Min input Min weight or Min input Max
weight (Case 2, Figure 7). In this case, the inputs are 0 (N = 0), thus,
the column capacitor will not discharge through the 1T1R cells
regardless of the values of the weights. The third case is denoted as
Max input Min weight case (Case 3, Figure 7). In this case, all inputs
are activated (N = 64) for the maximum active time (tactive = 30 ns)
with all weights in the HRS. Ideally, the result of this case should be
0, but, due to the finite resistance of the RRAM cell, the capacitor will
discharge through the 1T1R cells and the rate will depend on the
HRS value of the RRAM cell. Hence, it is important in this case to
have a high RRAM off-resistance and lowVTH1 enough to ensure no
clicks (i.e., the BL voltage never falls below VTH1).

Thus, with the discharging and the charging rates linearity
assumed earlier, balancing the system around the boundary cases
leads to a linear mapping of the in-between cases. In SPIKA, the
discharge rate is balanced by the external voltage supply VWL and
the charging rate is balanced by the external current source feeding
the charging circuit (ICHARGE). Post-layout, Monte-Carlo and
parametric analysis simulations show that the system is balanced
with (VWL) = 0.660 V and (ICHARGE) = 0.45 μA.

3.2.5 Upper clicking threshold voltage (VTH1)
VTH1 is the BL threshold voltage at which the column requests a

click. The choice ofVTH1 is very important as it affects the minimum
HRS needed, total active time and number of clicking requests
needed to balance the boundary cases of SPIKA. Lowering VTH1

reduces the required off-resistance but increases the total active time,
hence, higher latency. In this work, VTH1 is selected to be 1.2 V.

3.2.6 SPIKA resolution and scalability
The choice of using 4-bit input/5-bit output resolutions in

SPIKA is driven by the need to maximize power efficiency while
maintaining acceptable classification accuracy. The 4-bit input
resolution represents an optimal balance for the time-encoding
scheme. The selection is driven by the well-known challenge of
linear time encoding, where increasing from 4-bit to 5-bit encoding
doubles the maximum time required (Serb and Prodromakis, 2019).
We note that time-domain encoding tends to be most competitive in
the 2-4-bit range. The use of ternary weight representation is based
on the fact that RRAM devices only need to support two states, a
relaxed requirement that broadens compatibility with various
RRAM technologies being developed worldwide. Research has
shown that ternary representation works well for most CNN
classifiers (Yang et al., 2023). However, future work will explore
multi-bit RRAM devices to enhance scalability further. To scale the
system for larger networks, the approach could involve splitting
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high-resolution inputs, weights, and outputs into multiple adjacent
ones rather than increasing the resolution. For example, an 8-bit
input can be divided across two rows, a method that has been
successful in system-level nvCIM designs like ISAAC (Shafiee et al.,
2016) and PRIME (Chi et al., 2016).

4 Results

In this work, SPIKAmacro has been validated in Cadence circuit
tools by performing simulations and analysis on extracted post-
layout views, including resistance and capacitance parasitics using a
commercial 180 nm process and experimental RRAM models
(Maheshwari et al., 2021a; Maheshwari et al., 2021b).

4.1 Transient simulation of input
boundary cases

Figure 8 presents the SPICE post-layout simulation of SPIKA
under the Max input Max weight case (Case 1, Figure 7) and Max
input Min weight case (Case 3, Figure 7) showing the output result
for two columns (BL1+ and BL1−) corresponding to a positive weight
column and negative weight column and shares one output (as
highlighted in Figure 5). In this case, all positive weights are set to 1
(RRAM resistance = LRS) and all negative weights are set to 0

(RRAM resistance = HRS). Figure 8 shows the three clock signals
that are generated from SPIKA clock module, namely,:
COUNT_CLK (500 MHz), COMP_CLK (500 MHz) and
INPUT_CLK (250 MHz). The BL voltage of the 2 columns BL1+
and BL1− are also shown in Figure 8 where BL1+ requests 15 clicks
and BL1− requests 0 clicks. Finally, the 5-bit outputs of the digital
counter (Q0-Q3 for magnitude and Z for sign) indicate the correct
digital output (+15 at the end of conversion in this case).

4.2 CMOS process corner analysis

Table 2 provides a summary of the SPIKA process corner analysis
conducted at 27 °C across five different CMOS process corners (nmos-
pmos). The analysis is simulated under four distinct input (IN)/weight
(W) combinations, where a higher percentage signifies stronger inputs
and weights. For example, in case 1 (100% IN 100%W) all inputs are
activated for themaximumduration and all weights are in the LRS. As
we recall from Section 3.2.4, this case corresponds to the boundary
case of the maximum input and maximum weight (15 clicks at the
output). Table 2 shows the least significant bit (LSB) deviation
between the simulated output and expected output for each corner
and case. A deviation of 0 LSB indicates a correct conversion,
highlighted in green in the table. Red-highlighted cells indicate
incorrect conversions, along with the extent to which the
simulated output deviates from the expected output.

FIGURE 7
Input boundary cases of the clicking process.N is the number of activated rows, tactive is the total active time of the pulses, t1 is the start time, t2 is the
end time and W is the weights of the NN.
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The results anticipated in Table 2 are divided into two segments,
before balancing and after balancing. Recall that balancing in SPIKA
is controlled by two external sources, VWL and ICHARGE which
regulate the discharging and charging processes, respectively. The
before-balancing segment in Table 2 shows the corner process
variation on the output when using the VwL optimized in Section
3.2.1. The results exhibit variations from case to case and corner to
corner, with more active cases showcasing higher deviations. It is
observed that the influence of corners is predominantly linked to the
speed of nmos devices, wherein slower nmos transistors entail a
lower discharge rate, leading to fewer clicks, while faster nmos
transistors exhibit a higher discharge rate, resulting in more
clicks. This variation is attributed to the fluctuation in the 1T1R
voltage drops, wherein the access transistor is an nmos transistor
that impacts the discharging rate.

Nevertheless, the inherent balancing mechanism in SPIKA,
regulated by independent external sources, allows for the
adjustment of the discharging rate to accommodate different
corners. Parametric simulations demonstrated that adjusting only
VWL is sufficient to achieve this balance in SPIKA for all corners and
cases. The outcomes are presented in the after-balancing segment of

Table 2. As depicted, utilizing three distinct VWL values enables the
attainment of 0 LSB deviation in conversion for all corners and cases.
It is noteworthy that this balancing strategy can be applied post-chip
fabrication, highlighting SPIKA’s flexibility in operating across
various process corners.

4.3 Temperature variation analysis

Similar to the process corner analysis, the SPIKA core was
simulated across a temperature range spanning from −55°C to
125 °C and typical process corner. The outcomes for various IN/
W cases are summarized in Table 3. The table comprises two
sections, similar to the process corner analysis: before balancing
and after balancing segments. In the before-balancing segment, the
results indicate that lower temperatures lead to a lower discharge
rate, resulting in fewer clicks, while higher temperatures result in a
higher discharge rate and more clicks. As demonstrated before, the
SPIKA system can be adjusted to function in various temperature
ranges by optimizing the VWL source. The use of four different VWL

values demonstrates the capability to achieve 0 LSB deviation in

FIGURE 8
SPICE post-layout simulation of SPIKA for the Max input Max weight case (BL1+) and the Max input Min weight case (BL1-).
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TABLE 3 SPIKA temperature variation analysis conducted at TT corner for different input (IN)/weight (W) combinations. The least significant bit (LSB) provides an indication of the deviation between the simulated
output and the expected output.

Temperature Temperature

Case Before balancing −55 C 0 C 25 C 50 C 100 C 125 C After balancing −55 C 0 C 25 C 50 C 100 C 125 C

100% IN 100% W −7 LSB −3 LSB 0 LSB 0 LSB 3 LSB 5 LSB 0 LSB 0 LSB 0 LSB 0 LSB 0 LSB 0 LSB

50% IN 100% W −4 LSB −1 LSB 0 LSB 0 LSB 2 LSB 3 LSB 0 LSB 0 LSB 0 LSB 0 LSB 0 LSB 0 LSB

50% IN 50% W −2 LSB −1 LSB 0 LSB 0 LSB 1 LSB 1 LSB 0 LSB 0 LSB 0 LSB 0 LSB 0 LSB 0 LSB

100% IN 0% W 0 LSB 0 LSB 0 LSB 0 LSB 1 LSB 1 LSB 0 LSB 0 LSB 0 LSB 0 LSB 0 LSB 0 LSB

VWL 525 mV 525 mV 525 mV 525 mV 525 mV 525 mV 580 mV 540 mV 525 mV 525 mV 475 mV 475 mV

TABLE 2 SPIKA process corner analysis conducted at 27°C for different input (IN)/weight (W) combinations. The least significant bit (LSB) provides an indication of the deviation between the simulated output and the
expected output.

Corner (nmos-pmos) Corner (nmos-pmos)

Case Before balancing tt ss sf fs ff After balancing tt ss sf fs ff

100% IN 100% W 0 LSB −6 LSB −5 LSB 4 LSB 3 LSB 0 LSB 0 LSB 0 LSB 0 LSB 0 LSB

50% IN 100% W 0 LSB −4 LSB −4 LSB 2 LSB 2 LSB 0 LSB 0 LSB 0 LSB 0 LSB 0 LSB

50% IN 50% W 0 LSB −2 LSB −1 LSB 1 LSB 2 LSB 0 LSB 0 LSB 0 LSB 0 LSB 0 LSB

100% IN 0% W 0 LSB 0 LSB 0 LSB 0 LSB 1 LSB 0 LSB 0 LSB 0 LSB 0 LSB 0 LSB

VWL 525 mV 525 mV 525 mV 525 mV 525 mV 525 mV 585 mV 585 mV 485 mV 485 mV
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conversion across the temperature range. This underscores the
flexibility of SPIKA in adapting to different temperature conditions.

4.4 Monte Carlo analysis

SPIKA core have been simulated using Monte Carlo analysis to
investigate the impact of CMOS mismatch. Figures 9A–D presents

the histogram results for four distinct input (IN)/weight (W)
combinations. The LSB represents the difference between the
simulated output and the expected output, with 0 LSB indicating
a correct conversion. As depicted in Figure 9, the lowest success rate
is seen in case 1 (Figure 9A) with a 98.5% success rate. This outcome
aligns with expectations, as more active input/weight combinations
involve a higher number of active 1T1R cells, introducing more
transistor mismatch effect. Conversely, the success rate is found to

FIGURE 9
(a–d) Histogram of Monte Carlo process mismatch simulated at the TT Corner and room temperature for four distinct input/weight combinations.
The correct output is represented by 0 LSB.

TABLE 4 SPIKA RRAM variation analysis conducted at 27°C. The least significant bit (LSB) provides an indication of the deviation between the simulated
output and the expected output. The low resistive state (LRS) is set to 40 kΩ, while the high resistive state (HRS) is set to 3 MΩ.

Resistance Deviation

−20% −15% −10% −5% 5% 10% 15% 20%

LRS 2 LSB 1 LSB 0 LSB 0 LSB 0 LSB 0 LSB −1 LSB −2 LSB

HRS 0 LSB 0 LSB 0 LSB 0 LSB 0 LSB 0 LSB 0 LSB 0 LSB
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be 100% in cases 3 and 4, where the number of activated input/
weight cells is lower.

4.5 RRAM variation analysis

As mentioned previously in Section 2.2, we implement a ternary
weight encoding scheme in SPIKA, where the RRAM devices are
only required to support a total of 2× states. This deliberately relaxed
requirement is designed to lower the barrier to entry for a wide range
of emerging RRAM technologies currently under development
worldwide. Since the resistance of RRAM devices can be
trimmed and reprogrammed after fabrication, the impact of
process variations is less critical compared to CMOS circuitry.
Numerous studies have demonstrated that verify-write
techniques, which iteratively program and verify the resistance
state until the desired value is achieved, enable precise tuning of
RRAM conductance. This approach effectively mitigates process-
induced variations, enhancing overall device reliability and
performance (Zhang et al., 2019; Shim et al., 2020).

However, Table 4 demonstrates that even in the absence of a
successful write-verify mechanism, the SPIKA system remains robust
against variations in both LRS andHRS values. In this analysis, RRAM
LRS and HRS resistances were swept from −20% to +20%, and any
deviation from the correct conversion accuracy was quantified in
terms of LSB error. It is important to highlight that these simulations
represent a worst-case scenario, where all RRAM devices in the array
are subjected to identical variation. The results indicate that noticeable
conversion deviation only begins when LRS variations exceed 15%,
with the maximum error observed being 2 LSBs at a 20% variation.
These findings suggest that such high levels of variation—15%–20%
across all RRAM devices simultaneously—represent an extremely
unlikely worst-case scenario, and the resulting deviations remain
minimal, further highlighting the robustness of the SPIKA system
to device-level variability.

4.6 Power and area breakdown

Table 5 presents the average power consumption and area
breakdown of each component in SPIKA including the I/O and
control circuitry. The metrics in Table 5 are based on post-layout
extracted simulations and views and a randomized set of inputs and
weights. The power and area overhead of the input and output
circuits in SPIKA are 57% and 26%, respectively, which is an
improvement of 22% and 6% of the power and area overhead of
the ISAAC structure (Shafiee et al., 2016) running at 32 nm CMOS
technology. The computational core consumes an average of
~5.6 mW running under a 500 MHz clock frequency and 1.8 V
power supply. It is worth mentioning that the I/O registers and
drivers within SPIKA were not optimized in any manner and were
only incorporated as functional elements to facilitate testing
procedures.

5 Circuit-level metrics and
benchmarking

5.1 SPIKA energy efficiency and throughput
and comparison with baseline nv-CIM

The energy per operation for a given task is a key metric to
benchmark hardware accelerators (Seo et al., 2022). The
computational blocks in SPIKA consume an average power of
5.6 mW during a single VMM process, with an array size of
64 × 128 and a randomized sequence of 4-bit inputs and 1-bit
weights (Section 4.5). The latency for a single VMM process in
SPIKA is 60 ns at a clock frequency of 500 MHz. Thus, the
throughput of SPIKA, defined as the number of operations per
second (where each MAC = 2 ops), is calculated as follows: 64 × 128
×2ops÷60ns � 273 GOPS or “bit-normalized” throughput of
1092 GOPS. By “bit-normalized” we mean a reduction to 1-bit
input × 1-bit/analog weights (Jiang et al., 2023). The energy
efficiency of the system is found by dividing the throughput by
the power consumption, resulting in 48.75 TOPS/W (4b × 1b) or
195 TOPS/W bit-normalized (1b × 1b). Similar to previous work in
this field, the reported throughput and energy efficiency represent
their peak values when the CIM array utilization is 100%, and do not
include time and energy spent on buffering and moving
intermediate data. Supplementary Figure S1 in the
Supplementary Material illustrates the energy efficiency across
various design choices, including input resolution, output
resolution, and array size.

To benchmark SPIKA against the baseline nv-CIM, we refer to
the ISAAC core reported by Shafiee et al., which utilizes DACs for
input encoding and ADCs for output conversion, performing
multiplications in the current domain (Shafiee et al., 2016). The
ISAAC core consumes average power of 27.5 mW during a single
VMM process with a 128 × 128 array size. The latency for a single
VMM process is 100 ns. Thus, the throughput is calculated as
128 × 128 ×2ops÷100ns � 327.68 GOPS or “bit-normalized”
throughput of 655.36 GOPS. Additionally, the core’s energy
efficiency is 11.9 TOPS/W (1b × 2b) or 23.8 TOPS/W bit-
normalized (1b × 1b). Compared to ISAAC, the proposed SPIKA

TABLE 5 SPIKA macro area and power breakdown.

Module Average power
consumption (mW)

Area (mm2)

Input circuit (64 DPC units) 1.93 0.0384

1T1R array 0.20 0.2300

Charging circuit 0.33 0.0150

Comparators 3.10 0.0120

Output counters 0.20 0.0340

Total SPIKA core 5.76 0.3294

Clock generation and drivers 3.33 0.0012

Input registers 2.54 0.0380

Output registers 2.88 0.0412

BL conf registers and drivers 2.24 0.0537

SL drivers 0.10 0.0017

Total SPIKA chip 16.85 0.4652
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TABLE 6 Comparison table with state-Of-The-Art CIM macro designs. norm.: Bit-Normalized. EE, Energy efficiency.

Work ISCA’16
Shafiee et al.

(2016)

VLSI’17
Su et al.
(2017)

CICC’21
Li et al.
(2021)

JCCS’22
Khaddam-Aljameh

et al. (2022)

Nature’22
Wan et al.
(2022)

TCAS1′23
Jiang et al.

(2023)

TCAS1′23
Xuan et al.

(2023)

ESSERC’24
Yao et al.
(2024)

ISSCC’24
Spetalnick et al.

(2024)

SPIKA

Approacha CD CD CD TD TD TD TD CD TD TD

CMOS technology 32 nm 150 nm 40 nm 14 nm 130 nm 40 nm 180 nm 28 nm 40 nm 180 nm

Implementation Sim Chip Chip Chip Chip Chip Post-Layout
Sim

Chip Chip Post-
Layout
Sim

Array Size 128 × 128 64 × 64 128 × 128 256 × 256 256 × 256 256 × 256 256 × 64 512 × 512 256 × 256 64 × 128

Bits Resolution
(In/W/O)

1/2/8 1/1/3 1/8/3 8/1/8 8/4/10 8/2/8 4/4/14 4/4/8 N/A 4/1/5

Read voltage N/A N/A N/A N/A 0.5 V 0.9 V 1.8 V 0.9 V 1.1 V 0.2 V

Frequency 1.5 GHz 20 MHz 100 MHz 1 GHz N/A 100 MHz N/A 150 MHz 80 MHz 500 MHz

Power
consumption
(per core)

27.5 mW 22 mW N/A N/A N/A N/A N/A N/A N/A 5.6 mW

VMM Latency 100 ns 0.1 m N/A N/A N/A N/A 370 ns 100 ns N/A 60 ns

Throughput
(GOPS)

327.68 0.082 20.96 1,008 2,135 13.93 N/A 2084 268.8 273

EE (TOPS/W)b 11.9 3.73 36.39 10.5 43 26.97 10.8 N/A 0.84 48.75

Bit-norm.
Throughput
(GOPS)c

655.36 0.082 20.96 8,064 8,540 222.88 N/A N/A N/A 1,092

Bit-norm. EE
(TOPS/W)

23.8 3.73 36.39 84 172 431.52 172.8 308.8 53.76 195

Bit-norm. EE
SPIKA

improvement

8.19× 52.27× 5.36× 2.32× 1.13× 0.45× 1.12× 0.63× 3.63× 1×

EE (TOPS/W)
at 14 nmd

62.12 428.16 297.06 84 3,707.65 220.16 1782 N/A 17.01 8,054.19

Bit-norm. EE
(TOPS/W) at

14 nm

124.24 428.16 297.06 84 14829 3,522.61 28,612 1,235.2 1,008.64 32,216

(Continued on following page)
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core demonstrates a 1.67× improvement in throughput and an 8.19×
enhancement in energy efficiency.

5.2 Comparison with state of the art

Table 6 provides a performance summary of SPIKA CIM macro
compared to prior works. The throughput and energy efficiency are
determined for the computing cells only so that system-level related
effects are not taken into account. Where reported values were
system-level, they were recalculated specifically for CIM macros.
Compared with the core proposed by Cai running at a similar
technology node (180 nm) and array size (Cai et al., 2019), SPIKA
provides a 12× improvement in power. The total latency of 1 VMM
operation (60 ns) is a 2× improvement vs. ISAAC (Shafiee et al.,
2016) and 6× vs. Marinella et al. (2018).

The SPIKA CIMmacro, implemented with a 180 nm technology
node, demonstrates an energy efficiency of 48.75 TOPS/W (for 4b
input x 1b weight), which is comparable to state-of-the-art
implementations at advanced technology nodes. To provide
further perspective we also show bit-normalised throughput and
energy efficiency. The SPIKA core ranks highest in raw energy
efficiency in the table and third-highest in bit-normalized energy
efficiency (Jiang et al., 2023). and (Yao et al., 2024) topped the bit-
normalized energy efficiency. We attribute this to a combination of
using a more advanced technology node and including no output
circuits, where the outputs of the CIMmacro remain in analog form
and are not converted to digital until later at the system level.

For further perspective, we also projected the energy efficiency of
all designs to 14 nm using Dennard scaling assumptions
(normalization factor of (CMOSnm

14 )2) (Dennard et al., 1974), as
presented in Table 6. The proposed system exhibits an estimated
improvement in normalized energy efficiency at 14 nm ranging from
2.12× to 390× vs. state-of-art. We note that the scalability of SPIKA
to such nodes necessitates further investigation.

5.3 Chip summary

Figure 10 presents a post-layout capture of SPIKA chip (I/O
pads included) along with a specification summary. Our system
performance could be further improved by using more advanced
technology nodes and optimizing the computing architecture and
peripheral circuits. For example, the column capacitors could be
integrated beneath the RRAM array if additional metal layers are
available, this could save up to 4% of the total area from savings in
the core alone. In addition, having more metal layers could decrease
the pitch size of the 1T1R cell and the peripheral circuits leading to a
denser structure.

6 Conclusion and future work

This work proposed a novel time-domain RRAM-based non-
volatile compute-in-memory (nvCIM) 64 × 128 macro, SPIKA, for
neural network acceleration including all the necessary I/O interface
and control circuitry. The system architecture, components and
methodology are discussed in detail. The key novelty of this work isT
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the efficient transition of the signal from the input to the output with
the minimum overhead needed which substantially improved the
performance and power consumption of the proposed in
comparison to previous works. SPIKA was evaluated based on
extracted post-layout simulation and analysis using 180 nm
CMOS commercial process and experimental RRAM models.

The characterization results obtained in this work highlight the
potential of nvCIM macros in AI edge computation. The SPIKA

core, as designed here, is optimized for vector matrix
multiplication (VMM) operations, a critical function across
various neural network classifiers, including deep neural
networks (DNNs), convolutional neural networks (CNNs), and
spiking neural networks (SNNs). The decision to utilize 4-bit
inputs, 5-bit inputs, and ternary weights is aimed at
maximizing power efficiency while ensuring satisfactory
classification accuracy. Similar configurations have

FIGURE 10
SPIKA Post-layout chip capture and specification summary.
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demonstrated impressive classification performance, as
demonstrated by Yang et al. (2023) and Zhang et al. (2024).
Future work will focus on developing a multi-core system-level
design for SPIKA, enabling the efficient implementation of
comprehensive workloads.
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