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Magnetic materials play a pivotal role in emerging fields such as new energy,
information technology, and biomedicine, where accurate magnetic
characterization is essential for material innovation and device engineering.
Notably, with the burgeoning development of nanomaterials and spintronics,
the importance of magnetic characterization has grown significantly,
accompanied by increasingly higher requirements for precision and multi-
dimensional analysis. This paper elaborates on the working principles and
structural components of static magnetic measurement techniques—including
Vibrating Sample Magnetometer (VSM), Alternating Gradient Magnetometer
(AGM), Magneto-Optical Kerr Effect (MOKE) Microscope, Magnetic Force
Microscope (MFM) and Superconducting Quantum Interference Device
(SQUID) Magnetometer, as well as dynamic magnetic measurement
techniques such as Alternating Current (AC) susceptometry and
Ferromagnetic Resonance (FMR). In addition, this review also introduces
emerging techniques relevant to spintronics, including Magnetometer based
on negatively charged nitrogen-vacancy (NV−) centers in diamond, Spin-
polarized Scanning Tunneling Microscope (SP-STM), Lorentz Transmission
Electron Microscope (LTEM), and Soft X-ray-based techniques, highlighting
their principles and applications in quantum sensing, magnetic imaging, and
element-specific spin analysis. This overview emphasizes the unique capabilities
and measurement principles of each magnetic characterization instrument,
providing users with practical guidance to identify the most appropriate tool
based on specific research objectives, material properties, and experimental
requirements, thereby improving characterization efficiency and accuracy.
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1 Introduction

Magnetic measurement, serving as a fundamental approach for
investigating and characterizing the behavior of magnetic materials
under external magnetic fields, plays an integral role in scientific
research across numerous cutting-edge fields, including but not
limited to biomedicine (Doaga et al., 2013; Nosrati et al., 2018;
Kermanian et al., 2020), physics (Béa et al., 2008; Pan et al., 2008;
Lavrijsen et al., 2013; Anbuselvan et al., 2021), and materials science
(El-Bassuony and Abdelsalam, 2017; Ramakrishna et al., 2018;
Jabbar et al., 2020). It enables the quantification of the magnetic
parameters such as coercivity, remanent magnetization, and
saturation magnetization (Cullity and Graham, 2011), as well as
the evaluation of magnetic susceptibility and permeability, which
reflect a material’s responsiveness to magnetic fields. With
continued research advancement, dynamic magnetic
parameters—such as AC susceptibility, magnetic loss, magnetic
relaxation (Topping and Blundell, 2018), and spin dynamic
characteristics (Tang et al., 2023)—have become key indicators
for understanding frequency-dependent behavior and
microscopic magnetic processes. Moreover, the development of
advanced characterization techniques, such as MFM, and NV
center magnetometer, has enabled the exploration of nanoscale
magnetic domain structures. In summary, magnetic
measurements play an essential role not only in evaluating the
performance of conventional ferromagnetic materials, but also in
advancing research on novel magnetic materials, spintronic devices,
and nanomagnetism.

Magnetic measurement instruments can be systematically
classified into static magnetic measurement instruments and
dynamic magnetic measurement instruments according to the
state of the external magnetic field employed during
measurement. Static measurement techniques operate under a
constant or quasi-static magnetic field, and the representative
instruments in this category include the VSM (Foner, 1959),
AGM (Flanders, 1988), SQUID (Fagaly, 2006), MOKE-based
magnetometer (Soldatov and Schäfer, 2017) and MFM (Krivcov
et al., 2018), offering distinct advantages in sensitivity, spatial
resolution, or suitability for specific sample forms and
measurement conditions. In contrast, dynamic magnetic
measurement techniques apply an AC magnetic field to probe
frequency-dependent behaviors. Typical instruments include
AC susceptometer (Topping and Blundell, 2018), which
measure real and imaginary components of susceptibility over
a range of frequencies, and FMR systems (Wang et al., 2018),
which provide insights into damping mechanisms and spin
dynamics at the microscopic level. In addition to
conventional instruments, emerging techniques originally
developed for spintronics—such as NV− center magnetometer
(Rondin et al., 2014), SP-STM (Bagchi et al., 2024), LTEM (Xue,
2025), and soft X-ray-based techniques (Van der Laan and
Figueroa, 2014)—are increasingly used for high-resolution
magnetic imaging and quantum sensing, offering access to
spin structures at nanoscale levels. This classification reflects
the progression of magnetic measurement from macroscopic,
steady-state characterization toward microscopic, transient
investigations, aligning with the evolving demands of modern
magnetic materials research.

This review systematically introduces representative static and
dynamic magnetic measurement techniques, while also covering
spintronic-relevant emerging methods, aiming to serve as a practical
reference for method selection and a source of inspiration for
cutting-edge characterization development.

2 Static magnetic measurement
techniques

Static magnetic measurement techniques serve as the
cornerstone for elucidating the intrinsic magnetic behavior of
materials, focusing on equilibrium magnetization responses under
direct current (DC) or quasi-static magnetic fields. The magnetic
hysteresis measurements (M-H curve) are conducted by sweeping
an external magnetic field, enabling the characterization of key
magnetic properties: Ms defines a material’s maximum
magnetization capacity, Hc quantifies its resistance to
demagnetization, and Mr reflects retained magnetization. By
measuring those key parameters, macroscopic magnetic
characteristics—such as magnetization behavior and magnetism
classification—can be effectively revealed and analyzed.
Combined with temperature-dependent measurements, static
techniques capture magnetic phase transitions, such as the Curie
temperature (TC) in ferromagnets or the Néel temperature (TN) in
antiferromagnets, revealing the onset of magnetic ordering. As a
relatively fundamental yet powerful characterization approach,
static magnetic measurement techniques play a vital role in both
academic research and technological innovation. Their ability to
reveal intrinsic magnetic parameters with high precision makes
them indispensable for understanding material behavior and
guiding the design of functional magnetic devices. In the
following sections, we provide a detailed overview of several
representative static magnetic characterization techniques,
spanning from macroscale magnetization to nanoscale domain
structures, with a focus on their principles, structures, and
applications.

2.1 Vibrating sample magnetometer (VSM)

As one of the most widely utilized instruments for magnetic
characterization, the VSM is renowned for its versatility, robustness,
and adaptability to diverse sample forms, including bulk solids,
powders (Frandsen et al., 2021), thin films (Ke et al., 2021), and
liquids, whether in the form of single crystals, polycrystals, hard
magnetic materials, or soft magnetic ones. This technique was first
realized by Simon Foner in 1955 at the Massachusetts Institute of
Technology (MIT) Lincoln Laboratory, where he constructed the
first prototype using readily available materials, including a paper
cup, paper straw, and a loudspeaker (Foner, 1996). The central idea
was to mechanically vibrate a magnetized sample within a uniform
magnetic field, thereby inducing an alternating magnetic flux
through a set of stationary pickup coils. According to Faraday’s
law of electromagnetic induction, this time-varying magnetic flux
generates an induced voltage (Vemf) in the coils that is directly
proportional to the sample’s magnetic moment. The corresponding
experimental results were published in 1956 (Foner, 1956), and

Frontiers in Electronics frontiersin.org02

Zhao et al. 10.3389/felec.2025.1645594

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2025.1645594


further mechanical refinements followed in 1959. Subsequently,
he granted the patent for the VSM design to Princeton Applied
Research Corp (PARC), which marked the beginning of the
commercial development of the VSM.

Over the decades, continued engineering and electronic
advancements have significantly enhanced the sensitivity and
stability of VSM systems. Modern commercial VSMs typically
consist of three primary subsystems—the magnetic field
generation and control unit, the vibration and sample mounting
unit, and the signal detection and processing unit (as schematically
illustrated in Figure 1)—and are capable of achieving sensitivities
in the range of 10−7 to 10−8 emu with typical acquisition times of
10 s per measurement point. The magnetic field generation and
control unit comprises an electromagnet and a gaussmeter. The
electromagnet provides a uniform magnetic field to magnetize the
sample, while the gaussmeter monitors the field intensity in real
time. This feedback enables precise closed-loop control, ensuring
the field remains stable and accurate throughout the measurement
process. The vibration and sample mounting unit typically
includes a vibration head, a sample rod, and the sample holder.
The vibration head, driven by a mechanical oscillator, induces
sinusoidal motion in the sample at a fixed frequency (commonly
around tens of hertz). The sample, mounted at the lower end of the
rod, is positioned within the uniform magnetic field. Vibration can
occur either parallel or perpendicular to the field direction,
depending on the system configuration (Mészáros, 2007). The
signal detection and processing unit is mainly composed of a
detection coil and a lock-in amplifier (LIA). The pickup coil system
typically adopts a four-coil configuration arranged symmetrically
along the vibration axis (Mallinson, 1966). This differential
arrangement enhances the detection sensitivity and effectively
cancels out background noise and environmental interference,
thereby significantly improving the signal-to-noise ratio. As the
magnetized sample oscillates within the magnetic field, it causes a
time-varying magnetic flux through the pickup coils, thereby
inducing a voltage via electromagnetic induction. The LIA,
phase-locked to the vibration frequency, selectively amplifies
and extracts the signal corresponding to the sample’s magnetic

response, effectively suppressing noise at other frequencies. By
integrating these subsystems, the VSM enables accurate and
efficient magnetic moment measurements across a broad range
of material systems and sample geometries.

Further, digging into the working principle, the induced voltage
Vemf obtained by the pick-up coils of the VSM can be given below
(Dodrill and Lindemuth, 2021):

Vemf � mAfS

where, m denotes the magnetic moment of the sample, and A and
f represent the amplitude and frequency of vibration,
respectively, and S is the sensitivity function of the detection
coils. It is clear from formula that increasing the amplitude A, the
frequency f, or the sensitivity S will enhance measurement
accuracy. However, in practical implementations, each of these
parameters must be carefully optimized to avoid adverse effects.
Excessive vibration frequency can induce substantial eddy
currents in conductive samples, which in turn distort the
magnetic response and generate undesirable heat. To mitigate
these effects, the vibration frequency f is typically maintained
below 100 Hertz (Hz). Similarly, to minimize geometric
distortions and prevent signal loss due to non-uniform field
coupling, the vibration amplitude A should be kept moderate,
generally smaller than the diameter of the pickup coil.
Furthermore, the sensitivity factor S can be enhanced through
optimization of the pickup coil design, for example, by increasing
the number of coil turns or modifying the coil geometry to better
match the sample’s magnetic field distribution. While increasing
the number of turns improves inductive sensitivity, it also raises
coil resistance, which elevates thermal noise and may reduce the
effective signal-to-noise ratio. As an alternative, improving the
magnetic coupling between the sample and the pickup coils, such
as by reducing the coil-to-sample distance, offers a promising
route to increasing S. It is important to note, though, that the
spacing cannot be arbitrarily minimized, as sufficient room must
be preserved for the sample to oscillate freely. Therefore, striking
the perfect balance is crucial.

FIGURE 1
Induced voltage is produced when the sample mounted at the bottom of the rod vibrates perpendicular to the magnetic field, changing the
magnetic flux in the pick-up coils fixed to the electromagnet poles. After being processed by the preamplifier, this voltage is output. The Gaussmeter
probe is used to read and manipulate the magnetic field HX , and the position-adjustable VSM head can be used to drive the rod and sample to vibrate.
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The distinctive advantage of the VSM over other
magnetometers resides in its multifaceted applicability,
enabling it to characterize samples across diverse
morphological forms. For instance, VSM has been employed
to characterize powder-form nanomaterials, such as
NixCoxMgxCuxZn1−4xO, where doping-dependent transitions
from diamagnetic to mixed diamagnetic-ferromagnetic
behavior were observed (Thien et al., 2024). It also enables
the evaluation of perpendicular magnetic anisotropy (PMA) in
thin film structures by analyzing their hysteresis loops (Smith
et al., 2023). Furthermore, through modular integration of
cryogenic and high-temperature accessories, the VSM
facilitates magnetic measurements under controlled thermal
environments, a capability particularly critical for studying
temperature-dependent magnetic transitions. For example,
Feng et al. (2023) employed a VSM to measure the
temperature-dependent magnetization and hysteresis loops of
tetragonal and hexagonal Mn3O4 nanosheets. These
measurement results were used to determine the magnetic
phase transition, Curie temperature, and identify the
ferromagnetic ordering and the origin of magnetism. These
applications collectively highlight VSM’s versatility in
probing static magnetic properties across a broad range of
sample types and environmental conditions.

Despite its widespread use, the measurement precision of
conventional VSM systems presents limitations when
characterizing ultra-weak magnetic signals, particularly in the
context of micro- and nano-electronic materials. In response,
recent efforts have been devoted to improving system performance
through the development of enhanced vibration drivers and more
sensitive detection coil designs (Niazi et al., 2000; Nizhankovskii and
Lugansky, 2007; El-Alaily et al., 2015; Jordán et al., 2018; Lopez-
Dominguez et al., 2018; Dodrill and Lindemuth, 2021). While these
customized, home-built VSM systems offer advantages in cost and
user flexibility, they often fall short in achieving the high precision
required for advanced magnetic analysis. Therefore, improving
measurement precision and enabling versatile testing functions has
emerged as a central challenge for the advancement of VSM
technology.

2.2 Alternating gradient
magnetometer (AGM)

As another key technique for magnetic moment measurement,
the AGM offers significantly higher precision and sensitivity
compared to the VSM, making it especially well-suited for
characterizing materials with ultra-weak magnetic signals. Unlike
VSM, which relies on detecting induced voltages via sample
vibration, the AGM functions as a magnetic force balance,
detecting vibration amplitude of a sample subjected to an
alternating magnetic field gradient. The original concept of AGM
emerged in the 1970s, where the sample was mounted on an elastic
rod and subjected to an alternating magnetic field gradient. At
resonance, the magnetic force induced ameasurable deflection of the
rod, visible under a microscope. The deflection amplitude was found
to be proportional to the magnetic moment of the sample,
establishing the foundation of the AGM technique (Zijlstra,
1970). Subsequent developments in AGM technology primarily
focused on enhancing the vibration detection methods and
refining the sample holder design. In 1980, the integration of
piezoelectric bimorphs and lock-in amplifiers markedly improved
detection precision, reaching a sensitivity of 10−10 emu (Roos et al.,
1980). Building upon these advancements, Richter et al. (1988)
refined the system through optimizing signal acquisition,
introducing background noise compensation, and implementing
strategies to suppress external interference, thereby achieving a
remarkable sensitivity of 10−11 emu. Most notably, Todorovic and
Schultz (1998) employed a quartz tuning fork as the piezoelectric
sensor in combination with a magnetic field gradient of 5 kOe/cm
(50 T/m), attaining a noise floor as low as 10−12 emu, one of the most
sensitive performances reported to date in quantitative magnetic
characterization.

Currently, commercial AGMs, based on Flanders’ research
(Flanders, 1988; 1990), utilize piezoelectric bimorphs as sensors,
offering advantages such as high sensitivity, improved signal
stability, and reduced noise interference, with a typical sensitivity
of 10–8 emu at a sampling rate of one point per second. The
Composition is schematically depicted in Figure 2A, and
additional detail of probe is shown in Figure 2B. The core

FIGURE 2
Schematic representation of an AGM. (A) The Basic structure and electronics. Themagnetic sample, fixed at the bottom of probe andmagnetized by
the DC field, would vibrate along the direction of the gradient field which is caused by the alternating gradient coils. The probe converts the sample-
induced vibration into an electrical signal, which is subsequently processed by the preamplifier and lock-in amplifier before being sent to the control
software. (B) The detail of the probe and force sensor. The sample ismounted on a glass carrier connected to the piezoelectric bimorph through two
fused silica extensions. The piezoelectric bimorph detects the vibration of the sample, generating the electrical signal which is proportional to the force
on the sample.
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sensing element of a typical AGM probe is a piezoelectric bimorph,
which serves as a high-sensitivity vibration detector. The bimorph is
mechanically coupled to the sample via two fused silica extensions,
and the sample itself is mounted on a glass sample holder. The
magnetic field system comprises a field-controlled electromagnet
that provides a constant direct current (DC) magnetic field, along
with gradient coils that generate an AC magnetic field. Under the
excitation of the AC gradient field, the sample experiences a force at
the same frequency as the alternating field, which causes the
bimorph to generate a voltage signal proportional to the applied
force. This signal is detected and extracted by a LIA. When a DC
magnetic field is applied, the vibration amplitude of the sample is
proportional to its magnetic moment. By measuring the vibration
amplitude as a function of the applied DC field, a hysteresis loop can
be obtained. For an AGM, the force on the sample in the non-
uniform magnetic field is given by the following formula (Dodrill
and Reichard, 2021):

Fx � mx
∂Hx

∂x
( ) +my

∂Hy

∂x
( ) +mz

∂Hz

∂x
( )

In general, a force in the X direction results from the gradient of the
X component of the gradient field HX interacting with the X
component of the magnetic moment in the sample. The first
term in equation is this force. The magnetic moment mX can be
estimated by measuring the magnitude of the field gradient and the
alternating force. The second and third terms in equation should be
decreased because they are undesirable. In normal situations, this is
accomplished by lowering the field gradient.

The AGM has gained widespread recognition for its high
sensitivity and precision in characterizing weak magnetic
materials, making it a reliable tool for detecting subtle magnetic
responses. For example, Şuan et al. (2020) utilized AGM to examine
the impact of Al2O3 addition on Fe3O4 nanoparticles, demonstrating
its capability to sensitively detect variations in saturation
magnetization despite compositional changes. Similarly, Amir
et al. (2023) used AGM to characterize superparamagnetic iron
oxide nanoparticles (SPIONs) used in magnetic abrasives, extracting
key parameters such as coercivity and saturation magnetization, and
confirming their superparamagnetic behavior, which is critical for
magnetically assisted polishing applications.

Through continuous optimization of mechanical sensing
mechanisms, structural design, and gradient coil configurations,
researchers have developed various AGM system variants tailored to
different measurement demands. These advancements include
integration with the MOKE (Hill et al., 1996), the development
of vector magnetometers (Thomas et al., 2003), and specialized
implementations for measuring reversible parallel and transverse
susceptibilities (Barbic, 2004). Additional adaptations have enabled
operation under cryogenic conditions (O’Grady et al., 1993) and the
development of reed-type AGM systems for compact, high-
sensitivity applications (Frey et al., 1988). Despite its high
measurement precision and wide adaptability, AGM still faces
several technical limitations in practice. Its sensitivity is highly
susceptible to environmental disturbances, which may degrade
performance by an order of magnitude or more. Common
external interferences include acoustic noise, air flow fluctuations,
ambient temperature variation, electronic noise, and mechanical

vibrations from nearby equipment or human activity. In addition,
the mechanical fragility of AGM probes, particularly the fused silica
extensions, necessitates careful sample mounting to avoid damage.
To address these challenges and enhance detection accuracy, Truth
Instruments Co., Ltd., has recently introduced a novel variant
known as the Laser Alternating Gradient Magnetometer
(LAGM). This system employs laser Doppler vibrometry to
capture the oscillatory motion of the sample induced by the
alternating magnetic gradient. Leveraging the ultra-high
displacement resolution of laser interferometric sensing, on the
order of picometer, the LAGM achieves higher measurement
precision than traditional AGMs, with magnetic moment noise
levels as low as 10−9 emu. In addition, the LAGM features a
decoupled design in which the vibration generation and detection
subsystems are physically separated. This modularity facilitates
integration with external systems, such as low-temperature
cryostats or electrical transport measurement platforms, enabling
the construction of a multifunctional physical field characterization
system. Such versatility positions the LAGM as a promising tool for
future high-precision magnetometer applications.

2.3 Magneto-optical Kerr microscope

The Magneto-Optical Kerr Microscope is a specialized
instrument renowned for its ability to provide real-time, high-
resolution imaging of magnetic domain structures in a non-
invasive and surface-sensitive manner. Its working principle is
based on the magneto-optical Kerr effect, wherein the
polarization state of reflected light is modulated by the
magnetization of the sample. This effect was first observed by
John Kerr in the 1870s (Kerr et al., 1877), and has since laid the
foundation for a range of magneto-optical measurement techniques.
Based on the magneto-optical Kerr effect, two main types of
instruments have been developed: Kerr magnetometers for
hysteresis loops measuring, and Kerr microscopes for magnetic
domain structures imaging. Especially, the Kerr microscope
stands out for its capability to visualize spatially resolved
magnetic phenomena, making it particularly valuable in both
fundamental magnetism studies and spintronic research.

The schematic sketch and the mechanism of the MOKE are
shown in Figure 3A. By measuring slight changes in the polarization
of a polarized laser beam upon reflection from the sample surface,
the magnetic information of the sample can be obtained (McCord,
2015). We can use this phenomenological model to describe the
detailed origin of this effect. First, the linearly polarized light can be
seen as a superposition of left and right circularly polarized
components. Upon interacting with a magnetized sample, two
distinct effects occur: (i) the two polarized components will travel
with different velocities and they emerge at the end of the media with
different phase shifts, which will lead to the Kerr rotation θk; (ii) the
absorption coefficients of the two components for the magnetic
media is different and they emerge at the end of the media with
different intensities, which will lead to the Kerr ellipticity εk of the
outgoing light (Ciprian et al., 2018). A further underlying reason for
this phenomenological model is the Zeeman exchange splitting
together with spin-orbit interaction, which is explained in detail
in papers (Argyres, 1955; Bruno et al., 1996). Depending on the
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relative directions of magnetization m and plane of incidence of the
light, MOKE can be categorized into three geometries: polar MOKE,
longitudinal MOKE, and transverseMOKE. Among them, polar and
longitudinal MOKE are the most commonly used configurations.
Polar MOKE is sensitive to the out-of-plane magnetization, where
the magnetization vector is oriented normal to the sample surface.
Longitudinal MOKE, on the other hand, detects the in-plane
magnetization component that lies within the plane of incidence.
In longitudinal MOKE measurements with oblique incidence,
unwanted polar MOKE contributions may also arise, potentially
affecting the accuracy of in-plane magnetization detection. To
minimize the influence of the polar component and isolate the
longitudinal response, several suppression strategies have been
developed. These include a dual-configuration approach that
swaps the laser source and detector to extract angular-dependent
components via addition and subtraction (Ding et al., 2000), a
quadrant-detector-based method that separates signals through
spatially resolved analysis (Celik et al., 2019), and a recently
developed mirror and quarter-wave plate configuration that
leverages rotational symmetry to cancel the polar response
(Greening et al., 2025). In addition, by combining any two or all
of them and using some specified techniques (Vavassori, 2000; Ding
et al., 2001), i.e., generalized magneto-optical ellipsometry, MOKE
can provide the vectorial magnetic information of the sample. In
summary, it should also be noted that, unlike techniques directly
measuring magnetic flux or moment, MOKE signals depend also on
the material-specific magneto-optical coupling strength.

The basic setup for detecting magnetism using MOKE typically
consists of a light source, a polarizer, an analyzer, and a detector
(Qiu and Bader, 2000). Linearly polarized light is incident on the
surface of a magnetic sample; the reflected light is then collected by
the detector after passing through the analyzer. To enable spatially
resolvedmagnetic domain imaging, the Kerr microscope integrates a
microscope objective and a camera into the optical path, as shown in
Figure 3B. Additionally, to observe different types of MOKEs (e.g.,
longitudinal, transverse, or polar Kerr effects), aperture or fiber optic

entry method can be used to adjust the incident light direction.
While the use of a camera enables real-time visualization of
magnetic domains, the quantitative accuracy of Kerr rotation
angle measurements is generally lower than that of conventional
point-detection MOKE magnetometers. This is primarily due to
illumination instability, camera noise, and limited detector
sensitivity, which reduce the precision of angle-resolved Kerr
signal extraction.

Owing to its high spatial resolution, surface sensitivity, and non-
destructive nature, magneto-optical Kerr microscope has become a
powerful characterization platform for the investigation of magnetic
domain structures and their evolution (Domenichini et al., 2019).
One of its fundamental applications lies in defect detection and
quality assessment of magnetic thin films, where high-resolution
Kerr imaging enables precise magnetization mapping to identify
local inhomogeneities and pinning sites (Adam et al., 2009; Adam
et al., 2010). Similarly, MOKE has been widely employed to visualize
magnetic skyrmions, nanoscale magnetic quasiparticles with
topological protection, critical for next-generation low-power
spintronic devices such as racetrack memories (Kato et al., 2023).
Beyond static imaging, magneto-optical Kerr microscope plays a
crucial role in the real-time study of magnetic domain wall
dynamics, offering insights into the underlying mechanisms
governing domain nucleation and propagation. In advanced
configurations, MOKE systems can be integrated with electrical
probe stations to facilitate the observation of domain wall motion
driven by spin-transfer torque (STT) and spin-orbit torque (SOT)
effects (Ryu et al., 2013).

To extend conventional MOKE techniques toward ultrafast
magnetization dynamics, time-resolved magneto-optical Kerr
effect (TR-MOKE) systems employ a pump-probe configuration
to achieve picosecond and even femtosecond temporal resolution
(Neudert et al., 2005; Mozooni et al., 2014). In this technique, two
temporally separated laser pulses are used: a high-energy pump
pulse excites the sample or initiates a specific magnetic event, while a
delayed probe pulse monitors the resulting changes. By using a high-

FIGURE 3
Illustration of the magneto-optical Kerr effect principle and a representative setup of Kerr microscope. (A) Magnetic measurement mechanism of
MOKE. The linearly polarized light is incident on a magnetic material under an angle of θinc relative to the surface normal. As a result of the magneto-
optical Kerr effect, the incident linearly polarized light Einc undergoes a change in polarization state, and the reflected light Erefl becomes elliptically
polarized. The resulting Kerr rotation θk and ellipticity εk are shown. θrefl is the angle of reflection of light. (A) is adapted from McCord (2015). (B)
Schematic diagram of a typical magneto-optical Kerrmicroscope setup. Linearly polarized light is focused onto the sample surface, and the reflected light
undergoes a polarization change due to the magneto-optical Kerr effect. It is then analyzed by a beam splitter, compensator and analyzer before being
captured by a camera. By varying the direction of the applied magnetic field relative to the plane of incidence and the sample surface, the system enables
measurements of polar, longitudinal, and transverse Kerr effects. (B) is adapted from Cao et al. (2024).
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precision displacement stage to systematically change the
transmission distance of the probe pulse, the time delay between
the pump and probe pulses can be gradually and precisely adjusted.
This allows for the recording of time-resolved Kerr signals to
reconstruct the dynamic evolution of the sample’s magnetization
(Schäfer andMcCord, 2021). This enables the time resolution step of
TR-MOKE to be as short as sub-picoseconds. Gradually, TR-MOKE
microscope has become the main ultrafast magnetic dynamic
measurement method in the field of spintronics, especially it
plays an extremely important role in the field of optical-magnetic
coupling such as all-optical switching (AOS) (Lalieu et al., 2019;
Peng et al., 2024; Peng et al., 2023a; b; c). Researchers have employed
TR-MOKE measurements to verify the ultrafast AOS dynamics in
materials such as GdFeCo alloys (Kirilyuk et al., 2010), TbFe
(Hassdenteufel et al., 2013), and Co/Gd multilayers (Lalieu et al.,
2017), as well as the unique phenomena observed in
antiferromagnetic materials like Mn2Au (Bhattacharjee et al.,
2018) and IrMn (Guo et al., 2024) under femtosecond laser
excitation. Subsequently, TR-MOKE has also been utilized to
explore the integration of AOS with magnetic tunnel junctions
(MTJs) (Wang et al., 2022), as well as laser-induced
magnetization switching in ferromagnetic spin valves (Igarashi
et al., 2023; Igarashi et al., 2024). These studies offer novel
approaches for the optical-electrical-magnetic integration and
pave the way for future information writing and storage
technologies. TR-MOKE is one of the most representative
applications of ultrafast time-resolved pump-probe techniques.
Beyond that, the advantages brought by pump-probe
methods—such as ultrafast temporal resolution, multidimensional
information, and non-contact measurement—have also been
applied in various fields, including transient absorption, lattice
and structural dynamics such as time-resolved X-ray diffraction
(TR-XRD) and time-resolved Raman spectroscopy (TR-Raman),
time-resolved ferromagnetic resonance (TR-FMR), and time-
domain thermoreflectance for studying thermal properties.

MOKE technology has seen continuous advancements in recent
years, driven by its exceptional sensitivity and scalability. Although
quantitative characterization remains technically challenging, some
researchers have proposed leveraging magnetic domain
displacement as a potential solution (Hrabec et al., 2014; Magni
et al., 2022). Moreover, in magnetic chip fabrication, wafer-level
MOKE inspection has become the most prevalent method for
quality control. Given these developments, MOKE-based
techniques are expected to play an increasingly important role in
both future research and industrial production.

2.4 Magnetic force microscope (MFM)

As another pivotal magnetic imaging technique, MFM has been
widely adopted in both materials science research and industrial
applications, owing to its ability to achieve nanoscale spatial
resolution in the characterization of magnetic structures
(Hartmann, 1999). It operates by detecting the magnetic force
gradient between a magnetized probe tip and the sample surface,
allowing for indirect imaging of magnetic field distributions with
high spatial precision. Since its introduction, MFM has undergone
continuous technological advancements and methodological
refinements, establishing itself as a powerful tool for the high-
resolution investigation of localized magnetic phenomena,
including domain structures, magnetic coupling, and stray field
distributions.

As illustrated in Figure 4A, MFM mainly consists of four key
components: a cantilever, a ferromagnetic tip, a detection system,
and a scanning control unit. The cantilever is usually made of silicon
or silicon nitride, with a ferromagnetic tip attached to its end. The
magnetic tips are typically fabricated from polycrystalline metal
wires, such as nickel, iron, or cobalt. The detection system is
responsible for measuring the subtle deflections of the cantilever
induced by magnetic interactions between the tip and the sample.

FIGURE 4
Principle and measurement images of MFM. (A) The measurement principle of MFM. (B) A typical MFM image of a labyrinth magnetic domain. (C) A
typical MFM image of skyrmions.
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Common detection approaches include optical beam deflection
methods (Erlandsson et al., 1988; Rugar et al., 1988), capacitive
sensors (Göddenhenrich et al., 1988), and in some high-sensitivity
implementations, differential optical interferometry (Schönenberger
and Alvarado, 1989). The scanning control unit precisely regulates
the relative position between the sample and the tip, enabling high-
resolution, point-by-point surface scanning and mapping of the
magnetic force distribution at the nanoscale.

MFM operates based on the dipolar interaction between the
ferromagnetic tip and the magnetic stray field of the sample surface.
This interaction enables MFM to acquire both magnetic and
topographical information of the sample simultaneously. As the
ferromagnetic tip approaches the sample surface, the stray magnetic
field of the sample exerts a localized force on the tip, leading to a
measurable deflection of the cantilever. Highly sensitive detection
systems are employed to accurately measure the slight displacements
of the cantilever. These deflections provide quantitative information
about the magnetic force distribution, thereby reflecting the
underlying magnetization of the sample surface. The detected
signal, typically proportional to the magnetic force or its spatial
derivative, is integrated into a servo feedback loop that accurately
regulates the tip-sample distance. During the scanning process, this
distance is continuously monitored and recorded. As a result, an
image representing contours of constant interaction force or force
gradient is constructed, revealing critical magnetic features such as
the size, shape, and orientation of magnetic domains. In addition to
magnetic imaging, MFM can also operate in specific modes to
acquire topographical information. For example, in the
electrostatic control method, a controlled Coulomb force is
applied between the tip and the sample in addition to the
magnetic interaction force. By precisely adjusting the magnitude
of this electrostatic force, the tip-sample distance is regulated. While
keeping the total interaction force constant, the vertical
displacement of the tip during scanning is recorded. This
displacement data corresponds to the topographical variations of
the sample surface, thus enabling topographical imaging. Figures
4B,C give typical domain images measured by MFM.

The diameter and geometry of the MFM probe tip have a critical
impact on the instrument’s spatial resolution. A larger tip radius
increases the magnetic interaction volume, leading to signal
averaging and a diminished ability to resolve fine-scale magnetic
features. To address this limitation, several tip miniaturization
techniques have been developed. Among them, electron beam
deposition (EBD) (Jumpertz et al., 1997), focused ion beam (FIB)
milling (Vasile et al., 1991), and the attachment of multi-walled
carbon nanotubes (MWNTs) to microfabricated silicon cantilevers
(Dai et al., 1996) have shown the most promising results. In
addition, researchers have explored strategies to reduce magnetic
coating coverage, such as selectively coating only the apex of the tip
or thinning the magnetic layer, with the aim of enhancing magnetic
sensitivity and spatial resolution. Beyond geometric and coating
modifications, further advancements have led to the development of
specialized probe types, including double-exchange tips (Han et al.,
2007), antiferromagnetic tips (Liu et al., 2002), and synthetic
antiferromagnetic tips (Wu et al., 2003). Measurement results
indicate that these advanced probes can significantly improve the
accuracy and fidelity of magnetic force measurements (Schwarz and
Wiesendanger, 2008).

MFM leverages its sensitivity to local magnetic interactions to
enable direct imaging of ferromagnetic domain structures, offering
valuable insights into both hard and soft magnetic materials. It can
resolve individual domain boundaries and reveal the fine internal
features of magnetic domains, which are essential for understanding
intrinsic magnetic properties (Göddenhenrich et al., 1988). In
industrial applications, particularly within the magnetic recording
industry, MFM serves as a key diagnostic tool (Martin et al., 1987). It
is widely used to analyze the stray magnetic fields generated by
recording heads, providing critical information for assessing their
performance and structural integrity. Irregularities in stray-field
distribution, for instance, may indicate mechanical defects or
signal functional degradation (Van Schendel et al., 2001).
Furthermore, MFM is applied to investigate written domains in
both magneto-optical storage films and longitudinal magnetic
recording media, thereby facilitating process optimization and
contributing to higher data storage density and improved system
reliability (Schoenenberger et al., 1991; Porthun et al., 1995). In
recent years, MFM has served as a powerful tool for investigating a
wide variety of magnetic structures. MFM has been widely applied to
the study of patterned magnetic media (Rodríguez et al., 2016),
artificial spin ice (Wang et al., 2016), domain walls (McCord, 2015),
nanowires (Wohlhüter et al., 2015), multiferroic structures
(Henrichs et al., 2016), and topological magnetic textures such as
skyrmions (Pham et al., 2024). In particular, researchers have used
MFM to demonstrate various spin current-driven operations (Pham
et al., 2024; Mallick et al., 2024) of skyrmions, including their
nucleation (Sun et al., 2023), motion (Pham et al., 2024), and
annihilation (Mishra et al., 2025), which has significantly
facilitated the development of skyrmion-based magnetic tunnel
junctions (Chen et al., 2024) and racetrack memory devices
(Wang et al., 2020). Meanwhile, quantitative MFM has also
continuously evolved over the past 2 decades, employing a
variety of approximation methods to quantitatively describe the
two-dimensional stray field distribution of magnetic probes. These
methods include parameter-free tip transfer function (TTF)
approaches (Vock et al., 2011), the use of nitrogen-vacancy (NV)
centers in diamond to measure the stray field and derive the
cantilever calibration function (Sakar et al., 2021), and the
approximation of the tip using a tip-equivalent magnetic charge
model to decouple the stray fields of the sample and the probe (Feng
et al., 2022a), among others. The two-dimensional stray field
distribution of the sample obtained via quantitative MFM can
reveal high-resolution, quantitative magnetic information such as
the domain structure and the distribution of exchange bias fields
(Zingsem et al., 2017). In addition, Monte Carlo (MC)methods have
been introduced to analyze uncertainty propagation in quantitative
MFM, providing a statistical framework for evaluating the reliability
of measured magnetic parameters (Marschall et al., 2022).
Moreover, an implementation that integrates specially engineered
low-stiffness cantilevers, high-aspect-ratio magnetic nanowire tips,
and multi-mode vibration excitation and control has demonstrated
significant advantages in studying complex magnetic samples
(Freitag et al., 2023). In the future, it is expected to become an
important tool for high-resolution magnetic measurements.

MFM offers a series of significant advantages that make it a
powerful tool in the study of magnetic materials. It exhibits high
environmental adaptability, capable of operating under diverse
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conditions with minimal sample-preparation needs, which
simplifies experimental workflows across various fields. Moreover,
its ability to concurrently acquire topographical and magnetic stray-
field information provides a comprehensive view of the sample in a
single scan, enhancing research efficiency. However, MFM also faces
several drawbacks. Its resolution and performance are limited by the
cantilever’s sensitivity, which may be insufficient to detect subtle
forces. In addition, environmental noise, such as temperature
fluctuations and mechanical vibrations, and tip-induced stray
fields can further interfere with measurements, especially for soft
magnetic samples. These limitations collectively hinder the high-
precision measurement capabilities of MFM and must be carefully
addressed. With ongoing technological advancements, MFM
continues to evolve toward higher precision and broader
applicability, including capabilities such as quantitative magnetic
moment analysis, image reconstruction and denoising, instrumental
integration with complementary techniques, and exploration of
emerging application fields (Kazakova et al., 2019; Feng
et al., 2022b).

2.5 Superconducting quantum interference
device-based magnetometer

Among various magnetic measurement techniques, SQUID
magnetometer stands out as the most sensitive and precise
instrument currently available. Utilizing the principles of
superconductivity and the Josephson effect, SQUID can measure
the magnetic moment with an accuracy of 10−8 emu in a strong
magnetic field (7 T and above) and ultra-low temperature (1.8 K)
environment (Schmelz et al., 2016). Due to its reliance on a
superconducting state, SQUID magnetometer operation
necessitates cryogenic environments, typically maintained by
liquid helium or closed-cycle refrigeration systems, which leads
to relatively high operational and maintenance costs.
Nevertheless, SQUID remains unparalleled in its ability to
perform ultra-high-precision magnetic moment measurements
across a wide variety of materials and under complex
experimental conditions (Weinstock, 2002), making it a critical
tool in the study of low-dimensional quantum systems,
superconductors, and spintronic materials.

The measurement structure and operating principle of the
SQUID magnetometer are illustrated in Figure 5A. Each
component in the system is carefully designed to serve the goal
of ultra-high-precision magnetic moment detection. For example,
the magnetic signal from the sample is first sensed by a pickup coil,
designed according to Faraday’s law of electromagnetic induction: as
the sample moves relative to the coil, a time-varying magnetic flux
induces a current that reflects the sample’s magnetic moment. To
further enhance sensitivity and suppress environmental noise, the
system employs a balanced second-order gradiometer configuration
in the coil design. In this design, both the upper and lower coils are
wound clockwise, while the central coil is wound counterclockwise
with twice the number of turns. This symmetric winding geometry
effectively cancels out uniform magnetic field fluctuations and
external magnetic interference, thereby significantly improving
the signal-to-noise ratio of the system. Similar to the inductive
coil design in VSM, the physical dimensions of the pickup coil in

SQUID systems must also be optimized to balance sensitivity and
geometric accuracy. On one hand, the gradiometer should ideally be
small relative to the sample, so that magnetic flux lines do not return
the pickup loop, maximizing magnetic coupling efficiency. On the
other hand, to minimize artifacts caused by sample geometry and
size variation, the detection coils are often made larger than the
sample itself. This trade-off requires precise engineering, as
improper coil-sample matching may introduce systematic errors
in the measured moment, particularly if the sample deviates from
the geometry used during system calibration (Kirtley et al., 1995;
Stamenov and Coey, 2006).

In a closed superconducting circuit, the total magnetic flux
enclosed by the circuit remains constant, a fundamental property
governed by flux quantization. This means that any magnetic flux
variation caused by the motion of a magnetic sample within the
pickup coil must be compensated by an equivalent response
elsewhere in the circuit. Through the design of a flux
transformer, this flux variation can be coupled into the detection
circuit, enabling indirect but highly precise measurement of the
sample’s magnetic moment. The SQUID is currently the most
sensitive technology for magnetic flux detection. It can convert
extremely small changes in magnetic flux into measurable voltage
signals, and its core components are one or more Josephson
junctions embedded in a superconducting loop. A Josephson
junction is a classic “sandwich” structure consisting of two
superconducting electrodes separated by an ultrathin insulating
barrier, The behavior of the Josephson junction is governed by
the Josephson effect, which manifests when the barrier thickness is
less than the coherence length of the Cooper pairs in the
superconductor. As illustrated in Figure 5B, when the current
flowing through the junction is below the critical current IC, the
junction remains in the superconducting state, and no voltage drop
is observed across it. Above the threshold current, the junction
transitions into a resistive state and exhibits Ohmic behavior. The
transition region near I � IC is particularly significant: small
variations in current within this region result in large voltage
responses. Based on the steepness of the slope in the transition
region, the SQUID enables ultra-sensitive magnetic moment
measurements (Fagaly, 2006).

Another key reason for the extremely high measurement
accuracy of SQUID is the quantization characteristic when it
measures magnetic flux. When the SQUID senses an external
magnetic flux change Φa, it induces a compensating magnetic
flux Φind such that the total enclosed flux in the loop satisfies the
condition nΦ0 � Φa +Φind, where Φ0 is the magnetic flux quantum
and n is an integer. As shown in Figure 5C, the induced current
changes as a periodic function with the external magnetic flux
(Fagaly, 2006). To obtain an absolute and linear measurement of
the flux value, an additional structure, known as a flux-locked loop
(FLL), is introduced, as shown in Figure 5A. This configuration
includes an external feedback voltage source that couples into the
pickup coil and generates a compensating flux to actively cancel the
flux change produced by the sample (Dumas and Hogan, 2021). The
final output of the measurement is obtained by summing the
feedback signal applied by the external voltage source and the
residual high-precision signal extracted from the Josephson
junction response, thus achieving both linearity and ultra-high
sensitivity.
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Depending on how the sample interacts with the pickup coil,
SQUID magnetometers support two primary modes for magnetic
moment measurement: the traditional DC scan and the SQUID-
VSM mode. The key distinction between DC-SQUID and SQUID-
VSM lies in their measurement modes: DC-SQUID operates in a
static (DC) scanning mode, while SQUID-VSM employs a dynamic
(AC) vibrating mode. This fundamental difference leads to diverging
characteristics in terms of measurement targets, spatial resolution,
sensitivity, and application focus. The traditional DC scan drives the
sample completely through the second-order gradiometer. By fitting
the recorded magnetic signal with position, the magnetic moment of
the sample can be obtained. For example, Wu et al. (2021) utilized
the DC measurement mode of SQUID to characterize the magnetic
response of a superconducting sample, confirming its
superconducting properties and magnetic shielding effect. In
contrast, the SQUID-VSM mode keeps the sample oscillating
sinusoidally at a fixed frequency near the center of the
gradiometer, rather than translating it through the entire
detection region. The time-varying magnetic response induces an
AC voltage, which is measured using LIA, and themagnetic moment
is extracted from the amplitude of the AC signal at the drive
frequency (Hurt et al., 2013). For example, Adanlété Adjanoh
et al. (2024) employed the SQUID-VSM mode to measure
quasistatic magnetic parameters of Ta/Pt/Co/Pt ultrathin films,
revealing that annealing significantly reduces coercivity and
enhances magnetic domain structure. Due to the differences in
underlying principles and measurement procedures, the two
SQUID modes are suited to different types of samples and
experimental needs. The DC scan mode determines the magnetic

moment by fitting the spatial variation of the output voltage to a
theoretical response function (Bouchiat, 2009), making it well suited
for large or geometrically irregular samples, where positional
correction through fitting improves accuracy. In contrast, the
SQUID-VSM mode measures the amplitude of the induced AC
voltage and is therefore more appropriate for high-precision
measurements of small, geometrically well-defined samples,
where stable harmonic motion ensures consistent signal generation.

Although SQUID magnetometer is renowned for its exceptional
sensitivity and precision, it presents several practical challenges that
must be carefully addressed during operation. The need for
cryogenic temperatures increases both system complexity and
operational costs, while also limiting measurement throughput
and accessibility. Additionally, measurement accuracy can be
compromised by flux creep, magnet hysteresis, and instrumental
drift, necessitating systematic calibration and stabilization (Sawicki
et al., 2011; Buchner et al., 2018). Furthermore, SQUID
magnetometer is generally not suitable for large-volume or
strongly magnetic samples, as these may exceed the dynamic
range of the pickup coils or introduce nonlinearities and flux
instabilities in the detection process. Nevertheless, due to its
unparalleled capability for detecting ultra-weak magnetic signals
and enabling absolute magnetic moment quantification, SQUID
magnetometry remains one of the most widely adopted techniques
in magnetic characterization. Ongoing advances such as cryogen-
free cooling technologies, miniaturized SQUID-on-chip systems,
and enhanced real-time feedback electronics continue to improve its
usability and reliability, thereby expanding its applications in both
fundamental studies and applied magnetism research.

FIGURE 5
Schematic and characteristic response curves of a superconducting quantum interference device (SQUID) system. (A) Circuit diagram of the SQUID
detection system. The sample passes or vibrates through the pickup coils on the left to produce a change in magnetic flux. The external feedback voltage
source is used to counteract the absolute flux. The flux transformer couples the signal into the SQUID circuit, where the Josephson junctions
(represented by crosses) respond sensitively to flux variations. The bias current IB � 2IC ensures the junctions operate in the transition region for
optimal sensitivity. (B)Generalized current-voltage (IV) response curve of a Josephson junction. The slope of the dotted line represents the resistance of
the Josephson junction when it crosses the transition region. (C) The dependence of the current induced by DC SQUID with the external magnetic flux.
The SQUID will generate the corresponding magnetic flux to make the total magnetic flux an integer multiple of the basic flux quantum Φ0. Figure 5 is
adapted from Franco and Dodrill (2021).
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3 Dynamic magnetic measurement
techniques

Static magnetic characterization techniques reveal the
equilibrium magnetic properties of materials under direct current
fields, yet their quasi-static limit inherently fails to capture the
dynamic behavior of magnetic moments in alternating
electromagnetic fields. For investigations of high-frequency
devices or spin dynamics, a transition to the dynamic
measurement paradigm is necessitated, employing time-varying
electromagnetic fields to excite forced magnetization oscillations
or resonant spin precession, with theoretical interpretation based on
the Landau-Lifshitz-Gilbert (LLG) equation to resolve frequency-
dependent responses. This transition from equilibrium-state
characterization to dynamic-state analysis not only addresses the
limitations of static characterization but also establishes a
spatiotemporal framework for material magnetism, providing
critical insights for spintronics and high-frequency device
applications.

3.1 Alternating current (AC) susceptometer

AC susceptometry is a fundamental technique in magnetism
research and plays a central role in characterizing the dynamic
magnetic responses of materials (Hartshorn, 1925). By quantifying
the frequency-dependent magnetic susceptibility under alternating
electromagnetic fields, this method provides crucial insights into
phenomena such as superconducting phase transitions (Bałanda,
2013), magnetic relaxation processes (Mydosh, 1993), and energy
dissipationmechanisms (Gatteschi et al., 2006). As a result, it offers a
powerful tool for bridging the gap between a material’s microscopic
magnetic dynamics and its macroscopic functional properties.

The theoretical foundation of AC susceptometry lies in the
response of materials to alternating fields, described by the
complex magnetic susceptibility χ(ω)

χ ω( ) � χ′ ω( ) + iχ″ ω( )
Here, real part χ′(ω) represents the in-phase magnetization
component, while imaginary part χ″(ω) quantifies out-of-phase
energy dissipation arising from hysteresis, eddy currents, or spin-
relaxation processes. This formulation assumes the weak-field
approximation, under which the system exhibits harmonic
responses confined to the fundamental frequency ω. A central
framework for interpreting AC susceptibility is the Debye
relaxation model (Topping and Blundell, 2018), which
incorporates a damped dynamic equation to relate magnetization
response to the characteristic relaxation time. This model reveals the
frequency-dependent behavior of susceptibility (as shown in
Figure 6A): at low frequencies, the magnetic response is fully
developed; at high frequencies, the response is constrained by
damping; and an energy dissipation peak emerges at intermediate
frequencies, allowing precise interpretation of magnetic relaxation
mechanisms in materials.

The mutual inductance method is a prevalent technique for AC
susceptibility measurement, ideally suited for low-frequency regimes
where magnetic relaxation and dynamic responses dominate, offering a

simple yet robust solution for fundamental material characterization (as
shown in Figure 6B). The system operates through a drive coil
connected to an AC current source, generating a stable alternating
magnetic field whose frequency and amplitude stability directly impact
measurement precision. A sense coil array, typically configured with
dual reverse-wound coils around the sample, detects magnetization-
induced flux changes, converting magnetic responses into voltage
signals and rejecting environmental noise. A lock-in amplifier then
processes these signals using the drive coil current as a reference,
applying phase-sensitive detection to extract in-phase and out-of-phase
components from the fundamental frequency ω (Edgar and Quilty,
1993; Youssif et al., 2000). In practical measurements, the
demagnetization effect must be considered. The internal
magnetization of a material generates a demagnetizing field Hd

opposing the external field Hex, resulting in the internal field:
H � Hex +Hd. This leads to a discrepancy between the measured
extrinsic susceptibility (χext) and the intrinsic susceptibility (χ) of the
material: χext � χ

1+Nχ. Here, N denotes the demagnetization factor,
determined by the sample geometry (Blundell, 2001).

AC susceptometry is widely employed to investigate the
temperature- and field-dependent magnetic relaxation behavior of
materials. In systems such as paramagnetic salts, it enables analysis
of the spin relaxation process by applying the Debye relaxation model,
which relates susceptibility responses to frequency under both
isothermal and adiabatic conditions. By modifying this model to fit
experimental data, researchers can elucidate the energy exchange
mechanisms between spin systems and the lattice, thereby
uncovering the underlying magnetic relaxation dynamics (Casimir
and Du Pré, 1938). Furthermore, AC susceptibility has proven to be
a powerful tool for probing superconducting phase transitions. For
instance, by analyzing the temperature dependence of both complex
and wide-band AC susceptibility under various flux pinning regimes,
researchers have successfully extracted key physical parameters of high-
TC superconductors, including the critical temperature, magnetic
penetration depth, and pinning potential, thereby providing deeper
insights into the nature and dynamics of the superconducting transition
(Gömöry, 1997). In recent years, AC susceptometry has been
increasingly applied to study dynamic magnetic properties in
advanced systems such as magnetic nanoparticles, molecular
magnets, and low-dimensional heterostructures (Ghigo et al., 2022;
Borgohain and Borah, 2021; Fernández-García et al., 2022). With
sensitivity to both reversible and dissipative magnetic responses, it
serves as a powerful tool for investigating spin dynamics and magnetic
relaxation behavior. Notably, the development of high-frequency AC
susceptometry has enabled time-resolved analysis of fast magnetic
processes, including spin relaxation (Lah et al., 2020), quantum
tunneling (Riordan et al., 2019), and high-speed switching relevant
to spintronic devices (Cafolla-Ward, 2024). These advancements open
new pathways for characterizing materials with short relaxation times
and frequency-dependent losses.

However, this technology faces several challenges: during
measurements, Joule heating and eddy current heating easily
induce sample temperature drift, and existing temperature
control measures show limited effectiveness under extreme
conditions (e.g., high frequencies). Additionally, inductive and
capacitive coupling noise in the environment interferes with
detection signals, making interference suppression extremely
difficult in complex electromagnetic environments. Moreover, the
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absence of unified calibration standards reduces the comparability of
results from different devices, while the diversity of standard
samples also requires enhancement. In the future, AC
susceptibility technology may further benefit from integration
with multimodal magnetic characterization methods (e.g.,
Magneto-Optic Kerr Effect, X-ray Magnetic Circular Dichroism),
enabling more comprehensive and element-specific analysis.

3.2 Ferromagnetic resonance (FMR)-
based system

FMR is a widely used technique for probing the high-frequency
magnetization dynamics of magnetic materials. In contrast to AC
susceptometer, which characterizes low-frequency magnetic
relaxation, FMR-based system investigates the resonant precession of
magnetic moments induced by a combination of a static magnetic field
and a microwave-frequency oscillating field. When the excitation
frequency matches the natural precession frequency of the
magnetization vector, resonance occurs, enabling quantitative
investigation of properties such as magnetic anisotropy, damping
constants, and gyromagnetic ratios. This makes FMR a vital tool in
the study of spintronic materials, multilayer heterostructures, and
magnetization relaxation phenomena under GHz-range excitations.
The early exploration of FMR began in 1911, when V. K. Arkad’yev
first observed microwave absorption phenomena in nickel and iron
wires exposed to centimeter-wave radiation (Vonsovskii, 2013). In
1923, J. Dorfmann contributed to the theoretical interpretation of
these observations and proposed experimental tests to investigate the
influence of strong external magnetic fields on ferromagnetic resonance
behavior (Dorfmann, 1923). The experimental realization of FMR
advanced significantly in 1946, with pioneering work by James
Griffiths (Griffiths, 1946), who is widely credited with its discovery.
Soon after, Charles Kittel (Kittel, 1948) provided a theoretical
explanation for Griffiths’ results, laying the groundwork for the
modern interpretation of FMR and its application across a wide
range of magnetic systems.

To explain the fundamental principle of FMR, we need to start with
a discussion on magnetic dynamics. Within the framework of the

macrospin approximation, the time evolution of the magnetization
vector (m) of a ferromagnet in the presence of an effective magnetic
field (Hef f ) can be effectively described by the Landau-Lifshitz-Gilbert
(LLG) equation (Landau and Lifshitz, 1935),

∂m
∂t

� -γμ0m × Hef f( ) + αm ×
∂m
∂t

( )
where γ, μ0, and α are the gyromagnetic ration, vacuum permeability
and the Gilbert damping parameterm respectively. The LLG equation
includes two torque terms on the right-hand side. The first term,
-γμ0m × Hef f , describes precession and involves the rotation of both
the magnetization vector (m) and the effective magnetic field (Hef f ).
The second term, αm × ∂m

∂t , represents damping terms which aligns the
magnetization alongHef f . The value of α determines the damping rate,
with larger values causing faster alignment and smaller values leading to
slower alignment of m with Hef f . The amplitude of the precessions
gradually decreases due to damping in the ferromagnet. FMR occurs
when an external alternating magnetic field (HRF) is applied to the
ferromagnet, compensating for the energy dissipation caused by
damping. This results in a forced precession of m. By tuning the
frequency of HRF to match the natural precession frequency of m, the
amplitude of the forced precession reaches its maximum due to
resonance. This phenomenon is known as FMR, and the frequency
of precession during resonance is referred to as the resonance frequency
f (f � ωres/2π). Kittel’s relation establishes a connection between the
resonant field H0 and the resonance frequency f,

f � γ

2π
( ) ����������������

H0 H0 + 4πMeff( )√
where 4πMeff is the effective demagnetization field of the
ferromagnet. According to the equation, the resonance condition
can be matched by fixing H0 and tuning the frequency of HRF or
vice versa.

Early FMR measurements were primarily performed using
resonant microwave cavities (Patton and Kohane, 1972), shown
in Figure 7A, where the resonance condition was achieved by
sweeping a static magnetic field while monitoring microwave
absorption within a fixed-frequency cavity. These cavity-based

FIGURE 6
Principle and instrumentation of ACmagnetic susceptibility measurement. (A) The Debye relaxation model describes the frequency dependence of
the real (χ′) and imaginary (χ″) components of AC susceptibility. (B) Schematic of a mutual inductance AC susceptometer. The system consists of two
essential components: a drive coil (shown in blue) that generates an alternating magnetic fieldHAC , and a detection coil (shown in yellow) wound around
the sample to inductively measure the voltage response. A static bias fieldHDC can also be applied externally. This configuration illustrates the spatial
arrangement of excitation and detection coils, essential for understanding the AC susceptibility measurement principle.
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FMR setups offer high sensitivity due to their large quality factors,
but their applicability is limited to discrete frequencies, requiring
cavity replacement for frequency variation. To overcome this
limitation, broadband FMR techniques were developed based on
planar transmission lines (as shown in Figure 7B), such as coplanar
waveguides (CPW) (Lee et al., 2009; Schäfer et al., 2012) and
microstrip lines (Kalarickal et al., 2006; Kennewell et al., 2010),
enabling continuous frequency coverage across a wide range (up to
65 GHz) (Wu et al., 2019; Khodadadi et al., 2020; Srivastava et al.,
2020). These methods offer enhanced versatility, though they
introduce challenges such as impedance matching, field
nonuniformity, and increased microwave loss.

The Vector Network Analyzer (VNA)-FMR measurement is the
most commonly used method for conducting broadband FMR
experiments (Neudecker et al., 2006; Godsell et al., 2010). This
method offers a simple experimental setup because the signal is
generated and measured by the VNA in the same device. Figure 7C
shows the configuration of the VNA-FMR experiment. The VNA
typically operates in frequency-swept mode, while field-swept VNA-
FMR measurements have also been reported in (Sharma and Kuanr
et al., 2018; Tamaru et al., 2018). A key advantage of VNA-FMR lies
in its ability to extract both the real and imaginary components of
the complex susceptibility, enabling comprehensive magnetic
characterization. However, careful full two-port calibration of the
VNA system is essential to ensure measurement accuracy. As an
alternative, broadband FMR can also be performed without a VNA
using a modular scheme known as Phase-FMR (Montoya et al.,

2014), illustrated in Figure 7D. This technique relies on direct power
reflection measurements that are sensitive to frequency-dependent
impedance changes. Therefore, these experiments typically require
field sweeping at a fixed frequency to resolve resonance features
accurately. Additionally, electrical detection of FMR has emerged as
a sensitive method for probing resonance in magnetic structures
(Tsoi et al., 2000; Kiselev et al., 2003). It relies on the generation of
DC voltage at resonance, driven by effects such as spin-transfer
torque and spin pumping (Sankey et al., 2006). Signals are acquired
using voltmeters, with lock-in detection improving the signal-to-
noise ratio. Owing to its high sensitivity, this method is well suited
for studying nanoscale systems, including individual nanomagnets,
and shows promise for integration into spintronic applications
(Tulapurkar et al., 2005).

Ferromagnetic resonance (FMR) plays a central role in magnetic
materials research by enabling the precise determination of key
magnetic parameters. It allows accurate extraction of saturation
magnetization via resonance conditions (Beik Mohammadi et al.,
2019), and in-plane angular-dependent FMR measurements are
widely used to analyze magnetic anisotropy, particularly in
exchange-biased systems (Beik Mohammadi et al., 2017). In
addition, broadband FMR techniques are essential for quantifying
Gilbert damping constants, providing a powerful means to validate
theoretical models such as Kamberský’s torque correlation model,
and to trace the microscopic origins of damping, including
mechanisms governed by spin-orbit coupling. In recent years,
FMR has also been extended to the in situ characterization of

FIGURE 7
Schematics of different FMR. (A) Schematic of the cavity-FMR. Thewaveguide serves the purpose of supplyingmicrowave power to the cavity where
the sample is placed. It also functions as a path for the reflected signal from the cavity to reach the detector. To ensure proper signal flow, a circulator is
employed. The circulator directs the reflected signal toward the diode while simultaneously safeguarding the generator from any reflected power. (B)
Coplanar waveguide schematic with an additional ground plane on the substrate’s back. The permittivity (εr ) and thickness (h) of the substrate serve
to characterize it. The signal trace is positioned parallel to the ground planes within the coplanar waveguide structure, has a particular width (s), and is
spaced from them by a gap (w). A sample is positioned at a particular height (d) above the coplanar waveguide structure to measure or detect certain
features. (C) Schematic of the VNA-FMR. In the VNA-FMR experiment, the coplanar waveguide is connected between the two ports of the VNA and
placed within the electromagnet, which applies the static magnetic field. The magnitude of the applied field is controlled by a Power Supply. (D)
Schematic of the Phase-FMR. The sample is excited by a microwave generator, and the power is detected using a diode detector and a LIA.
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spin-orbit torque (SOT) devices, offering valuable insights into
current-induced magnetization dynamics (Coester et al., 2023;
Zhan et al., 2024). In such measurements, a radio-frequency
current is applied to the device to excite magnetization
precession via spin-orbit torques, and the resulting voltage
signal—often referred to as the rectification voltage—is analyzed
to extract key parameters (Kim et al., 2021; Chen et al., 2021).
Specifically, by analyzing variations in resonance lineshape and
linewidth induced by the applied current and magnetic field,
researchers can determine the strength and angular dependence
of spin-orbit torques, as well as quantify spin Hall efficiencies in
multilayer structures (Hibino et al., 2024). This approach, known as
spin-torque FMR (ST-FMR), has become a critical technique for
optimizing spintronic device performance and for evaluating
materials with strong spin–orbit interactions in magnetic random
access memory (MRAM) and related applications (Chen et al.,
2021). It has also been increasingly employed to investigate
magnetization dynamics in two-dimensional magnetic materials,
enabling the study of spin relaxation, damping, and anisotropy at the
atomic thickness limit (Tang et al., 2023).

Furthermore, researchers have extended FMR by integrating it
with complementary techniques to enhance spatial, spectral, and
element-specific resolution. One such novel technique is X-ray
detected FMR (XFMR) (Van der Laan and Hesjedal, 2023),
which makes use of the XMCD effect to produce element-specific
magnetic contrast in order to examine the dynamics of
magnetization in individual layers. Variants such as diffraction-
based FMR (DFMR) and reflectivity-based FMR (RFMR) extend
XFMR by enabling the detection of magnetization dynamics
through modulations in X-ray scattering and reflectivity signals,
thereby enhancing structural and interfacial sensitivity (Burn et al.,
2021). In addition, alternative non-microwave-based detection
approaches have emerged, including the use of a MFM tip
(Nazaretski et al., 2007a; Nazaretski et al., 2007b) and micro-
focus Brillouin light scattering (BLS) techniques (Demidov et al.,
2010; Demidov et al., 2011), both offering high spatial resolution and
local FMR sensitivity. These hybrid and indirect detection methods
broaden the experimental versatility of FMR, enabling investigation
of complex magnetic phenomena in nanoscale systems.

4 Emerging spintronic characterization
techniques

While static and dynamic magnetic characterization techniques
remain foundational in understanding material magnetism, the
rapid advancement of spintronic research has introduced new
measurement demands. As spintronic systems often involve
nanoscale spin textures, interfacial phenomena, ultrafast
dynamics, and spin-polarized electronic states, traditional
methods may face limitations in spatial resolution, temporal
precision, or sensitivity to spin-specific quantities. To address
these challenges, a range of emerging techniques has been
developed—such as NV− center magnetometry, Lorentz
transmission electron microscopy (LTEM), Spin-polarized
scanning tunneling microscope (SP-STM), and soft X-ray-based
techniques. These tools provide localized, time-resolved, and often
quantum-sensitive access to spin phenomena, and thus merit

dedicated discussion distinct from conventional magnetic
measurement systems.

Diamond-based magnetic sensing and measurement
technologies are emerging quantum magnetometry techniques
that have gained significant attention in recent years. These
methods typically involve introducing various point defects into
diamond crystals and utilizing the magnetic field sensitivity of their
spin states for measurement. Diamond-based magnetometry
includes techniques based on diamond color centers such as
nitrogen-vacancy (NV), silicon-vacancy (SiV), and group-IV-
related centers like GeV and SnV, among which the NV center
technology is the most widely applied (Zhang et al., 2025; Guo, 2023;
Hong et al., 2013). Magnetometer based on negatively charged
nitrogen-vacancy (NV−) centers in diamond has recently
attracted significant attention as emerging quantum sensors in
condensed matter physics (Rondin et al., 2014; Maze et al.,
2008). This method relies on the Zeeman response of NV− spin
states to external magnetic fields (Barry et al., 2020). By applying
green laser excitation and microwave pulses, the NV− electronic
spins can be initialized, manipulated, and optically read out.
Specifically, when a local magnetic field is present, the spin levels
split, resulting in changes in fluorescence intensity. The magnetic
field strength and direction can then be precisely extracted via
optically detected magnetic resonance (Rondin et al., 2014;
Schirhagl et al., 2014). NV− magnetometry offers nanoscale
spatial resolution (Grinolds et al., 2014), exceptional field
sensitivity (Grinolds et al., 2013; Sushkov et al., 2014) and
compatibility with a wide range of environments—from room
temperature to cryogenic conditions (Pelliccione et al., 2016; Liu
et al., 2019) and from ambient to high pressure (Lesik et al., 2019).
Benefiting from these capabilities, NV− center magnetometry is
widely used for nanoscale magnetic characterization, such as
probing magnetic domains and spin textures (Dovzhenko et al.,
2018). Beyond static structures, it has been employed to detect
magnon excitations in antiferromagnetic materials, extending its
application to systems without net magnetization (Heitzer et al.,
2024). In addition, NV− centers have been used to study dynamic
processes such as the non-resonant detection of GHz-frequency
domain wall oscillations using nanodiamonds positioned near
magnetic structures (Xu et al., 2019).

Spin-polarized scanning tunneling microscopy (Bode, 2003), as
a magnetic imaging technique with atomic spatial resolution, has
been widely employed for investigating local spin structures in
spintronic materials (Palotás et al., 2017). Its working principle
relies on the spin dependence of the tunneling current, when both
the STM tip and the sample surface are spin-polarized, the tunneling
current is influenced not only by the local density of states but also
by the relative orientation of their spin directions, thereby enabling
the detection of local spin configurations. Benefiting from this
mechanism, SP-STM retains the ultrahigh spatial resolution of
conventional STM while providing additional sensitivity to spin
states. Furthermore, by adjusting the magnetization direction of the
tip, SP-STM allows for selective imaging of different spin
components, enhancing its applicability to complex magnetic
structures. At present, SP-STM is primarily employed for
imaging spin textures and local magnetic structures (Bagchi
et al., 2024; Corbett et al., 2022). It is particularly effective in
investigating spin configurations and their control in
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ferromagnetic and antiferromagnetic materials (Brüning et al., 2025;
Spethmann et al., 2024), and has become a key technique for
exploring the microscopic mechanisms of spintronic devices.
Moreover, SP-STM has demonstrated unique capabilities in
resolving chiral spin configurations, such as noncollinear spin
spirals and skyrmion lattices, which are central to the study of
Dzyaloshinskii-Moriya interaction-driven phenomena and
topological spin textures (Brüning et al., 2025; Lee et al., 2022).

Lorentz Transmission Electron Microscopy (LTEM) is a
powerful technique for high-resolution imaging of magnetic
domain structures (Grundy and Tebble, 1968; Hale et al., 1959).
It visualizes in-plane magnetization by detecting the deflection of
electron beams caused by Lorentz forces as they pass through
magnetic materials. LTEM typically operates in underfocused or
overfocused imaging modes to enhance magnetic contrast and is
particularly suitable for observing domain walls, magnetic vortices,
and skyrmions (Xue, 2025; Chen et al., 2022). Compared with other
magnetic imaging methods, LTEM offers real-space imaging with
nanoscale spatial resolution and can be combined with in situ
magnetic field and temperature control, enabling dynamic studies
of magnetization processes and topological magnetic structures
(Peng et al., 2018). For example, Matsumoto et al. employed
LTEM to investigate the magnetic structure of a Co8Zn8Mn4
alloy and identified a stable triple-q skyrmion phase, revealing
the temperature- and field-dependent evolution of its topological
magnetic textures (Kotani et al., 2016). However, LTEM also has
certain limitations—it requires electron-transparent samples
(typically thinner than 100 nm), is mainly sensitive to in-plane
magnetization components, and must be conducted in high-vacuum
TEM environments (Xue, 2025). These factors impose stringent
demands on sample preparation and experimental setup.

With the development of X-ray magnetic circular dichroism
(XMCD) and X-ray magnetic linear dichroism (XMLD), soft X-ray-
based magnetic measurements using synchrotron radiation have
become a key technique in magnetism research (Van der Laan and
Thole, 1991; Schütz et al., 1987). These methods build on X-ray
absorption spectroscopy (XAS), which provides element-specific
and chemical-state-sensitive information by detecting the
absorption of X-rays at specific energy edges (such as L2 and L3)
(Van der Laan and Figueroa, 2014). XMCD exploits the difference
in absorption of circularly polarized X-rays depending on the
magnetization direction of the sample, enabling the detection of
spin-resolved unoccupied electronic states through spin-orbit
coupling. Conversely, XMLD uses linearly polarized X-rays to
probe anisotropic charge distributions influenced by spin order,
making it particularly useful for investigating antiferromagnetic and
anisotropic ferromagnetic systems (Chen et al., 2019). These
spectroscopic techniques can be extended into spatially resolved
magnetic imaging using photoemission electron microscopy
(PEEM) (Ohldag et al., 2009). In XMCD-PEEM and XMLD-
PEEM, magnetic contrast arises from dichroic absorption
differences, while the short wavelength of X-rays allows for
nanoscale spatial resolution. This combination enables element-
specific imaging of magnetic domains and domain walls. Overall,
XMCD and XMLD, along with PEEM, provide powerful tools for
understanding microscopic magnetic structures and spin
configurations with high chemical and spatial resolution. This
technique has been used to study a wide range of material

systems, including thin films (Price et al., 2016), multilayers
(Juge et al., 2022), and nanoparticles (Foerster et al., 2017).
Additionally, XMLD and PEEM techniques offer unique
advantages in observing antiferromagnetic moment reversal
induced by spin-orbit torque (Ohldag et al., 2009; Wadley
et al., 2016).

5 Conclusion and outlook

In this review, we systematically categorized magnetic
measurement techniques into static, dynamic, and emerging
classes. The static category, comprising VSM, AGM, SQUID
magnetometer, MOKE microscope, and MFM, primarily
addresses equilibrium magnetic properties. The dynamic
category, including AC susceptometer and FMR-based systems,
focuses on time- and frequency-dependent magnetization
processes. In addition, we incorporated several emerging
techniques originally developed for spintronic research, such as
NV− center magnetometry, SP-STM, LTEM, and soft X-ray-based
techniques, which enable unprecedented exploration of spin
structures and quantum-scale magnetic phenomena. For each
technique, we primarily discussed its working principles and
representative applications. These instruments demonstrate
distinct strengths in specific measurement domains, from
macroscopic hysteresis loop analysis and precise determination
of magnetic parameters to nanoscale magnetic domain imaging.
Collectively, they leverage a diverse array of physical
mechanisms—including electromagnetic induction, quantum
interference, magneto-optical effects, and scanning probe
techniques, spin-dependent tunneling, spin-state readout—to
form a multi-dimensional characterization matrix. In summary,
Table 1 primarily highlights the spatial resolution, sample
sensitivity, and main limitations of representative static and
dynamic magnetic measurement techniques. Furthermore,
Table 2 provides a comprehensive overview of all the techniques
discussed, highlighting their applications and unique advantages in
the field of spintronics.

In conclusion, magnetic measurement techniques have evolved
into a diverse toolkit for probing magnetic materials across spatial,
temporal, and energy scales. Building upon this foundation, future
development is expected to follow several transformative directions
that integrate advances in hardware, multi-physics coupling,
intelligent data processing, and integrated on-chip sensing
technologies. One prominent trajectory involves the development
of high-field magnetic measurement platforms. Modern hybrid
magnet systems are capable of generating ultrahigh magnetic
fields that enable the exploration of novel magnetic phenomena
beyond the reach of conventional instrumentation. For instance, the
45 T hybrid magnet developed at the High Magnetic Field
Laboratory in Hefei, China, combines superconducting and
resistive magnet technologies to provide a stable, user-accessible
high-field environment (Bird, 2024). In parallel, pulsed-field systems
reaching up to 100 T have been employed to probe exotic magnetic
phases, such as field-induced quantum spin liquids in Kitaev
materials (Zhou et al., 2023), highlighting the critical role of high
magnetic fields in advancing quantum magnetism and emergent
spin states.
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TABLE 1 Summary of key performance parameters for static and dynamic magnetic measurement techniques. This table compares the selected techniques
in terms of resolution (specifically referring to static magnetic moment resolution), measurement speed, sample sensitivity, operational cost, and
limitations. The resolution and limitations of VSM are based on (Dodrill and Lindemuth, 2021); those of AGM refer to (Dodrill and Reichard, 2021); MOKE
microscope data are from (McCord, 2015); and SQUID-related parameters are drawn from (Schmelz et al., 2016); the limitations of AC susceptometer are
taken from (Topping and Blundell, 2018); and FMR-related performance indicators refer to (Mewes and Mewes, 2021).

Instruments Resolution Speed Sample sensitivity Operation costs Limitations

VSM 10−7 emu Fast Bulk-sensitive Low Limited sensitivity

AGM 10−8 emu Moderate Bulk-sensitive Low Inaccurate characterization of soft magnetic materials

MOKE microscope Non-quantitative Fast Surface-sensitive Low Limited penetration depth

MFM — Slow Surface-sensitive Moderate Limited penetration depth

SQUID magnetometer 10−8 emu Slow Bulk-sensitive High The need for low-temperature

AC susceptometer — Slow Bulk-sensitive High Limited frequency bandwidth

FMR-based system — Moderate Bulk-sensitive Low Lack of spatial resolution

TABLE 2 Overview of magnetic measurement techniques and applications in spintronics. This table outlines the application domains and distinctive
advantages of static, dynamic, and emerging techniques in spintronic research. It highlights the specific functions enabled by eachmethod, such as domain
imaging, magnetic hysteresis loop measurement, and related capabilities. The content of the table reflects and extends information already presented in
the review,with relevant references as follows: VSM (Dodrill and Lindemuth, 2021); AGM (Dodrill and Reichard, 2021); SQUIDmagnetometer (Schmelz et al.,
2016); MOKEmicroscope (Cao et al., 2024); MFM (Ghidini et al., 2022); NV− center magnetometer (Zhang et al., 2025; Barry et al., 2020; Heitzer et al., 2024);
SP-STM (Bagchi et al., 2024; Brüning et al., 2025); LTEM (Peng et., 2018; Xue, 2025); AC susceptometer (Borgohain and Borah, 2021; Fernández-García et al.,
2022); FMR-based system (Coester et al., 2023; Zhan et al., 2024); and X-ray-based methods (Chen et al., 2019).

Instruments Principle Relevance to spintronics Features

VSM Electromagnetic induction • Measuring magnetic hysteresis loops • Compatible with diverse sample types
• High stability; moderate sensitivity

AGM Magnetic force balance • Measuring hysteresis of spintronic samples • Higher sensitivity than VSM

SQUID magnetometer Superconductivity; Josephson effect • Measuring ultra-weak magnetic moment
• Detecting magnetic noise
• Investigating quantum phenomena

• Exceptional sensitivity
• Suitable for low-temperature and high-
stability environments

MOKE microscope MOKE • Imaging magnetic domains
• Probing magnetization reversal
• Investigating spintronic device switching
dynamics

• Spatial resolution of ~300 nm
• Supports time-resolved studies (ps–ns) of
fast magnetization dynamics

MFM Measuring stray fields using a magnetic tip • Imaging domain walls
• Probing current-induced domain wall
motion

• Moderate spatial resolution (tens of
nanometers)

• Sensitive to stray fields

NV− center
magnetometer

Zeeman splitting with optical readout • Imaging of domains and skyrmions
• Probing antiferromagnetic and ferromagnetic
spin textures

• Detecting spin-wave dynamics and magnon
modes

• Nanoscale resolution, no-invasive
• Operable from room to cryogenic
temperatures

SP-STM Spin-dependent tunneling imaging • Imaging spin textures (domain walls and
skyrmions)

• Probing local spin polarization and chiral
spin configurations

• Atomic-scale spatial resolution, surface-
sensitivity

• Requires ultrahigh vacuum

LTEM Lorentz deflection of electrons by internal
magnetic fields

• Observing magnetic textures
• Investigating topological spin structures

• High spatial resolution (2–20 nm)
• Capable of dynamic in situ imaging

AC susceptometer Mutual inductance • Probing spin relaxation dynamics
• Identifying spin-glass behavior
• Characterizing magnetic phase transitions

• Sensitive to low-frequency magnetic
dynamics

• Supports variable frequency and
temperature control

FMR-based system Microwave excitation; resonant absorption • Quantification of spin-orbit torque efficiency
in spintronic devices

• Measurement of damping constant and
magnetic anisotropy

• Directly probes spin-orbit torque and
damping

• Highly sensitive to dynamic magnetic
parameters

Soft X-ray-based
techniques

Element- and spin-sensitive X-ray absorption • Element-specific probing of magnetization
in thin films and multilayers

• Imaging of magnetic domains and spin
textures

• High chemical and spatial resolution
• Sensitivity to spin and orbital moments
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A second important trend is the development of magneto-
electric-optical multi-field coupling platforms that bridge the gap
between macroscopic magnetic properties and microscopic
magnetic structures. For example, molecule-based magnetic
systems exemplify the progress in magnetic multi-field coupling,
showcasing integrated optical, electronic, and magnetic responses
such as magneto-chiral dichroism and opto-magneto-electric
multifunctionality, with promising applications in quantum and
sensing devices (Zakrzewski et al., 2024).

The third direction lies in the integration of artificial intelligence
(AI) into magnetic measurement workflows. AI-driven platforms
are enabling closed-loop pipelines encompassing data acquisition,
real-time analysis, and decision feedback. For instance, Talapatra
et al. (2023) trained a convolutional neural network (CNN) on
simulated magnetic domain images to predict key micromagnetic
parameters with accuracies up to 93.9%, while McCray et al. (2024)
developed a machine learning model that automatically identifies
and quantifies magnetic skyrmions from LTEM images with 97.6%
accuracy in position detection. These examples underscore how
machine learning not only accelerates data analysis but also enables
intelligent interpretation of complex magnetic textures.

Beyond these trends, the advancement of integrated on-chip
magnetometers represents another key trajectory. Recent progress in
NV center, atomic, and solid-state magnetometry has shown the
feasibility of achieving high sensitivity and spatial resolution within
compact, CMOS-compatible platforms. These miniaturized systems
significantly reduce hardware complexity while enabling multi-
channel detection of magnetic fields at the microscale. As
photonic integration, quantum sensing, and advanced
microfabrication technologies continue to mature, chip-scale
magnetometers are expected to evolve into scalable, low-power,
and application-specific solutions. This evolution will accelerate the
deployment of magnetic sensing technologies into diverse
applications such as biomedical diagnostics, microscale magnetic
imaging, and quantum information processing. Enabled by atomic-
scale detection mechanisms, emerging quantum magnetic
sensors—such as SQUIDs, NV centers, and atomic
magnetometers—offer unprecedented precision, paving the way
for a new era of magnetic metrology.

This evolution, driven by synergistic advancements in high-field
instrumentation, multi-field coupling, AI algorithm integration, and
on-chip sensing technologies, is transforming magnetic
measurement from a set of passive diagnostic tools into
intelligent, scalable platforms for scientific discovery. Such
progress is expected to continuously propel breakthroughs in
spintronics, quantum magnetism, and energy-related materials,
while expanding the role of magnetic characterization in both
fundamental research and emerging real-world applications.
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