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This paper presents a closed-form analytical model for predicting shear strain in
chip-on-board assemblies with an array of solder balls. While the classical
analytical formula estimates shear strain based on a configuration with a
single solder joint at each end of the chip, it fails to account for the
distributed nature of real assemblies. By applying compatibility conditions
along the chip/solder ball and PCB/solder ball interfaces, and employing beam
theory, the proposed model incorporates key geometric and material
parameters, including chip and PCB dimensions, solder ball diameter, height,
pitch, and elastic moduli, enabling accurate prediction of mechanical response
under thermal loading. Results show that the classical model overestimates shear
strain by more than 50 times compared to finite element analysis (FEA), whereas
the proposed method yields results consistent with FEA. Hence, the proposed
analytical solution presented in the paper demonstrates a significant
improvement over the classical formula in prediction of shear strain. The new
model reveals that in a fully populated array layout, the maximum shear strain at
the outermost solder joint remains nearly constant with increasing chip size. The
analysis also indicates that inner solder joints contribute minimally to mechanical
support, suggesting that depopulated array designs may not compromise
reliability. Additional parametric studies demonstrate that reducing the
thickness or stiffness of the chip or PCB decreases overall strain levels. These
findings are validated by finite element simulations. The paper concludes with a
discussion of future work to address normal strain effects and inelastic behaviors
in solder joints.

shear strain, electronic packaging, solder joint array, reliability, chip on board package

1 Introduction

Predominant failures in packaged electronic devices often arise from cracking or
interface delamination, particularly thermal fatigue failures in solder balls. Emerging
technologies such as 2.5D/3D integration, hybrid bonding, wafer- and panel-level
packaging, chip stacking, fan-out, package-on-package (PoP), system-in-package (SiP),
chiplets, and heterogeneous integration present additional challenges on
thermomechanical fatigue of solder balls (Lau and Fan, 2025). The mismatch in the
coefficients of thermal expansion (CTE) between different materials, most notably the
silicon chip and the printed circuit board (PCB), induces cyclic deformation in the
solder balls subject to thermal loads. Over time, this repeated deformation leads to crack
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(a)

Figure showing chip-solder-PCB (a) Before deformation (b) After deformation.

FIGURE 1

initiation and propagation, ultimately causing joint failure.
Solder balls serve as the primary mechanical and electrical
interconnects between PCB and the semiconductor packages,
such as chip-on-board (COB) and ball grid array (BGA)
assemblies. Failures in these solder joints can lead to
catastrophic malfunction of the entire system, making their
mechanical integrity a key determinant of package reliability
and product lifespan.

The reliability of solder joints has long been a persistent
challenge for the electronic packaging community, particularly as
electronic devices continue to shrink in size while increasing in
functionality (Schubert et al., 2003; Lau et al., 2003; Paul et al,,
2022; Paul, 2017; Wong et al., 1988; Wiese, 2003; Syed, 2001;
Syed, 2004; Cheng et al., 2017; Bhate et al., 2008; Qiang, 2007;
Darveaux, 2002; Darveaux, 2014; Yi and Jones, 2020; Wong et al.,
2016; Wong, 2019; Cheng et al., 2001). Due to the complex
geometry of solder joints and the heterogeneous material
configurations involved, finite element analysis (FEA) has
become the primary tool for assessing the mechanical
response of solder joints under various loading conditions
(Syed, 2001; Syed, 2004; Darveaux, 2002; Darveaux, 2014; Yi
and Jones, 2020). Solder materials undergo plastic or creep
deformation during thermal cycling to experience fatigue
Viscoplastic and creep models
describing the time-dependent

failure. are essential in
deformation behavior of
materials under stress, particularly at elevated temperatures
(Schubert et al., 2003; Lau et al., 2003; Paul et al., 2022; Paul,
2017; Wong et al., 1988; Wiese, 2003; Cheng et al., 2017; Bhate
et al., 2008; Wong et al., 2016; Wong, 2019; Cheng et al., 2001).
FEA enables the calculation of stresses, strains, and inelastic
strain energy densities, which are directly correlated with fatigue
life (Syed, 2001; Darveaux, 2002; Zhang et al., 2006; Fan et al,,
2005; Fan et al., 2010; Fan et al.,, 2006; Bhatti et al., 2006;
Vasudevan et al., 2007; Pei et al., 2006; Vasudevan and Fan,
2008; Varia and Fan, 2011). However, despite its widespread use,
FEA has significant limitations. High-fidelity models require fine
meshing, detailed material characterizations, and complex
boundary conditions, all of which increase computational time
and resource demands. Moreover, running extensive parametric
studies using FEA to explore the effects of package design
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variables on solder joint reliability can be prohibitively time-
consuming. These challenges limit its practicality for gaining
fundamental physical insights or for rapid design iterations
during early stages of development.

In contrast, analytical models can offer closed-form
expressions that reveal underlying physical mechanisms and
provide quick estimates of critical mechanical quantities such as
shear strain. These models are particularly valuable for
understanding trends, validating numerical simulations, and
guiding design decisions (Suhir et al, 2017). However, such
closed-form analytical solutions for an array of solder balls,
even in the framework of linear elastic analysis, do not exist.
The classical analytical formula for estimating shear strain in
solder balls is based on highly simplified assumptions with a
single solder ball at each end (Lau and Fan, 2025). In addition,
such a solution does not meet the continuity or compatibility
condition along the interfaces. To address this deficiency, our
previous work developed an improved analytical model that
incorporated the compatibility condition along the interface
(Khanal et al, 2024). The predicted shear strains using this
enhanced model showed better agreement with FEA results,
thereby demonstrating the importance of including continuity
condition in analytical formulations. However, that earlier study
focused on a simplified system involving a single solder ball at each
end under idealized conditions.

In this study, we extend our analytical methodology to
consider an array of solder balls connecting a chip to a PCB in
a typical chip-on-board assembly. We derive a comprehensive
analytical solution that captures the deformation behavior of
solder joints under thermomechanical loading, including the
contributions from shear forces, bending moments, and
geometric factors associated with the array configuration. The
theoretical predictions are validated through detailed finite
element simulations. Furthermore, we conduct a series of
parametric studies to explore the influence of key design
variables, such as solder joint pitch, chip size, and CTE
mismatch, on the resulting shear strain. These results provide
deeper insights into the fundamental mechanisms governing
solder joint failure and offer practical guidance for improving

the reliability of future electronic packages.
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FIGURE 2
Free-body diagrams of each component in a simplified chip-on-
board assembly

2 Theory
2.1 Assumptions

To facilitate a closed-form analytical solution, the following
assumptions are made in this study:

1. Linear Elasticity: All materials in the assembly, including the
solder joints, are assumed to behave as linear elastic throughout
the analysis. Nonlinear effects such as creep, plasticity, and
time-dependent behaviors of the solder material are not
considered within the scope of this model.

2. Point Contact: The solder joints are idealized as having point
contact at both the chip/solder (top) and PCB/solder (bottom)
interfaces. This simplification enables analytical tractability
while capturing the essential mechanical interaction at the
interfaces.

3. Neglect of Solder Material's Normal Force and Bending:
Normal force and bending deformation within the solder
joints is neglected in the derivation of shear strain. The
model focuses solely on shear deformation.

2.2 Classical formula

Figure la shows a schematic of a simplified chip on board
assembly, in which L denotes the half length of the chip and hg
represents the solder’s height. In this configuration, only one solder

10.3389/felec.2025.1648721

connection at the each end of the chip is considered. Additionally,
only a slice of the chip on board is considered so that the problem is
treated as a 2D problem with plane stress condition. As the
temperature increases from the stress-free reference state, both
the chip and the PCB undergo thermal expansion. Due to the
mismatch in their thermal expansion coefficients, shear stress
and strain are induced in the solder joints, as shown in
Figure 1b. Neglecting the constraint condition and considering
the free thermal expansions of the chip and PCB, the estimated
shear strain, according to the classical formula (Lau and Fan, 2025),
can be calculated as follows.

_ (ap — ac)ATL

y, . M

where ap and a¢ are the CTEs of PCB and chip. This simplified
equation clearly shows that the shear strain is proportional to the
thermal mismatch (ap — ac)AT and the size of the chip L. Since a
silicon chip typically has a rectangular shape, the diagonal represents
the longest dimension. Based on this equation, for a long time, it has
shown that one of the most critical parameters influencing solder
ball reliability is the half-diagonal length of the chip. The equation
also implies that the shear strain in a solder ball is inversely
proportional to its height, ie., increasing the height can help
reduce the strain. However, it is important to note that in
deriving this equation, the contribution of shear forces acting on
the solder balls was not considered. This means that the
compatibility, or continuity condition along the solder/chip and
solder/PCB interfaces is not met. As a result, this classical approach
significantly overestimates the actual strain values (Khanal
et al., 2024).

2.3 New formula

We now present a more accurate derivation of the shear strain
for the configuration shown in Figure 1. Before analyzing an array of
solder balls, we first simplify the problem by considering a single
solder joint, as in the classical formulation in Section 2.1. Figure 2
shows the free-body diagrams of the individual components: the
chip, solder joint, and PCB, respectively. Due to symmetry, only half
of each component is illustrated. Since the shear forces develop at
the interface of solder joints rather than at the neutral axes of the
chip and the PCB, equivalent bending moments are used.

Axis of symmetry Solders
| / \
N Chip he| The
H || - N || - | B
' PCB h,
S S S S S S
L L

FIGURE 3

Schematic diagram of a chip-on-board assembly with a full array of solder joins with a pitch of s.
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FIGURE 4
Half-model of the system due to symmetry.
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FIGURE 5
Free body diagram showing (a) Load transfer between chip, solder, and PCB, (b) Equivalent moment induced.
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FIGURE 6
An example of finite element model for the chip-on-board assembly (n = 10 in the half model).
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FIGURE 7
Path created along the midplane of the solder ball for calculating
the shear strain.

/2 1 le le 1l lele/2
<4 Prt— Pt —P4t—Pt—P4— P>
T T T T T T
| | | | | |
| | | | | I
N A O A O
| | | i | i
| | | | | |
A I I O N
I | I | | I
I | | | | I
Wi oM Wi Yar Y51 Vet W
o —o e e e -0 '@
- - - > =7z - -
<~ P b L L ‘-~
* 00— 000
| | | | | I
I | | | | I
S T O I
| ! | i | |
| | | | | |
A I I I O B
i | I | | |
| | | | | |
| | | | | |
1 1 1 Il 1 1
FIGURE 8
Nodal shear strain along the midplane of the solder for a given
mesh size.
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Consequently, bending moments and axial forces are introduced in
both the chip and the PCB, as the shear force P, acting at the
interfaces, is transferred to the mid-planes of the chip and PCB.
Based on equilibrium conditions, the following equations can be
established.

Php

Mp = > (22)
me =20 (2b)

where hp and h¢ are the height (or often referred as to the
thickness) of PCB and chip. The height of the solder is denoted
as hg. The interface area is Ag at both the chip and PCB interfaces.
The chip and PCB (or any other materials) are treated as beam
components, each with heights hp and h¢, rectangular cross-
section area of Ap and Ac, and the moment of inertia Ip and
I¢, respectively.

Based on these assumptions, the displacements of the PCB and
chip at the solder joint location when temperature rises can be
expressed as follows, according to the free-body diagrams

in Figure 2.
L ML 4L
ALp = apATL — P— P~ p=gpATL- P (3
= ApEp.  4lE, ° e Y
ALc = acATL + L P+ héL P =a-ATL + P (3b)
c- % AcEc  4lcE. ¢ AcEc

where AT represents the temperature change, a denotes the
coefficient of thermal expansion, E stands for Young’s modulus,
L corresponds to the half-length of the chip or PCB, and I = %,
where b is the width of the assembly (in this analysis, the width of the
assembly is the diameter of solder dj).

To solve the unknown shear force P, we use the continuity

equation (or called compatibility equation) as follows

_ALp-AL; P

= 4
I P WeX @
where yy is the averaged shear strain in the solder ball and Gg is the
shear modulus of the solder material, Gs = ﬁ Using Equations
3a, b, 4, the shear force P is solved, as follows.
—ac)ATL
P=— (@ — ac)ATL (5)
ae *4L(5E * 7E)

Equation 5 can be rewritten as

FP=D (6)

where

TABLE 1 Material and geometric properties of the system used for evaluating shear strain distribution and mesh dependency.

Components Material properties Geometric properties
Components Elastic Modulus (GPa) CTE (/°C) Poisson’s ratio Height (or thickness) (mm) Length (mm)
Chip 130 2.8 % 10° 0.3 0.5 10 (half length)
Solder 50 21.0 x 10° 0.3 0.1 0.1
PCB 20 16.0 x 10™° 0.3 1.0 10 (half length)

The width of the assembly = solder length = 0.1 mm.
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FIGURE 9
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Shear strain contour for single solder joint (n = 1), showing stress concentration at the top-left and bottom-left corners (blue). ‘Min’ label in ANSYS

indicates maximum negative strain.
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FIGURE 10

Shear strain distribution along the top, middle, and bottom layer
of solder for single joint case (n = 1).

h 1 1
F=—S 441 + (7)
AsGs ApEp | AcEc
is a compliance coefficient that depends on the system’s geometry
and material properties, and

D = (ap — ac)ATL (8)

is the thermal mismatch displacement. Then, based on Equation 4,
the new shear strain formula is obtained as follows.

P (ap — ac)ATL

Y. = AG; - hs + 4LA5GS(ﬁ + ACIEC)

©)

Compared to Equation 1, Equation 9 introduces a more
sophisticated term in the denominator, in addition to the solder ball
height h;. This term incorporates the half-length of the chip, the cross-
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FIGURE 11
Shear strain distribution along the top layer of solder for two
mesh sizes.

sectional areas of both the chip and the PCB, the elastic moduli of the
PCB, chip, and solder, as well as the interface area A;. All of these
parameters contribute to determining the shear strain in the solder joint.

2.4 Shear strains for multiple solder joints

Now, let’s consider there are arrays of solder joints between the chip
and the PCB. Figure 3 shows a schematic representation of the system
under consideration for a 2D slice model. As the model exhibits
symmetry, only half of the system is analyzed while deriving the
analytical solution, as illustrated in Figure 4. Hence, n represents the
total number of solders in the half-sliced-model. In this study, the pitch
of the solder ball is represented by s, as shown in Figure 3. Solder
numbering starts with i = 1 at the outermost edge and increases
sequentially towards the center, with the solder nearest to the line of
symmetry having the highest value of n. Index i is used to represent

frontiersin.org
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FIGURE 12
Shear strain distribution along the bottom layer of solder for two
mesh sizes.
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FIGURE 13
Shear strain distribution along the middle layer of solder for two
mesh sizes.

specific solder under investigation, ranging from 1 to ». For simplicity, it
is assumed that the connection between the solder and the components
(chip and PCB) is located in a single point on the outer edge of the
solder. Likewise, to make derivation of analytical solution simple, it is
assumed that only shear force is transferred through these points.
However, in reality, there exist a transfer of normal force as well as
bending moment between the solder and the components to maintain
the solder joint in equilibrium. Figure 5a shows free-body diagrams
illustrating the transfer of forces between the solder, chip, and PCB
based on these assumptions. Since the shear forces develop at the
interface of solder joints rather than at the neutral axes of the chip and
the PCB, equivalent bending moments - equal to shear force multiplied
by half the thickness of the component - are induced, as shown in
Figure 5b. These moments, termed as Mc; for chips and Mp; for PCB,
are developed at each n number of solder joints, where i ranges from
1 to n, similar to the expressions given in Equations 2a, b. These
assumptions give only one unknown shear force per solder. After
calculating the shear forces in each solder joint, the corresponding
strains can be evaluated using force-stress and constitutive relationships.

For a given n number of solder joints, there will be # unknown
shear forces denoted by load vector {P} as represented in
Equation 10.
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TABLE 2 Averaged shear strain obtained from the shear strain distribution
along the top, middle, and bottom layer for two mesh sizes.

Averaged shear strain (x10~* mm/mm)

Layer Mesh size 0.005 mm Mesh size 0.010 mm
Top layer 2.02 2.02
Middle layer 2.02 ‘ 2.02
Bottom layer 2.02 ‘ 2.02
{P} ={Py,+, P;, -+ P} (10)

As a natural extension, Equation 6 can be extended to multiple
solder joints, and the equation becomes a matrix form.

[F]{P} = {D} (11)

where [F] is the compliance matrix of order n x n with elements Fj;.
The expressions for Fj; can be derived in a similar manner shown in
Section 2.2 for a single joint in half-model, as follows.

h, 11 . o
AsGs+4[ + EP][L—(z—l)s],forz—]

AcEc  Ap
F,‘j =

1 1
4l —— L-(j-1)s].fori# j
| g | G- Debori
F,’j = Fﬂ l,_] =1,n (12)

where s represents the pitch of solder joints.
Similarly, Equation 8 can be extended to the multiple joints
as follows.

D; = (ap—ac)AT[L- (i-1)s] i=1Ln (13)

which is the thermal displacement vector with order n x I at each
solder joint’s location. Finally, upon solving for the shear force
vector {P} by Equation 11, the shear strains in each of the solder are
calculated using Equation 9. The shear strain vector with shear
strains at each of the solders is given by Equation 15.

1
=15

{P} (14)
where,
{YS} = {Ys,l"“){s,i"“){s,n} (15)

For Equations 12, 13, in the case of single solder joint, i.e, n =1,
they are reduced to Equations 7, 8, respectively. Equations 12, 13 are
obtained through the superposition by each force or moment
component, as well as the compatibility condition of Equation 4
for each joint.

3 Finite element analysis
3.1 Finite element model

Since the analytical model illustrated in Figure 3 is based on a

two-dimensional sliced representation under plane stress

conditions, a corresponding 2D plane stress finite element model
is developed in ANSYS to validate the analytical results. The use of a

frontiersin.org
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TABLE 3 Shear strain and shear force values obtained from three different models: proposed analytical model, Classical model, and FE model.

Solution type

Shear strain y, (x10~> mm/mm)

Shear force P (N)

This paper 2.58 0.495
Classical formula 132 N/A
FE result 2.02 0.389

TABLE 4 Parameters for a case study of a fully populated array of solder
joints.

Parameters Value

Solder diameter, height, and width 0.3 mm
Solder number in half model 10

Solder pitch 0.5 mm
Chip length in half model 49 mm

full three-dimensional (3D) finite element model is not required for
this purpose. All components of the system are modeled with
PLANE183 the
assumption. Each element consists of eight nodes, with each
node possessing two degrees of freedom, i.e., translations along

quadratic elements under plane stress

x- and y-axis. Owing to geometric symmetry, only half of the model
is analyzed, with a symmetric boundary condition applied along the
center plane (x = 0). Additional displacement constraints are
imposed to eliminate rigid body motion. A uniform temperature
change, AT, is applied throughout the model. Figure 6 illustrates the
finite element mesh for the case of n = 10, corresponding to a full
assembly containing 20 solder joints.

3.2 Extraction of shear strain

As the analytical approach assumes solder/chip and solder/PCB
connection occurring at discrete points, the shear strain calculated
from Equation 14 represents an average shear strain, rather than a
continuum shear strain. However, in the finite element model, shear
strain distribution in solder joints is obtained. Hence, to ensure
consistency with the analytical assumption, the finite element
analysis utilizes an average shear strain instead of using a single
nodal value. Our previous study (Khanal et al., 2024) calculated area-
averaged shear strain taken from elements on the top layer of the
solder. However, these results may be affected by mesh sensitivity and
corner-node stress concentration, thereby affecting the validity of
results. For this reason, nodal shear strain values along the midplane
of the solder are used to compute the average shear strain. A path
along the midplane of the solder as shown in Figure 7, to extract the
nodal shear strain values. The average shear strain is then calculated
by using a weighted sum of nodal strains as follows.

s Garyr e ]
ds

(16)

avg

where k denotes the number of mesh divisions along the solder
length, y; to yk,; are the nodal shear strains, [, represents the spacing
between nodes, £, is the thickness of the plane stress element, while d;
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is the solder ball length. Figure 8 illustrates a schematic of the nodal
shear strain distribution along the midplane of the solder, based on a
mesh element size with six segments along its length. Similar
procedure can be followed to find the average shear strain along
top and bottom layer.

Furthermore, from the finite element analysis, the shear force
along each interface for each solder joint can be extracted to
compare with the analytical solutions Equation 5 or Equation 11.
Alternatively, the averaged shear strain can also be obtained directly
from the shear force from finite element analysis and then converted
to shear strain using Equation 14.

4 Results and discussions

4.1 Shear strain distribution and mesh
dependency

To show shear strain distribution in a solder joint, we first
performed finite element analysis and studied a simplified chip-on-
board assembly involving a single solder ball at each end, as
illustrated in Figure 1. The geometry and material properties
used in this case are shown in Table 1. The temperature change
of AT = 100 °C is assumed.

The shear strain contour in the solder is presented in Figure 9,
which shows an overall uniform distribution. The shear strain
distribution along the top, middle, and bottom layers of the
solder is shown in Figure 10. As shown in the figure, the shear
strain distribution appears irregular in the top and bottom layers.
This behavior is attributed to stress singularities at the corners of
solder-chip and solder-PCB interfaces (Vellukunnel et al., 2023; Fan
et al, 2001; Ye et al, 2022). Therefore, obtaining shear strain at
specific points along the solder interface regions may result in
inaccurate results and should be avoided. However, the
distribution is smoother in the middle layer, with zero values at
both ends due to free surfaces.

As the shear strain distribution along the top and bottom exhibits
significant irregularities due to stress singularities (Fan et al., 2001),
the results are likely to be highly mesh dependent. In order to assess
the mesh dependency, shear strain distributions were computed for
two different mesh sizes: 0.01 mm and 0.005 mm. The shear strain
distributions for the top, bottom, and middle layers are illustrated in
Figures 11-13 respectively. The plots show that the shear strain values
at top and bottom interfaces of the solder, differ significantly between
the two mesh sizes at both ends of the interfaces, indicating the mesh
dependency of the results. The top left and bottom left portions
typically experience higher strain, as indicated by the blue region of
strain contour in Figure 9. However, as shown in Figure 13, the strain
distribution in the middle layer remains nearly identical for both the
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Finite element model with a overhang portion for an array of solder joints (n = 10).
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Comparison of shear strain value obtained from analytical

solutions with average shear strain obtained from plane stress FEA for
all ten solder joints (The results are obtained based on the materials
properties in Table 2 and the geometrical parameters in Table 4,

with AT =100 °C).

mesh sizes, indicating that the mesh size does not affect the shear
strain distribution in the middle layer.

Furthermore, the average shear strain values for the top, middle
and bottom layers of solder are calculated for both mesh sizes using
Equation 16. As illustrated in Table 2, despite variation in shear strain
distribution across the layers and mesh sensitivity in top and bottom
layers, the average shear strain values for all three layers is identical.
This suggests that the mesh size has no impact on average shear strain,
but the strain at particular points can vary significantly. In the
subsequent analysis and discussions, we will use the averaged
strain from the finite element analysis to verify the analytical solutions.

4.2 Analytical results versus FEA

Based on the material properties and geometric dimensions in
Table 1, the shear strain results from the proposed analytical method
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Comparison of shear strain value obtained from analytical

solutions with average shear strain obtained from plane stress FEA for
all ten solder joints (The results are obtained based on the materials
properties in Table 2 and the geometrical parameters in Table 4,

with AT =100 °C).

given by Equation 9, the classical solution given by Equation 1, and FEA
results are obtained and illustrated in Table 3. As seen in Table 3, the
shear strain results from the proposed analytical method closely match
with those obtained from FEA model. On the other hand, the classical
formula yields the shear strain value over 50 times greater than the FEA
result, suggesting a significant overestimation of shear strain in the
solder. Hence, the proposed analytical solution presented in the paper
demonstrates a significant improvement over the classical formula in
prediction of shear strain, as validated with FEA results. In Table 3, the
results of the shear force are also obtained based on the FEA analysis
and Equation 5. Using the shear force value from finite element analysis,
the shear strain is also obtained and is the same as shown in the table.
The use of shear force (resultant force at a surface) in FEA can also
effectively minimize the effect of meshing density and stress singularity.

Now, let’s consider a fully populated array of solder joints with
the parameters given in Table 4. The pitch used here is 0.5mm, and
the solder diameter is 0.3 mm. For n = 10 in a half-model, this
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a) a fully populated solder ball design

FIGURE 17
(a) A fully populated ball layout vs. (b) a depopulated ball layout.
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Plot between maximum shear strain and chip length for three
analytical approaches and FEA solution (AT = 100 °C, material
properties are given in Table 2. For Equation 1; Equation 9, chip length
a variable, while for Equation 14, s = 0.5 mm is fixed as chip-
length is a variable. All other geometric parameters are shown in
Table 4 excluding chip-length).

corresponds to a configuration with a fully populated array of 20 x
20 solder balls. In the analytical model, we consider a half-sliced
model with 10 solder balls of 0.3 mm diameter with a pitch of
0.5 mm. In finite element model, to minimize the possible edge effect
(Vellukunnel et al., 2023), the finite element model includes an
“overhang” portion, which also reflects the actual situation in real
applications, as shown in Figure 14. Such an overhang, however,
does not affect the analytical results using Equation 14.

The shear strain values for each solder joints, indexed form i =
1 to 10, computed from both the analytical model and FEA model
are shown in Figure 15. The corresponding shear force P for both the
analytical model and FEA model are shown in Figure 16. The figures
demonstrate that the shear strain and shear force predicted by the
analytical model show similar trends with the FEA results across all
solder joints. A notable discrepancy is observed between the FEA
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b) a depopulated solder ball design

and analytical results, for instance, at the edge solder joint (i = 1), the
analytical results (both shear force and shear strain) exceed FEA
results by a factor of about 1.6. In the current analytical model, only
shear force is transferred through these points. However, in reality,
there exist a transfer of normal force as well as bending moment
between the solder and the components to maintain the solder joint
in equilibrium. We believe this is the reason for the discrepancy.
Despite the observed difference, the analytical results achieve the
same order of magnitude compared to the finite element analysis.

Another notable observation from Figures 15, 16 is that the
result is highest at the outermost solder joint and subsequently
diminishes exponentially for inner solders, eventually approaching
zero. These findings indicate that the outermost solder joint is the
most critical and prone to failure. For the solder joints with index
i > 5, the values are almost negligible, suggesting that these joints
are not engaged in load bearing. This implies that a depopulated
array design will not affect the solder joint reliability. Figure 17
plots the schematic designs of a fully populated array with a
depopulated array. According to the predictions shown above,
the depopulated array design will not affect the overall solder joint
reliability.

4.3 Parametric study

Figure 18 presents the maximum shear strain in solder joints as a
function of the chip’s half-length, using three different analytical
approaches. When Equation 1 is applied, the shear strain increases
linearly with chip’s length, but the results significantly overestimate
the actual strain in the solder joints. In contrast, Equation 9 yields a
nonlinear increase in strain with chip length, as shown in the figure.
Furthermore, when considering a fully populated array layout with a
given pitch and solder ball diameter, Equation 14 predicts that the
maximum shear strain is nearly independent of chip length. We also
performed the finite element analysis for the fully populated array
layout, which confirms this trend, as shown in the figure. The reason
is that as the chip length increases, the number of solder joints
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FIGURE 20
Graph using the analytical solution of Equation 14 showing the

relationship between maximum shear strain and PCB modulus, with
the modulus varying from 15 GPa to 25 GPa in 1 GPa increments. (AT =
100 °C, material properties are given in Table 2, and the

geometric information are given in Table 4 except for the variations of
PCB and chip thickness variations shown).

beneath the chip increases, consequently the shear strain at the
outermost joint remains virtually unchanged. The three curves in
Figure 18 using three analytical formulas, Equations 1, 9, 14, predict
entirely different trends for shear strain versus chip size, highlighting
the importance of the analytical development presented in this work.
Among the three, this paper offers the most realistic prediction,
validated by the finite element analysis.

Figures 19a,b plot the maximum shear strain against the
thickness (or height) of the chip and PCB. As the thickness of
the chip or PCB decreases, the overall assembly becomes more
flexible, therefore the solder joint strain decreases.

Figure 20 presents the results for the maximum shear strain
versus the PCB modulus. As PCB modulus increases, the shear strain
decreases. This also demonstrates that reducing PCB modulus will
increase the overall flexibility of the assembly, therefore, the solder
strain can be reduced.
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5 Concluding remarks

This paper presents a closed-form analytical model to predict
shear strain in chip-on-board assemblies with an array of solder
balls, using linear elastic analysis based on beam theory. The model
extends classical single-ball formulations by deriving a compliance
matrix-based solution and is validated through finite element
(FEA). which can
overestimate solder ball strain by a factor of 50 or more, the

analysis Unlike the classical formula,
present model yields more realistic predictions for array
configurations. Several important findings have been made:

1. Model Accuracy: The shear strain predictions for each solder joint
in a full-array layout are generally consistent with FEA results,
achieving the same order of magnitude. However, notable
discrepancies appear at the edge joints, where the analytical
model overestimates strain by a factor of approximately 1.6.
While the model accounts for shear forces at the solder/chip
and solder/PCB interfaces, it still does not consider normal forces
or bending moments, which are part of the equation for full
equilibrium of the solder joint.

. Effect of Array Layout: For a fully populated solder ball array, the
shear strains in the inner rows are found to be almost negligible,
indicating that these joints contribute minimally to mechanical
support, as shown in Figures 15, 16, as the strains or shear force
on the inner joints are virtually zero. This suggests that a
depopulated array design will not significantly impact solder
joint reliability. Depending on the design parameters, the
analytical model can estimate how many inner rows
effectively provide no mechanical support.

3. Effect of Chip Size: When the solder ball pitch and size are
fixed, increasing the chip size leads to a corresponding increase
in the number of solder joints. However, the maximum shear
strain at the outermost solder ball remains virtually unchanged.
This finding fundamentally contrasts with predictions based
on the classical formula, which suggests a linear increase in
shear strain with chip size.
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4. Assembly Flexibility: Reducing the thickness of the chip or
PCB, or lowering the modulus of the PCB, results in a more
flexible assembly. Consequently, the shear strain in the solder
joints decreases.

The proposed model offers valuable insights into the
mechanical behavior of solder joints and provides useful
guidance for material selection and early-stage design
optimization. It is particularly beneficial for identifying design
trends and validating numerical simulations. Nonetheless,
limitations remain. The current model assumes linear elastic
behavior and cannot account for the nonlinearities inherent in
solder materials, such as creep, viscoplastic deformation, or
variations in actual solder joint geometry. Additionally, the
analysis is limited to shear strain, whereas in reality, both shear
and normal strains interact and influence joint reliability. Since the
solder joint is considered as a point contact, the effect of the actual
shape of solder joints or the effect of fillet cannot be captured.
Future work will focus on incorporating normal strain effects,
more rigorously enforcing equilibrium conditions, and exploring
coupled shear-normal deformation along with inelastic behavior to
improve model fidelity. Furthermore, the analytical framework will
be extended from the current 2D sliced model to a full 3D
representation using plate theory in place of beam theory. Once
the 3D analytical model is established, it will enable the
development of design guidelines - for example, defining
acceptable depopulation ranges as a function of PCB stiffness or

chip length.
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