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Mental Fatigue (MF) impairs cognitive performance and alters brain function, yet
its underlying neurophysiological mechanisms remain insufficiently understood.
While prior functional Near-Infrared Spectroscopy (fNIRS) studies have focused
primarily on signal-level changes or undirected connectivity, few have explored
how MF modulates causal interactions within cortical networks. In this study, we
employed an Effective Connectivity (EC) framework based on generalized partial
directed coherence (GPDC) to investigate directional brain dynamics during a
cognitively demanding Stroop task. Using a publicly available dataset comprising
continuous fNIRS recordings from 21 healthy adults, we modeled EC across six
temporal segments to capture the evolving structure of brain networks. Our
results revealed a transition from distributed, flexible connectivity patterns to
more rigid and stereotyped configurations, particularly within prefrontal and
motor regions. These findings were supported by significant changes in EC
intensity in key channels over time. Together, our approach highlights the
utility of directional connectivity analysis for identifying neural signatures of
MF and contributes toward developing more sensitive biomarkers for real-
time fatigue monitoring.

mental fatigue, MF, effective connectivity, EC, pattern recognition, fNIRS

1 Introduction

Mental Fatigue (MF) is a complex psychophysiological state arising from prolonged
periods of cognitive activity, resulting in reduced efficiency of mental processes such as
attention, working memory, and executive control (Behrens et al., 2023). It differs from
physical fatigue in that its origin lies in the central nervous system, manifesting as slower
reaction times, diminished concentration, and impaired decision-making (Wang
et al,, 2023).

MF during prolonged task performance typically unfolds in three progressive stages
(Boksem et al., 2005). In the initial compensatory stage, the brain begins to experience strain,
but performance remains stable as cognitive resources are actively recruited to maintain
efficiency. As the task continues, individuals enter the reduced efficiency stage, where
compensatory mechanisms begin to falter. This results in slower responses, decreased
accuracy, and fluctuating brain activity, particularly in regions responsible for attention and
executive control. Finally, the exhaustion or breakdown stage emerges when mental
resources are depleted, leading to marked declines in performance, increased error
rates, and disengagement from the task. These stages reflect a dynamic interplay

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/felec.2025.1668332/full
https://www.frontiersin.org/articles/10.3389/felec.2025.1668332/full
https://www.frontiersin.org/articles/10.3389/felec.2025.1668332/full
https://www.frontiersin.org/articles/10.3389/felec.2025.1668332/full
https://crossmark.crossref.org/dialog/?doi=10.3389/felec.2025.1668332&domain=pdf&date_stamp=2025-10-15
mailto:nartan@nyit.edu
mailto:nartan@nyit.edu
https://doi.org/10.3389/felec.2025.1668332
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org/journals/electronics#editorial-board
https://www.frontiersin.org/journals/electronics#editorial-board
https://doi.org/10.3389/felec.2025.1668332

Abdollahpour and Artan

between neural activity, cognitive effort, and motivational state,
offering valuable insight into how the brain responds to sustained
mental demands.

Detecting MF is essential for maintaining performance, safety,
and cognitive wellbeing across various domains. In high-stakes
environments such as driving, aviation, or healthcare, MF is
associated with slower reaction times, increased error rates, and
impaired decision-making, all of which can lead to serious
consequences if left unaddressed (Saleem et al., 2023; Sharma
et al., 2023). From a cognitive health perspective, early detection
of MF can help prevent chronic stress and burnout by enabling
timely interventions (Balia et al., 2025). Moreover, identifying MF in
real-time supports personalized task management and adaptive
systems, allowing for workload adjustments that enhance
efficiency and reduce human error (Hinss et al., 2022).

Despite notable advancements, the detection of MF remains a
challenging endeavor due to the complexity and variability of
cognitive fatigue manifestations across individuals and contexts.
One major obstacle lies in the lack of standardized assessment tools
and universally accepted physiological or behavioral markers for
fatigue, which hinders cross-study comparisons and the
generalizability of findings (Kunasegaran et al, 2023). Moreover,
most current detection systems face limitations in practicality and
scalability, as highlighted by (Al Imran et al., 2024), who reviewed
existing technologies and identified issues such as user discomfort,
environmental sensitivity, and computational overhead. These
limitations are particularly critical when designing systems for
real-world deployment, where robustness and adaptability
are essential.

As MF can occur without conscious awareness and may not be
accurately captured by subjective self-reports, there is a growing
need for objective, brain-based measures for its detection (Trejo
et al., 2015; Craig et al., 2012). Consequently, the analysis of brain
signals has become a critical avenue for understanding and detecting
MF. This

neurophysiological correlates associated with fatigue-induced

approach enables the direct measurement of
cognitive decline, such as changes in brain oscillatory activity,
network connectivity, and cortical activation patterns (Borghini
2014;  Jap et al, 2009). Techniques like
electroencephalography (EEG) and functional
Spectroscopy (fNIRS) have proven particularly valuable due to

their ability to capture dynamic brain responses with high

et al,
Near-Infrared

temporal sensitivity (Zhao et al, 2012; Derosiere et al, 2013).
These objective indicators provide a reliable foundation for
developing real-time MF detection systems in cognitively
demanding environments.

To gain deeper insight into how brain regions interact during
cognitive processes, researchers analyze not only neural activity but
also the directional influences between regions. This is where
effective connectivity (EC) becomes essential: it quantifies the
causal influence one neural region exerts over another, revealing
the brain’s underlying causal architecture (Sporns, 2007). Unlike
functional connectivity (FC), which measures undirected statistical
dependencies, EC captures mechanistic, directional relationships
(Sameshima and Baccala, 2014b). For instance, EC can distinguish
whether prefrontal activity drives parietal responses or vice versa,
clarifying hierarchical processing that FC alone cannot. Moreover,
EC dynamically adapts across tasks and lifespan stages, as
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demonstrated by (Edde et al., 2021; Abdollahpour and Artan,
2025) in studies of brain maturation, development, and aging. By
modeling these directed interactions, EC provides a framework to
decode how neural networks reorganize to support cognition
and behavior.

In this study, we investigate how MF affects the causal
interactions among brain regions by analyzing both the direction
and strength of information flow using EC.

1.1 Previous fNIRS studies on fatigue

In recent years, the use of functional
neuroimaging—particularly fNIRS, has gained momentum in
fatigue research. Its non-invasiveness, portability, and sensitivity
to cerebral hemodynamics have made it a valuable tool for
investigating the neural correlates of both physical and MF
across diverse populations and task paradigms.

Initial studies predominantly examined physical fatigue. For
example (Li et al., 2023), employed Pearson correlation, based FC to
study upper limb fatigue and observed significant post-fatigue
reductions in interhemispheric and prefrontal-motor connectivity,
underscoring the capability of fNIRS to detect cortical changes
resulting from physical exertion. Building upon these findings,
more recent efforts have shifted toward MF (Glava et al., 2025).
compared individuals with post-mononucleosis fatigue (PMF) with
healthy controls, revealing altered resting-state and task-evoked
neural connectivity. The PMF group exhibited increased global
efficiency and reduced modularity, suggesting compensatory or
maladaptive reorganization in brain network dynamics associated
with chronic fatigue.

Parallel lines of research have explored the reliability of specific
fNIRS biomarkers for MF detection. A systematic review by (Yan
et al,, 2025) identified prefrontal cortex activation, particularly in a
rise of oxygenated hemoglobin (HbO), as a robust and consistent
indicator of MF across various task types and training conditions.
These findings reinforce the centrality of the prefrontal cortex in
physical fatigue monitoring and the potential of HbO as a
reliable biomarker.

In terms of network-level analyses (Peng et al., 2022), performed
a frequency-specific FC study across multiple fatigue states,
revealing unique frequency-band signatures for moderate versus
severe fatigue. They identified altered clustering coefficients and
disruptions in small-world properties, offering a temporal
perspective on fatigue diagnostics. Complementarily (Yan et al,
2024), addressed higher-order modeling by combining low- and
high-order network features across three fatigue states. Their
integrative framework achieved classification accuracies exceeding
88%, demonstrating the importance of network complexity in
understanding MF mechanisms.

Multimodal approaches have increasingly gained attention for
MF assessment. Hamann and Carstengerdes (2023) conducted a
comparative analysis of EEG and fNIRS, showing that while EEG
consistently captured spectral changes linked to fatigue, fNIRS data
exhibited greater inter-individual variability. This underscores the
need for methodological refinement in fNIRS-based analyses and
supports the integration of complementary modalities. In a related
study, Chen et al. (2023) employed simultaneous EEG-fNIRS
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recordings during a Stroop task to investigate conflict-related brain
dynamics. They reported significant prefrontal activation in fNIRS
and distinct event-related potentials (ERPs) in EEG, reinforcing the
complementary value of electrophysiological and hemodynamic
measures for decoding cognitive demands.

Technological advancements in wearable fNIRS systems have
further extended their use into real-time applications, such as
brain-computer interfaces (BCls). For example, Varandas et al.
(2022) developed a fatigue-adaptive BCI framework using
subject-specific machine learning algorithms, achieving promising
classification accuracy despite inter-subject variability. Similarly, Li
et al. (2024) demonstrated the potential of fNIRS in monitoring
driving fatigue during attention-demanding tasks. Although limited
by sample size, the study showed that fNIRS effectively captured
hemodynamic fluctuations aligned with fatigue markers,
highlighting its relevance in safety-critical environments.

Beyond {NIRS, recent studies using EEG have demonstrated the
potential of EC in capturing fatigue-related changes in brain
communication. EC alterations, particularly in fronto-parietal
regions, have been associated with diminished top-down
regulatory control under fatigue. Longitudinal driving studies also
revealed reduced EC correlated with behavioral signs of lowered
alertness. Notably, multitasking conditions enhanced EC, whereas
states of high fatigue did not, suggesting that fatigue may constrain
the brain’s adaptive reorganization. Despite its promise, such EC-
based insights remain largely unexplored in fNIRS research.

In EEG-based research on mental fatigue, EC methods have
been increasingly used to reveal directed brain network dynamics
under fatigue-inducing tasks. For instance, using Partial Directed
Coherence (PDC) and graph theoretical analyses, Huang et al.
(2016) demonstrated distinct topological shifts across frequency
bands, with heightened local efficiency in the beta band during
cognitively engaging tasks and increased global efficiency in the
theta band at rest, reflecting the reconfiguration of functional
networks under mental load (Huang et al, 2016). Dynamic
Causal Modeling (DCM) has also been employed to track fatigue
progression, showing that as fatigue increased across trials, the
likelihood of forward model architectures being adopted also
increased, suggesting evolving causal patterns linked to mental
fatigue (Lin et al., 2019). Moreover, studies in simulated driving
tasks using Granger-causality-based directed networks revealed
reduced and reorganized information flow among cortical regions
in fatigued states, indicating that fatigue significantly alters the
causal architecture of brain connectivity (Li et al., 2022).

Collectively, these findings highlight the sensitivity of EC
analysis in EEG to mental fatigue and provide strong motivation
for applying similar approaches, such as generalized partial directed
coherence (GPDC) (Baccald et al., 2007), to fNIRS data. Applying
EC to fNIRS is both non-trivial and advantageous: non-trivial
because fNIRS signals reflect slow hemodynamic responses rather
than direct neural activity, posing challenges for temporal
resolution, modeling, and disentangling task-versus fatigue-
related effects; yet advantageous because fNIRS provides higher
spatial ~ specificity for cortical hemodynamics, reduced
susceptibility to electrical and muscular artifacts, and greater
tolerance of movement, making it suitable for naturalistic and
applied settings. These unique strengths underscore the growing
utility of fNIRS in fatigue research, from fundamental investigations
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of cortical dynamics to applied systems in BCI and driving.
Nonetheless, most current studies rely on statistical or undirected
measures of connectivity, while the directionality of brain
interactions, captured through EC, remains underexplored in the
context of mental fatigue.

1.2 Research gap and objectives

A substantial body of research has used fNIRS to study the
effects of mental and physical fatigue. However, the majority of prior
work has emphasized signal-level changes (e.g., oxygenated
hemoglobin amplitude) or undirected FC measures such as
Pearson correlation. While these approaches provide useful
insights into regional activation and statistical dependencies, they
cannot capture the directionality of neural communication. EC, in
contrast, quantifies the causal influence one brain region exerts on
another, offering a more mechanistic view of how cortical networks
reorganize under fatigue.

Despite its potential, EC remains largely unexplored in fNIRS-
based fatigue research. Most existing applications of EC have been
conducted with EEG, where methods such as Granger causality and
Transfer Entropy have been used to detect mental fatigue. To our
knowledge, no previous study has applied EC in the context of {NIRS
for fatigue detection. This gap is particularly noteworthy given that
fNIRS provides unique advantages over EEG, including higher
spatial specificity for cortical regions and greater robustness to
electrical and motion artifacts. At the same time, applying EC to
fNIRS is non-trivial due to its lower temporal resolution and
susceptibility to systemic physiological signals, highlighting the
need for methodological innovation.

To address this gap, the present study investigates how mental
fatigue alters the directionality and strength of brain network
interactions during sustained task engagement. Specifically, we
ask: How does mental fatigue modulate the causal dynamics of
cortical networks as measured by EC? By examining directional
and time-resolved interactions, we aim to advance the
neurophysiological understanding of fatigue and contribute
toward developing more sensitive biomarkers for real-time
fatigue monitoring. For this purpose, we selected a publicly
available multimodal Stroop-task dataset (Chen et al, 2023),
which provides continuous recordings and well-defined cognitive
load manipulations ideally suited for fatigue analysis.

Methodologically, we employed GPDC for EC estimation.
GPDC extends the Granger causality framework to the frequency
domain and incorporates normalization, ensuring scale-invariant
results across channels. Compared with Transfer Entropy, GPDC is
computationally efficient, interpretable in terms of oscillatory
dynamics, and well-suited for short-window analysis, an essential
property for tracking the evolving impact of fatigue.

2 Methods

This study employed a data-driven pipeline to analyze the
dynamic EC patterns underlying MF using fNIRS. We leveraged
a publicly available multimodal dataset featuring continuous EEG
and fNIRS recordings during a Stroop task. Our methodology
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Schematic overview of the analysis pipeline for EC modeling using fNIRS data. The process includes: (1) fNIRS signals are obtained from publicly
available recordings (Chen et al., 2023); (2) preprocessing to obtain HbO/HbR signals; (3) EC estimation via MVAR and GPDC; (4) construction of directed
graphs using EC intensity; and (5) visualization, pattern recognition, and statistical analysis.

consisted of five main stages: data selection and description, signal
preprocessing, EC computation via GPDC, graph-based modeling of
brain network dynamics and visualization of the EC flow among
brain regions (see Figure 1). Each step was designed to preserve the
temporal resolution of the signals and enable frequency-specific
analysis of directed brain interactions across multiple time windows.
It is worth mentioning that GPDC is preferred over alternatives
such as Granger Causality (GC) and Transfer Entropy (TE) because
it provides a frequency-domain representation of directional
interactions that is both statistically robust and computationally
efficient. Unlike classical GC, which is typically implemented in the
time domain, GPDC is derived from multivariate autoregressive
(MVAR) models and normalizes the influence of each signal by its
innovation variance, thereby reducing bias due to amplitude scaling
and allowing for direct comparison across connections (Baccald and
Sameshima, 2001; Baccald and Sameshima, 2007). Compared with
transfer entropy (TE), which is model-free but computationally
demanding and less interpretable in terms of oscillatory
dynamics, GPDC provides clearer physiological interpretability
by decomposing directed connectivity across frequency bands
and accounting for indirect pathways through its multivariate
formulation. This reduces spurious detections common in
pairwise approaches and makes GPDC particularly relevant for
fNIRS and EEG studies of fatigue, where slow hemodynamic and
neural oscillations are of interest (Baccald and Sameshima, 2001;
Baccald and Sameshima, 2007; Sameshima and Baccal4, 2014a).

2.1 Data description

The fNIRS and EEG recordings used in this study originate from
the open-access multimodal dataset first published by Shin et al.
(2018), which simultaneously acquired EEG and fNIRS signals
during cognitive tasks. A secondary release of this dataset,
incorporating additional curation, preprocessing, and expanded
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documentation, was subsequently provided by Chen et al. (2023).
In the present work, we rely on this latter release while
acknowledging the original data collection by Shin et al. (2018).

The dataset comprises recordings from 21 healthy adult
participants (9 females, 12 males; age range: 20-30 years; mean
age: 23.0 +2.3), all right-handed native Chinese speakers with
normal color vision and no history of neurological or psychiatric
disorders. Participants engaged in alternating blocks of neutral and
incongruent Stroop trials (see Figure 2C), a paradigm designed to
impose sustained cognitive demand. Each experiment was organized
into four sequential blocks: two neutral stimulus blocks followed by
two incongruent stimulus blocks. Each block contained 16 trials,
with stimuli presented for 2 s and followed by a 5 s inter-trial
interval. Resting baselines of 30 s were recorded before the first block
and after the final block, with short breaks provided between blocks.
The task was performed in a quiet, dark environment, and practice
sessions were conducted to ensure familiarity. Accordingly, the
fNIRS data were segmented into rest, neutral, and incongruent
periods for subsequent analyses, consistent with the dataset
description.

EEG signals were acquired from 34 scalp electrodes at a sampling
rate of 1000 Hz, providing high temporal resolution. Concurrently,
NIRS signals were recorded at 100 Hz using a NIRScout system
16  detectors,
20 measurement channels covering frontal and parietal cortices,

equipped with 4 sources and producing
regions strongly implicated in fatigue, related neural modulation (see
Figure 2B). While the present study focuses on EC analysis using only
the fNIRS data, the synchronized dual-modality recordings enable
future multimodal extensions.

Behavioural data were also recorded, including accuracy, reaction
time, and accuracy/reaction time across the two stimulus conditions. As
reported previously (Table 3; Figure 5 in the original study),
incongruent trials showed significantly lower accuracy, longer
reaction times, and reduced accuracy/reaction time compared to

neutral trials, demonstrating a robust Stroop effect consistent with
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FIGURE 2

(A) Filtered HbO signals from three representative subjects (Subjects 16, 9, and 1), demonstrating the temporal evolution of hemodynamic responses
following preprocessing. The red line represents the smoothed average trend across the selected channels, while the red dashed index line at the bottom
indicates time in seconds. (B) Sensor layout on the scalp, illustrating fNIRS channel locations and their corresponding cortical projections based on the
10-20 system (redrawn based on Figure 2 in (Chen et al,, 2023)). (C) Experimental blocks: R = rest, N = neutral, B = break, | = incongruent (redrawn

based on Figure 1 in (Chen et al,, 2023)).

prior literature. However, because these behavioural measures are not
directly related to the present focus on mental fatigue and effective
connectivity, they were not included in our analysis.

The Stroop task paradigm is widely recognized for its ability to
elicit executive control, attentional regulation, and conflict
monitoring by requiring participants to resolve conflicts between
the semantic meaning and the visual color of stimuli. These
processes are closely tied to the onset and progression of mental
fatigue, making the task particularly suited for the present study.
Importantly, to the best of our knowledge, this dataset represented
the only publicly available resource at the time that provided
continuous, unsegmented recordings of both EEG and fNIRS for
fatigue assessment. Its continuous nature, structured block design,
and integration of behavioral and physiological measures render it
uniquely suited for windowed or time-resolved modeling of
neurophysiological changes. As such, it provides a robust
foundation for exploring spatiotemporal dynamics of mental
fatigue and the associated directional brain network interactions.

The continuous fNIRS recordings provided in the original
dataset have a duration of more than 199 s per participant, as
reported in Table 2 of the dataset description (Chen et al., 2023).

2.2 Preprocessing
In this stage, the raw light intensity signals at 785 nm and

850 nm wavelengths were first converted to optical density (OD)
using a logarithmic transformation, as shown in Equation I:

Frontiers in Electronics

OD = —log(é) (1)

where I represents the initial emitted light intensity and I is the
detected light intensity after passing through biological tissue.

Next, the hemodynamic concentrations of HbO and HbR
were estimated using the modified Beer-Lambert law (MBLL)
(Kocsis et al., 2006), which relates changes in OD to
chromophore concentration. This estimation incorporates the
extinction coefficients of hemoglobin at two wavelengths, the
differential pathlength factor (DPF) to account for photon
scattering, and the source-detector separation distance d. The
MBLL can be calculated as in Equation 2 (Abdollahpour
et al., 2025):

a0D (L)
[ AHbR] = l[ empr (M) €mpo (A1) | PR (2)
AHbO | d emr (V) eno () | | o )

DPF(1,)

Following concentration estimation, baseline correction was
applied by subtracting the mean of the signal during the first and
last 30 s of each trial to minimize inter-trial variability. Finally, the
baseline-corrected HbO and HbR signals were filtered using a third-
order Butterworth bandpass filter in the 0.015-0.2 Hz range to
remove low-frequency drifts and high-frequency physiological
relevant hemodynamic fluctuations

artifacts, retaining the

for analysis.
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2.3 EC calculation

To quantify EC among fNIRS channels, we employed an
adaptive (AMVAR)
(Sameshima and Baccala, 2014b) to capture the non-stationary

multivariate  autoregressive model
nature of brain signals. Model fitting was performed using the
Vieira-Morf algorithm (Morf et al., 1978). GPDC was computed
on HbO signals sampled at 100 Hz using sliding 30 s windows
(3,000 samples) with 50% overlap; we summarized spectra into
10 bins from 0.01 to 0.20 Hz (0.01-Hz steps), focusing subsequent
analyses on 0.10-0.20 Hz. This window length provided sufficient
frequency resolution (~0.017 Hz) to capture slow hemodynamic
oscillations, ensuring multiple cycles were represented within each
window. Shorter windows risk unstable MV AR estimates, whereas
longer windows obscure temporal dynamics of fatigue-
related changes.

The autoregressive model order was set to p = 12 based on
minimization of the Akaike Information Criterion (AIC), capped at
P <20 to balance model fit and parsimony (Akaike, 1974; Liitkepohl,
2005). With 20 channels, this choice maintained a favorable sample,
parameter ratio and avoided over-parameterization. Prior to
estimation, data were prefiltered and oriented in the convention
[time samples x channels] required for MVAR modeling. Model
stability was assessed in each window via the spectral radius of the
companion matrix, with stability flags retained for quality control.

Finally, GPDC was estimated in the 0.10-0.20 Hz band, a
frequency range that captures slow hemodynamic oscillations
most relevant to fatigue while minimizing contamination from
respiration (~0.2-0.3 Hz) and cardiac pulsations (~1 Hz) (Yiicel
et al,, 2021; Tachtsidis and Scholkmann, 2016). This procedure
yielded subject-specific, time-resolved GPDC estimates with explicit
stability checks, ensuring both physiological interpretability and
methodological rigor (Baccald and Sameshima, 2001; Baccald and
Sameshima, 2007).

After estimating the MVAR coefficients, we computed
Generalized GPDC, a frequency-domain metric that quantifies
directed interactions while remaining invariant to signal scaling.
Unlike its predecessor, PDC, which can be biased by amplitude
differences, GPDC normalizes each channel’s influence by the total
outflow across all connections. In our analysis, GPDC was computed
across 10 frequency bins ranging from 0.01 Hz to 0.2 Hz in 0.01 Hz
increments, for each windowed segment of the data. Given that each
recording included 20 fNIRS channels, the resulting GPDC matrices
had dimensions [W, 10, 20, 20] where W represents the number of
30-s windows. The value of W varied across subjects depending on
the duration of their continuous recordings, with an approximate
range of 14 + 3 windows per participant.

The squared magnitude of GPDC from channel j to i at
frequency f is defined as in Equation 3:

1 2
|ﬁij (f)l2 = M|EAU7(f)|2 (3)
P |54 ()]

Here, A;j(f) denotes the frequency-transformed MVAR
coefficient, M is the number of channels, and X is the noise
covariance matrix. This formulation ensures that 0<|7; (f)I* <1,
with values normalized across all possible outflows from node j.
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To assess the statistical significance of GPDC values, a

surrogate bootstrap approach was employed. For each
subject, 1,000 surrogate datasets were generated by phase-
randomizing the Fourier components of each channel’s time
series, thereby preserving the spectral properties of individual
signals while eliminating inter-channel dependencies. The
MVAR model and GPDC were
surrogate dataset to construct an empirical null distribution.
Observed GPDC values exceeding the 95th percentile of this

distribution were considered statistically significant. This

recomputed for each

procedure was implemented in Python using custom scripts
and applied consistently across all six experimental periods for
each subject.

2.4 Graph construction

After computing the GPDC matrices with dimensions
[W, 10,20, 20], where W is the number of 30-s windows, 10 is
the number of frequency bins (0.01 —0.20 Hz), and 20 is the
number of fNIRS channels, we constructed EC graphs by
segmenting the data into 6 chunks of equal windows. For each
chunk, GPDC values were averaged across both temporal and
frequency dimensions, yielding a single 20 x 20 matrix that
represents the mean directional interactions between all channel
pairs. Each matrix was then used to construct a fully connected
directed graph, where nodes correspond to fNIRS channels and edge
weights reflect the strength of directional connectivity from one
channel to another.

To characterize the role of each channel, we computed the EC
intensity as the difference between the total outgoing and incoming
connectivity, as defined in Equation 4:

ECitensity = Outflow — Inflow (4)

This value reflects whether a node predominantly acts as a
source (positive value, driver) or a sink (negative value, receiver)
within the network.

Distinct temporal segment of the task. For each graph, we
created a corresponding . node and . edge file to be used with the
BrainNet Viewer toolbox (Xia et al., 2013)
(Versionl.7, Release2019) in MATLAB (version2018b). The .
node file included the spatial coordinates of each fNIRS channel
along with the computed EC intensity values for visualization. The .
edge file contained the full 20 x 20 EC matrix, representing the
directional influence between all channel pairs. This enabled
intuitive 3D visualization and analysis of dynamic brain
connectivity patterns over time.

2.5 Data visualization

For this stage, we utilized the .node and. edge files generated
in the previous step to visualize EC patterns using the BrainNet
Viewer toolbox (see Figure 3A). BrainNet Viewer is a MATLAB-
based visualization tool that enables 3D rendering of brain networks
by projecting nodes and weighted edges onto a cortical surface. In
our case, each node represented an fNIRS channel with its spatial
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FIGURE 3

(A) Visualization of directed EC based on GPDC across six consecutive time windows. Each panel represents one temporal segment: resting state
(beginning and end), neutral state (beginning and end), and incongruent state (beginning and end). Nodes correspond to fNIRS channels, while edge
colors indicate normalized GPDC values (0-1), reflecting the strength and direction of information flow. The progression illustrates how network
connectivity evolves from sparse, localized interactions in early windows to denser, more widespread connections under increasing cognitive
demand. (B) Topographic significance maps of EC differences between pre-fatigue and fatigue conditions. Outflow (left) and inflow (right) show
significant changes predominantly in frontal and motor regions, especially over medial and right-hemispheric areas.

coordinates and EC intensity, while each edge reflected the strength 3 Results

and direction of the averaged GPDC-based connectivity between

channel pairs. 3.1 Temporal dynamics of HbO signals
For visualization, we first masked edges by surrogate-based

significance, then retained the top 15% of the remaining edge Figure 2A presents the filtered HbO signals over time for three

weights for clarity. representative subjects (Subjects 1, 9, and 16). Each gray line
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represents a different fNIRS channel, while the red line indicates the
mean trend across channels. A gradual decline in the amplitude of
HbO signals can be observed over the duration of the task, which
aligns with typical hemodynamic patterns associated with increasing
MF (De Roever et al., 2018). This downward trend, indicative of
reduced cortical activation or neurovascular responsiveness, was
consistently observed across all 21 participants in the dataset.
Although we present only three examples here for brevity, this
pattern was robust and broadly generalizable across the

entire cohort.

3.2 Temporal evolution of EC

The temporal evolution of EC revealed a progressive
reorganization of cortical networks across resting and task states
(Figure 3A). In the initial resting state (Panel 1), connectivity was
sparse, with only a few directed links between frontal and motor
regions (e.g., CH2-CH20, CH5-CH18), reflecting a baseline state
with minimal integration demands. As the neutral task began
(Panels 2-3), connectivity became denser, particularly across
right frontal and motor regions (CH16-CH20-CH18-CH17),
indicating increased recruitment of executive and motor systems
to sustain task engagement. During the incongruent task (Panels
4-5), connectivity patterns expanded further, with widespread
bidirectional links involving prefrontal (CH12-CH15), motor
(CH16-CH19), and temporal (CH14) regions. The end of the
incongruent condition (Panel 5) exhibited the highest density of
connections, reflecting strong integration across prefrontal-motor
circuits under elevated cognitive load. Finally, in the concluding
resting state (Panel 6), connectivity did not return to its initial sparse
configuration; instead, persistent frontal-motor links remained,
suggesting that task demands and fatigue effects carried over into
the post-task resting period.

Consistent with these temporal trends, channel-level analyses
(Tables 1, 2; Figure 3B) highlighted specific cortical regions
showing marked differences between pre-fatigue and fatigue
states. The medial premotor cortex (CH10) demonstrated
increased outflow during fatigue, while the right anterior
cortex (CHI2) showed the
alterations, with strong changes in both inflow and outflow.

prefrontal most pronounced
Additional effects were observed in the right inferior frontal
gyrus (CHI13) and right superior temporal gyrus (CH14), both
of which displayed altered inflow and outflow. Further outflow
differences emerged in the right premotor cortex (CH15), right
middle frontal gyrus (CH16), and right primary motor cortex
(CH18). Finally, the medial motor cortex (CH19) exhibited robust
changes in both inflow and outflow. Taken together, these findings
indicate that fatigue selectively modulates connectivity within
prefrontal, premotor, and motor regions, with particularly
strong effects in right-hemispheric circuits.

In line with the observed reductions in density and assortativity,
alongside localized disruptions in prefrontal and motor hubs, these
results provide converging evidence that fatigue reduces the
flexibility of effective connectivity networks (Genova et al., 2010).
Rather than supporting adaptive reconfiguration across conditions,
fatigued networks appear to adopt a more constrained and less
dynamic structure.
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3.3 Statistical analysis of channel-wise
EC changes

To evaluate the effect of MF on EC, we statistically
compared EC patterns between the pre-fatigue (G1) and
fatigue (G6) states. For each subject and each of the
20 channels, we computed a 40-dimensional EC vector
composed of both incoming and outgoing connections. These
vectors were averaged within each condition to yield one
representative EC profile per channel per subject.

To control for the inflated risk of false positives arising from
multiple comparisons across 20 channels, we applied a false
(FDR) (Benjamini 1995)
correction using the Benjamini — —Hochberg procedure at
a =0.05. The corrected p-values are reported in Table 2, and

discovery rate and Hochberg,

only effects that survived correction were considered statistically
significant.

At the global network level, we further examined changes in
network flexibility using a range of graph-theoretical metrics,
including density, clustering coefficient, in/out-degree variability,
entropy of the EC matrices, and intensity-based measures (mean,
variance, entropy, Gini coefficient, and correlations with strength).
Independent t-tests comparing pre-fatigue with fatigue revealed
significant reductions in density (t =-2.35, p=0.026) and
assortativity of intensity (t = —2.48, p = 0.021). In contrast, both
in-degree variability (t = 2.85, p = 0.015) and out-degree variability
(t =2.41, p =0.029) increased significantly under fatigue. These
results indicate that the fatigued brain network becomes sparser,
more variable in the distribution of connectivity strength, and less
assortative, reflecting a shift toward less balanced and more rigid
connectivity configurations. Other metrics, including average
clustering coefficient, entropy of the EC matrices, and additional
intensity-based measures, did not show significant differences
(p>0.05).

At the channel level, several cortical regions showed marked EC
alterations between pre-fatigue and fatigue states (Table 2). The
medial premotor cortex (CH10) exhibited increased outflow, while
the right anterior prefrontal cortex (CH12) demonstrated the largest
overall changes, with pronounced increases in both inflow and
outflow. Additional outflow differences were observed in the
right inferior frontal gyrus (CH13), right superior temporal gyrus
(CH14), right premotor cortex (CH15), right middle frontal gyrus
(CH16), and right primary motor cortex (CH18). The medial motor
cortex (CHI19) also showed significant changes in both inflow and
outflow, underscoring its central role in fatigue-related modulation.
Notably, most significant alterations were concentrated in right-
hemispheric prefrontal and motor regions, highlighting the
lateralized vulnerability of executive and motor control networks
to fatigue.

To complement the numerical results, Figure 3B presents
topographic maps illustrating the spatial distribution of
significant inflow and outflow differences. Warmer colors
correspond to higher statistical significance (-log,,(p)), while
black dots denote electrode positions. The combination of
detailed statistical reporting (Table 2) and spatial visualization
(Figure 3B) provides a comprehensive overview of how EC
patterns reorganize under fatigue, enhancing both interpretability
and scientific rigor.

frontiersin.org


https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2025.1668332

Abdollahpour and Artan

TABLE 1 Channel mapping and corresponding brain regions.

10.3389/felec.2025.1668332

Channel Electrodes Region Channel Electrodes Region

CH1 F3-F5 Left Dorsolateral Prefrontal Cortex CH11 F4-F6 Right Dorsolateral Prefrontal Cortex
CH2 F5-AF7 Left Anterior Prefrontal Cortex CH12 F6-AF8 Right Anterior Prefrontal Cortex
CH3 F7-F5 Left Inferior Frontal Gyrus CH13 F8-F6 Right Inferior Frontal Gyrus
CH4 FTI7-F5 Left Superior Temporal Gyrus CH14 FT8-F6 Right Superior Temporal

CH5 F5-FC3 Left Premotor Cortex CHI15 FC4-FC2 Right Premotor Cortex

CH6 F3-FC1 Left Middle Frontal Gyrus CH16 FC2-F4 Right Middle Frontal Gyrus
CH7 FC3-FC1 Left Premotor Cortex - Dorsal BA 6 CH17 FC4-FC2 Right Premotor Cortex

CH8 C3-FC1 Left Primary Motor Cortex CH18 C4-FC2 Right Primary Motor Cortex
CH9 FCI1-Cz Medial Motor Cortex - SMA CHI19 FC2-Cz Medial Motor Cortex

CH10 FC1-FCz Medial Premotor Cortex — BA 6 CH20 FC2-FCz Medial Premotor Cortex

TABLE 2 Significant channel-level EC differences between pre-fatigue (Group A) and fatigue (Group B). Reported are means, t-statistics, FDR-adjusted
p-values, effect sizes (Cohen'’s d), and 95% confidence intervals of the mean differences.

Channel Metric Mean a Mean B t PFDR Cohen's d 95% ClI
10 Outflow 6.19 12.32 -435 0.018 -1.20 [-8.12, —3.14]
12 Inflow 059 11.96 -5.02 0.009 -1.38 [-14.30, —8.45]
12 Outflow 454 11.49 -5.68 0.006 -1.56 [-9.12, —4.78]
13 Outflow 6.86 11.61 -3.42 0.021 -0.95 [-7.10, —1.40]
14 Inflow 3.95 14.54 -4.88 0.012 -1.34 [-13.15, =7.03]
14 Outflow 6.90 12.74 -3.25 0.030 -0.90 [-8.05, —1.63]
15 Outflow 691 12.72 -3.10 0.041 -0.86 [-7.01, -1.61]
16 Outflow 6.59 12.12 ~4.60 0.015 -1.25 [-7.92, -3.14]
18 Outflow 6.99 11.69 -3.55 0.020 -0.98 [-7.25, —1.58]
19 Inflow 10.70 14.74 —4.22 0.011 -1.16 [-6.12, —2.08]
19 Outflow 753 13.11 -475 0.009 -1.29 [-7.98, —2.48]

4 Discussion

This study investigated the temporal dynamics of EC during a
cognitively demanding Stroop task using fNIRS signals analyzed
with GPDC. By combining hemodynamic measures with graph-
theoretical modeling, we revealed converging evidence of fatigue-
related changes at both the signal and network levels. Specifically, a
gradual decline in HbO amplitude was consistently observed across
participants, accompanied by progressive alterations in EC patterns
that reflected a loss of network flexibility. Together, these findings
demonstrate that sustained cognitive load reshapes cortical
communication, leading to sparser, less adaptive, and more
stereotyped connectivity configurations.

The reduction in HbO amplitude is consistent with prior studies
linking decreased cortical activation to mental fatigue (De Roever et al.,,
2018). This diminished hemodynamic response likely reflects reduced
neurovascular coupling efficiency or attenuated neuronal engagement
over time. Beyond amplitude changes, EC analyses provided a more
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detailed picture of how fatigue alters large-scale brain organization.
Early in the task, networks exhibited broader and more distributed
connections, including interhemispheric links between frontal and
motor regions. As the task progressed, however, connectivity became
increasingly localized and repetitive, suggesting a gradual erosion of
network flexibility. Such patterns align with the neural efficiency
hypothesis, whereby the fatigued brain conserves limited cognitive
resources by relying on fewer, more specialized pathways, potentially
shifting toward more rigid and automatic processing strategies (Boksem
et al,, 2005).

At the network level, graph-theoretical metrics confirmed these
trends. We found significant reductions in density and assortativity
of intensity, indicating that fatigued networks were both sparser and
less structured in their distribution of strong connections. In
contrast, in-degree and out-degree variability
significantly, suggesting greater dispersion in the way nodes send

increased

and receive information. This imbalance reflects a departure from
coordinated, well-distributed communication toward fragmented
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dynamics dominated by a subset of regions. Taken together, these
changes portray a system that is less integrated and less adaptive,
hallmarks of fatigue-related decline in cognitive control.

At the regional level, channel-wise analyses identified cortical
hubs that were disproportionately affected by fatigue. The right
anterior prefrontal cortex (CH12) exhibited the most pronounced
alterations, with marked increases in both inflow and outflow,
underscoring its role as a critical hub for executive regulation
and integrative processing. Significant outflow changes were also
observed in the right inferior frontal gyrus (CH13) and superior
temporal gyrus (CH14), suggesting that inhibitory control and
auditory-attentional functions were disrupted. Alterations in
premotor and motor regions, including CH15, CH16, CH18, and
CHI19, indicate compensatory adjustments in motor planning and
execution, reflecting the additional effort required to sustain
performance under fatigue. The medial premotor cortex (CH10)
further showed heightened outflow, reinforcing its contribution to
the coordination of motor and cognitive demands during prolonged
task engagement. The predominance of right-hemispheric effects
aligns with prior evidence that this hemisphere plays a central role in
vigilance, sustained attention, and fatigue regulation.

The temporal evolution of EC across task phases further
contextualizes these findings. While the initial resting state was
characterized by sparse connectivity, the neutral condition elicited
denser patterns involving frontal-motor regions. The incongruent
condition, which imposed higher executive control demands,
produced the most widespread connectivity, particularly in right
frontal and motor cortices. Notably, connectivity did not fully return
to baseline in the final resting state but remained elevated compared to
the initial rest, suggesting lingering neural signatures of fatigue and
sustained cognitive effort. This residual connectivity highlights the
persistence of fatigue effects beyond task execution and points to
altered recovery dynamics.

Methodologically, the present work demonstrates the utility of
combining windowed GPDC with graph-based modeling to capture
time-resolved and frequency-specific EC patterns from fNIRS data.
The integration of statistical testing with FDR correction and
topographic visualization provides a rigorous framework for
identifying robust channel- and network-level effects. These tools
hold promise for advancing real-time fatigue monitoring in applied
contexts, such as aviation, education, and neurorehabilitation, where
prolonged cognitive effort can compromise performance and safety.

Our results reveal that mental fatigue is characterized not only
by diminished hemodynamic responses but also by a reorganization
of connectivity toward sparser, more variable, and less flexible
network structures. The vulnerability of right-hemispheric
prefrontal and motor networks underscores their critical role in
sustaining task performance and highlights potential targets for
interventions. By integrating hemodynamic and connectivity
analyses, this study provides a comprehensive account of the
neural dynamics of fatigue, offering insights into both its
mechanistic basis and its practical implications.

4.1 Limitations

Although the present study provides novel insights into EC
dynamics under mental fatigue, several limitations should be
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acknowledged. First, fNIRS is limited to measuring cortical

hemodynamic responses and cannot capture subcortical
contributions, which are known to play an important role in
fatigue regulation. This restricts the scope of interpretation to
cortical-level interactions. Second, the dataset lacked behavioral
and subjective fatigue markers (e.g., reaction time slowing,
performance decline, or self-reported fatigue). While Stroop
effects in accuracy and reaction time confirmed successful
induction of cognitive conflict, these measures do not directly
reflect the accumulation of fatigue. Future studies would benefit
that

neuroimaging with behavioral and subjective metrics to provide

from incorporating multimodal indicators combine
convergent validation.

Third, inter-subject variability in physiology, task engagement,
and fatigue susceptibility may have influenced the observed EC
patterns. Although FDR correction was applied to minimize false
positives, this conservative approach also reduced the number of
significant effects, underscoring the need for replication in larger
and more diverse cohorts to improve generalizability. Fourth, our
analysis was restricted to the first and last resting windows to
provide a clean comparison between pre-fatigue and fatigue
states. While this approach minimized confounding task-related
influences, it also reduced temporal resolution and may have
overlooked dynamic changes unfolding within the task segments
themselves. Moreover, the assumption that the resting windows
provide a stable baseline may not fully account for residual task
effects or inter-individual variability in recovery. Future work should
consider applying mathematical modeling approaches to
disentangle task-related from fatigue-related connectivity changes
more precisely.

In sum, the current findings highlight robust alterations in
cortical EC associated with fatigue, but they should be
interpreted in light of these methodological and conceptual
constraints. Addressing these limitations in future studies will
help establish more comprehensive and generalizable markers of
the of

neuroimaging-based tools for monitoring cognitive performance

fatigue, and may ultimately guide development

in high-stakes or prolonged task environments.

5 Conclusion

This study investigated the neural correlates of MF by applying
GPDC to continuous fNIRS recordings during a Stroop task. We
found that
reorganization of cortical networks, characterized by a transition
from distributed and flexible connectivity to more rigid and
stereotyped These
pronounced in prefrontal and motor regions, particularly within

sustained cognitive load drives a progressive

configurations. alterations were most

right-hemispheric circuits that support executive control, attention,
and motor planning. By integrating statistical analyses with graph-
theoretical and visualization,

modeling topographic

demonstrated that fatigue is marked not only by reduced

we

hemodynamic responses but also by diminished network
flexibility and altered information flow. This work addresses a
critical gap in fatigue research by capturing the directed, time-
resolved interactions among cortical regions, providing mechanistic

insight into how sustained effort disrupts large-scale brain
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organization. The proposed EC-driven framework offers a
promising foundation for real-time monitoring of cognitive
fatigue, with potential applications in neuroergonomics,
human-machine interaction, and performance management in
high-stakes should integrate
behavioral data (e.g,
EEG-fNIRS interpretability ~ and

generalizability. Nevertheless, the present findings underscore the

environments. Future studies

outcomes and multimodal neural

fusion) to  strengthen
promise of EC as a robust biomarker of mental fatigue and a tool for

advancing brain-based monitoring systems in applied contexts.
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