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Di-(2-ethylhexyl) phthalate, one of the phthalates most widely distributed in the
environment, causes reproductive toxicity that is attributable to the action of its primary
metabolite, mono-(2-ethylhexyl) phthalate (MEHP). Here, we have investigated the effects
of MEHP on steroidogenesis by primary cultures of rat Leydig cell progenitors and imma-
ture granulosa cells. This phthalate stimulated basal steroidogenesis and steroidogenic
acute regulatory protein (StAR) expression in both types of steroidogenic cells. However,
when MEHP was incubated with (Bu)2cAMP, steroid production was increased in granulosa
cells and suppressed in Leydig cell progenitors, a process associated with up-regulation
of StAR expression. Our data suggest that MEHP exerts gender-specific adverse effects
on the hormonal function of the developing gonads. This may be involved in the develop-
ment of pathological conditions including disorders of prenatal sex development that may
attenuate future reproductive health.
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INTRODUCTION
An increased incidence of disorders of sex development
(DSD), such as hypospadias and cryptorchidism as well as
testicular cancer and poor semen quality during the last
decades in humans have been attributed to the influence
of endocrine disruptors (ED). These compounds constitute
a heterogeneous group of xenobiotics of anthropogenic ori-
gin which can mimic natural hormones, inhibit the action
of hormones, or alter their biosynthesis and/or metabolism
(Lottrup et al., 2006).

Phthalates, including the widely used plasticizer di-(2-
ethylhexyl) phthalate (DEHP), are components of many plastic
products, such as food wraps, toys, and some medical devices
(e.g., tubings, bags for intravenous infusions, blood transfusion,
and dialysis equipment; Thomas and Thomas, 1984). DEHP is
loosely held with the plastic polymer and can easily be released
into the environment (Koch et al., 2006). High concentrations
of phthalate metabolites were detected in the urine of women
of childbearing age (Blount et al., 2000), a finding that can be
associated with extensive use of personal care products (e.g., skin
creams and nail polish) containing phthalates. Children on dial-
ysis are suggested to be one of the most vulnerable groups for
phthalates exposure, because they may receive high levels of phtha-
lates from dialysis tubing (Loff et al., 2000; Brock et al., 2002).
Further, in this context, children and women of childbearing age
were demonstrated to have higher urinary levels of phthalates than
other groups (Blount et al., 2000). Moreover, maternal phthalate
exposure during pregnancy has been associated with decreased
anogenital distance (AGD) in male infants (Swan et al., 2005), a
finding suggested to be due to attenuation of androgen production
by the fetal testis.

Experiments on animal models have demonstrated that DEHP
causes reproductive toxicity in both prenatal and postnatal stages
of development. This effect was attributed to its primary metabo-
lite, mono-(2-ethylhexyl) phthalate (MEHP; Sjoberg et al., 1986;
Dostal et al., 1988; Gray et al., 2001). This mono-phthalate impairs
the function of steroid-producing gonadal cells, such as Leydig
and granulosa cells in both in vivo and in vitro experimental
paradigms. MEHP was observed to inhibit the stimulation of
testosterone production in primary cultures of rat Leydig cells by
luteinizing hormone (LH; Jones et al., 1993) and the activation of
steroidogenesis by human chorionic gonadotropin (hCG) in the
MA-10 Leydig cell line (Dees et al., 2001). We have recently demon-
strated that MEHP decreased hCG-activated steroidogenic acute
regulatory protein (StAR) expression, a process that was asso-
ciated with reduced transport of cholesterol into mitochondria
and attenuated androgen production in immature and adult Ley-
dig cells (Svechnikov et al., 2008). Similarly, MEHP was reported
to attenuate progesterone production by follicle stimulating hor-
mone (FSH)-stimulated primary cultures of rat granulosa cells
in vitro (Treinen et al., 1990) and chronic administration of DEHP
to rats inhibited sex hormone production in immature female rats
in vivo and ex vivo (Svechnikova et al., 2007). In addition, MEHP
was demonstrated to suppress estradiol production by granulosa
cells through direct inhibition of transcription of the aromatase
(CYP19) gene (Lovekamp and Davis, 2001).

However, the mechanism(s) underlying the action of MEHP
on developing Leydig and granulosa cells at their early stages of
differentiation has not yet been investigated. Thus, the aim of the
present study was to examine the effects of MEHP on steroido-
genesis in progenitor Leydig cells and immature granulosa cells
isolated from 20-day-old male and female rats.
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MATERIALS AND METHODS
MATERIALS
Dulbecco’s modified Eagle’s medium (DMEM) – Ham’s nutrient
mixture F-12 (supplemented with L-glutamine and HEPES),
bovine serum albumin (BSA; 7.5% solution), cholesterol lipid con-
centrate (250×), and penicillin–streptomycin were bought from
Gibco/BRL, Life Technologies (Paisley, Scotland); BSA (fraction
V), percoll, HEPES, collagenase type I, (Bu)2cAMP), ovine FSH,
22R-hydroxycholesterol (22R-OHC), and hCG were obtained
from Sigma Chemical Co. (St. Louis, MO, USA). MEHP were
purchased from TCI Europe (Brussels, Belgium).

ANIMALS
The testes and ovaries from 20-day-old Sprague-Dawley rats (B&K
Laboratories, Sollentuna, Sweden) were used for the isolation of
immature granulosa cells and Leydig cell progenitors. These ani-
mals had access to a standard laboratory chow (Lantmännen,
Kimstad, Sweden) and water ad libitum. The rats were anesthetized
by phenobarbital before the testes and ovaries were removed. These
experiments were approved by the Northern Stockholm Animal
Ethics Committee (registration no. N319/08).

ISOLATION AND PRIMARY CULTURE OF LEYDIG CELLS
Leydig cell precursors were prepared from the testes of 20-day-old
rats as described previously (Svechnikov et al., 2001). Briefly, fol-
lowing decapsulation, testes were disrupted by collagenase treat-
ment and the seminiferous tubules were separated mechanically.
In order to obtain purified Leydig cells, this crude suspension was
loaded on top of a discontinuous gradient consisting of layers
of 20, 40, 60, and 90% percoll dissolved in HBSS and subse-
quently centrifuged at 800 × g for 20 min. The fractions enriched
in Leydig cells thus obtained were then placed onto a continuous,
self-generating density gradient formed from a 60% solutions of
percoll and centrifuged at 20,000 × g for 30 min at 4˚C.

The purity of the resulting Leydig cell preparations was shown
to be 90%, as determined by histochemical staining for 3β-
hydroxysteroid dehydrogenase (Payne et al., 1980). The cell via-
bility, as assessed by Trypan blue exclusion, was routinely greater
than 90%. These purified Leydig cells were then resuspended in
DMEM-F12 supplemented with 15 mM HEPES (pH 7.4), 1 mg/ml
BSA, 365 mg/l glutamine, 100 IU/ml penicillin, and 100 μg/ml
streptomycin.

For culturing, 100 μl of a suspension containing 1.5 × 105 cells/
ml was plated into each well of a 96-well Falcon plate (Falcon,
Franklin Lakes, NJ, USA) and cultured for 2 h and thereafter
incubated with or without MEHP (100 and 250 μM) for 24 h
at 34˚C in atmosphere of air and 5% CO2. Pilot experiments
have shown that these concentrations are non-cytotoxic and opti-
mal for exploring effects of the mono-phthalate on Leydig cell
steroidogenesis. At this time-point, culture medium was replaced
by medium containing MEHP at the same concentrations and
an optimal concentration of hCG (10 ng/ml) and/or (Bu)2cAMP
(1 mM) or 22R-OHC (10 μM) for another 24 h.

ISOLATION AND PRIMARY CULTURE OF GRANULOSA CELLS
Granulosa cells were isolated from the ovaries of untreated imma-
ture (20-day-old) female Sprague-Dawley rats (B&K Laboratories,

Sollentuna, Sweden) as described previously (Svechnikova et al.,
2007). In brief, after trimming away surrounding tissue, the ovaries
were placed in 3 ml DMEM:F-12 (1:1) medium supplemented with
penicillin (100 U/ml), streptomycin (100 μg/ml), and 0.5% BSA
and thereafter punctured with a 25-gage needle. The resulting cell
suspension was then filtered through a 70-μM cell strainer, fol-
lowed by collection of cells by centrifugation at 200 × g for 7 min.
After washing once with the same medium the cells were resus-
pended in a corresponding volume of fresh DMEM:F-12 (1:1)
medium containing cholesterol lipid concentrate (diluted 1:250;
intended to mimic the cholesterol content of the follicular fluid
in vivo).

For culturing,100 μl of a suspension containing 1 × 105 cells/ml
was plated into each well of a 96-well Falcon plate and cultured
for 2 h and thereafter incubated with or without MEHP (100 and
250 μM) for 24 h at 37˚C in an atmosphere of air and 5% CO2.
Then, culture medium was replaced by fresh medium containing
MEHP at the same concentrations and an optimal concentration
of FSH (50 mU/ml) and/or (Bu)2cAMP (1 mM) for another 24 h.

STEROID ASSAYS
Media from the cultures performed as described above were stored
at −20˚C prior to analysis of testosterone, progesterone and 5α-
androstane-3α, 17β-diol (3α-Adiol). The sum of the levels of
testosterone and 3α-Adiol, the predominant steroids synthesized
by Leydig cell precursors, was used as an indicator of the total
capacity of these immature steroidogenic cells to produce andro-
gens in culture. Testosterone and progesterone were quantified
employing the Coat-a-Count RIA kit (Diagnostic Products Corp.,
Los Angeles, CA, USA), in accordance with the manufacturer’s
instructions; while the levels of 3α-Adiol were determined by
RIA using specific antisera (Cosmo Bio Co. Ltd., Tokyo, Japan).
For this purpose, 5α-[9,11,-3H (N)] androstane-3α,17β-diol (spe-
cific activity, 40 Ci/mmol) was obtained from NEN Life Science
Products (Boston, MA, USA). Intra-assay and inter-assay coeffi-
cients for testosterone and progesterone RIA were 5.0, 3.5% and
6.4, 3.9%, respectively. The same parameters for 3α-Adiol RIA
were 10 and 6.9%. The sensitivity of the RIAs was 0.04, 0.02, and
0.08 ng/ml for testosterone, progesterone and 5α-androstane-3α,
17β-diol, respectively.

WESTERN BLOT ANALYSIS
The influence of MEHP on basal and (Bu)2cAMP-stimulated
SF-1 and StAR expression was analyzed by PAGE/western blot-
ting as described earlier (Svechnikov et al., 2008). For this
purpose, both types of steroidogenic cells were washed twice
with PBS and then lysed and sonicated in a buffer containing
62.5 mM Tris–Cl (pH 6.8), 2% SDS, 50 mM dithiothreitol and
10% glycerol. Subsequently, the fraction thus solubilized was col-
lected by removal of debris by centrifugation at 10,000 × g for
6 min and the solubilized proteins (50 μg from each sample)
resolved by electrophoresis on 10% SDS/polyacrylamide gels and
thereafter transferred electrophoretically to Hybond-P polyvinyli-
dene difluoride (PVDF) membranes (Amersham Pharmacia
Biotech, Little Chalfont, Buckinghamshire, UK), using 25 mM
Tris–Cl, 185 mM glycine, pH 8.3, containing 20% methanol.
These membranes were routinely stained with 5% Ponceau
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S in order to confirm equal transfer of the proteins. Only
membranes with equal levels of proteins from all lanes were
processed further.

Following this transfer, each membrane was incubated in
blocking buffer (TBS-0.1% Tween (TBST) containing 5% non-
fat dry milk) for 1 h, followed by three washes with TBST
(3 × 10 min). Mouse monoclonal anti-SF-1 antibody (Perseus
Proteomics, Tokyo, Japan) and polyclonal antisera directed against
StAR (kindly provided by Dr. Stocco, Texas Tech University, USA;
Clark et al., 1994) were used for incubation at a dilution of 1:500
and 1:3000, respectively in TBS containing 5% non-fat dry milk
overnight at 4˚C. Antibody against tubulin (mouse monoclonal
IgG, 1:500; Santa Cruz Biotechnology, Santa Cruz, CA, USA)
and actin (rabbit polyclonal IgG, Sigma-Aldrich, St. Louse, MO,
USA) were used as an internal standard. After washing, the mem-
branes were then incubated with secondary donkey anti-rabbit or
sheep anti-mouse antibodies conjugated with horseradish perox-
idase (Amersham Pharmacia Biotech) and the bands detected by
incubation with ECL Plus™ western blotting agent (Amersham
Pharmacia Biotech) and subsequent exposure to Hyperfilm ECL
(Amersham Pharmacia Biotech). Finally, the ECL Hyperfilms were
scanned with an HP Scan Jet 5100C and HP Precision scan soft-
ware (Hewlett-Packard Sverige AB, Kista, Sweden) and the extent
of antibody binding quantitated employing the NIH Image 1.57
software.

STATISTICAL ANALYSIS
The differences between various values were analyzed for statisti-
cal significance by one-way analysis of variance (ANOVA) followed
by the Dunnett t -test, using the SigmaStat (v 3.00) package (SPSS,
Inc, Chicago, IL, USA). p < 0.05 was considered to be statistically
significant.

RESULTS
MEHP STIMULATES BASAL STEROIDOGENESIS IN IMMATURE
GRANULOSA AND LEYDIG CELLS
As depicted in Figure 1 both concentrations of MEHP (100 and
250 μM) activated steroid production by cultured immature gran-
ulosa cells and Leydig cell progenitors. The most effective concen-
tration of MEHP (250 μM) significantly (12-fold over untreated
control, p < 0.05) stimulated testosterone and its metabolite pro-
duction by Leydig cell progenitors and markedly (three-fold over
control, p < 0.05) enhanced progesterone secretion by immature
granulosa cells.

OPPOSITE EFFECT OF MEHP ON STEROIDOGENESIS BY CULTURED
GRANULOSA AND LEYDIG CELL PROGENITORS IN RESPONSE TO FSH
AND hCG
We observed that MEHP enhanced FSH-stimulated progesterone
production by granulosa cells, where the highest concentration of
the phthalate (250 μM) increased FSH-activated steroid produc-
tion by two-fold compare to FSH alone (p < 0.05; Figure 2A). In
contrast, the same concentration of MEHP significantly (by 48%,
p < 0.05) suppressed hCG-activated steroidogenesis in Leydig cell
progenitors (Figure 2B).

FIGURE 1 | Stimulatory effect of MEHP on basal steroidogenesis in

immature granulosa cells (A) and Leydig cell progenitors (B). The cells
were cultured without or with MEHP at different concentrations for 24 h.
Testosterone (T) and 5α-androstane-3α-17β-diol (3α-Adiol) in the culture
medium from Leydig cells and progesterone from granulosa cell cultures
were then measured by RIA. The mean values ± SEM for four independent
steroidogenic cell preparations are presented. *p < 0.05, **p < 0.01
compared to untreated control.

OPPOSITE EFFECT OF MEHP ON (Bu)2cAMP-ACTIVATED
STEROIDOGENESIS IN GRANULOSA CELLS AND LEYDIG CELL
PROGENITORS
We further investigated whether MEHP can influence steroidoge-
nesis in the steroidogenic cells stimulated by (Bu)2cAMP beyond
LH/FSH receptor. Similarly to FSH, MEHP significantly and
dose-dependently promoted (Bu)2cAMP-stimulated progesterone
production by immature granulosa cells (Figure 3A), while the
responsiveness of Leydig cell progenitors to the stimulator was sig-
nificantly (by 44%, p < 0.05) attenuated by the highest (250 μM)
concentration of MEHP (Figure 3B). In contrast, MEHP exerted
no significant effect on androgen synthesis from 22R-OHC, a
derivative of cholesterol that diffuses readily across membranes
(22R-OHC treatment, 153.7 ± 1.2 vs 139 ± 7.4 ng/105 cells/24 h
with 22R-OHC + MEHP treatment; p = 0.12, n = 4), suggesting
that MEHP may disturb the translocation of cholesterol across
mitochondrial membranes in Leydig cell progenitors.

EFFECT OF MEHP ON StAR PROTEIN EXPRESSION IN GRANULOSA
CELLS AND LEYDIG CELL PROGENITORS ACTIVATED BY (Bu)2cAMP
We further tested the hypothesis that MEHP can differentially
affect the expression of StAR (which is responsible for the translo-
cation of cholesterol from the outer to the inner mitochondrial
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FIGURE 2 | Opposite effect of MEHP on FSH and hCG-stimulated

steroidogenesis in immature granulosa cells (A) and Leydig cell

progenitors (B). The steroidogenic cells were cultured without or with
MEHP at different concentrations for 24 h and then incubated with hCG
(10 ng/ml) and FSH (50 mU/ml) in the absence or presence of the same
concentrations of MEHP for additional 24 h. Testosterone (T) and 3α-Adiol
and progesterone in the culture medium were then measured by RIA. The
mean values ± SEM for four independent steroidogenic cell preparations
are presented. *p < 0.05 compared to treatment with FSH and hCG.

membrane; Clark et al., 1994) in granulosa cells and Leydig cell
progenitors. As shown in Figure 4 (Bu)2cAMP alone significantly
induced expression of StAR in both Leydig cell progenitors and
granulosa cells (by 20- and 9-fold, respectively, p < 0.01). Co-
treatment with both (Bu)2cAMP and MEHP further markedly
enhanced StAR expression in both types of steroidogenic cells.
Moreover, MEHP alone was found to stimulate basal StAR expres-
sion in Leydig cell progenitors and granulosa cells (by 11- and
4-fold, respectively, p < 0.01).

EFFECT OF MEHP ON SF-1 PROTEIN EXPRESSION IN GRANULOSA
CELLS AND LEYDIG CELL PROGENITORS ACTIVATED BY (Bu)2cAMP
Since StAR expression is regulated by transcription factor SF-1,
we also investigated the effect of MEHP on SF-1 expression in
cAMP-activated immature granulosa and Leydig cells. Our data
demonstrated that in contrast to Leydig cells, unstimulated and
MEHP-treated granulosa cells were not able to express detectable
amount of SF-1 protein (Figure 5). However, stimulation with
(Bu)2cAMP significantly activated SF-1 expression in both types
of cells, a cellular process that was suppressed by MEHP in Leydig
but not granulosa cells.

FIGURE 3 | Opposite effect of MEHP on (Bu)2cAMP-stimulated

steroidogenesis in immature granulosa cells (A) and Leydig cell

progenitors (B). The steroidogenic cells were cultured without or with
MEHP at different concentrations for 24 h and then incubated with
(Bu)2cAMP (1 mM) in the absence or presence of the same concentrations
of MEHP for an additional 24 h. Testosterone (T), 3α-Adiol and progesterone
in the culture media from the steroidogenic cells were then measured by
RIA. The mean values ± SEM for four independent steroidogenic cell
preparations are presented. *p < 0.05, **p < 0.01 compared to treatment
with (Bu)2cAMP.

DISCUSSION
Here we demonstrate for the first time that MEHP exerts gender-
specific adverse effects on steroidogenesis by immature granulosa
cells and Leydig cell progenitors isolated from 20-day-old rats.
This mono-phthalate significantly stimulated basal steroidogene-
sis in both types of steroidogenic cells, while gonadotropin (FSH
and hCG) and (Bu)2cAMP-activated steroid production was dif-
ferently affected by the phthalate in male and female cells. We
observed that MEHP caused an additive effect on the stimu-
lator activated progesterone biosynthesis by granulosa cells but
attenuated significantly hCG and (Bu)2cAMP-evoked steroido-
genesis in Leydig cell progenitors. The observation that MEHP
had no effect on steroidogenesis stimulated by 22R-OHC, a form
of cholesterol that readily penetrates mitochondrial membranes,
indicates that MEHP may act by disturbing cholesterol trafficking
across mitochondrial membranes and influence StAR expression
in Leydig cell progenitors. Indeed, further analysis of StAR expres-
sion demonstrated that MEHP enhanced (Bu)2cAMP-activated
StAR expression in both male and female steroidogenic cells,
an event accompanied by activation of progesterone production
in granulosa cells and inhibition of steroidogenesis in Leydig
cell progenitors.
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FIGURE 4 | Effects of MEHP on StAR protein expression in Leydig cell

progenitors (A) and immature granulosa cells (B) stimulated with

(Bu)2cAMP. The cells were pretreated with MEHP (250 μM) or culture
medium alone for 24 h and thereafter incubated with (Bu)2cAMP (1 mM) in
the presence or absence of this same concentration of MEHP for an
additional 24 h. The cells were lysed and whole cell lysates (50 μg protein)
employed to analyze the levels of StAR protein by western blotting as
described in Section “Materials and Methods.” Each StAR-specific band
was quantified using NIH Image software and normalized to the optical
density of tubulin. The mean values ± SEM for three independent
steroidogenic cell preparations are presented. ♣♣p < 0.01 compared to
untreated control; *p < 0.05 compared to treatment with (Bu)2cAMP.

In addition, we also found that cAMP-PKA signaling activated
by (Bu)2cAMP up-regulated SF-1 expression in both types of the
cells, a cellular event that was suppressed by MEHP in Leydig but
not in granulosa cells.

Our present findings are in line with those of a recent study
showing that MEHP stimulates basal steroid synthesis in KK-1
granulosa tumor cells and in mouse Leydig tumor cells (MLTC-1)
but suppresses hCG-induced progesterone production in MLTC-1.
The observed stimulatory effect of MEHP was StAR independent
and associated with an up-regulation of the enzymes involved
in cholesterol mobilization, suggesting that MEHP increases the
amount of cholesterol available for steroidogenesis (Gunnarsson
et al., 2008). In contrast, we found that MEHP significantly stim-
ulated StAR expression in both types of gonadal cells, a process
associated with the activation of steroidogenesis. This difference
in the mechanisms responsible for the activation of steroidoge-
nesis by MEHP in the steroidogenic cells may be explained by
different experimental models used in our study and that by
Gunnarsson et al. (2008). In our study we employed primary
cultures of native immature steroidogenic cells, while Gunnars-
son et al. (2008) exploited steroidogenic tumor cells which may

FIGURE 5 | Effects of MEHP on SF-1 protein expression in Leydig cell

progenitors (A) and immature granulosa cells (B) stimulated with

(Bu)2cAMP. The cells were pretreated with MEHP (250 μM) or culture
medium alone for 24 h and thereafter incubated with (Bu)2cAMP (1 mM) in
the presence or absence of this same concentration of MEHP for an
additional 24 h. The cells were lysed and whole cell lysates (50 μg protein)
employed to analyze the levels of SF-1 protein by western blotting as
described in Section “Materials and Methods.” Each SF-1-specific band was
quantified using NIH Image software and normalized to the optical density
of actin. The mean values ± SEM for three independent steroidogenic cell
preparations are presented. *p < 0.05 compared to treatment with
untreated control; ♣p < 0.05 compared to treatment with (Bu)2cAMP.

have an aberrant steroidogenic machinery and signal transduction
pathway(s). Moreover, our findings agree well with another recent
study demonstrating that exposure to MEHP increased StAR gene
expression in the rat testis (Lahousse et al., 2006).

We also observed that (Bu)2cAMP-activated expression of
StAR was significantly up-regulated by MEHP in both types of
steroidogenic cells. These events were associated with a decrease
in androgen production by Leydig cell progenitors and activation
of steroidogenesis in granulosa cells. This finding let us to suggest
that molecular events activated by MEHP in the (Bu)2cAMP-
stimulated steroidogenic cells and triggered StAR gene expression
were similar in both types of cells but post-translational modifica-
tions of StAR which activate its function were suppressed in Leydig
cell progenitors. It is well-known that StAR needs to be phosphory-
lated to reach maximal activity, a process dependent on the action
of the PKA pathway (Arakane et al., 1997). Therefore, attenuation
of StAR protein phosphorylation but not its expression in Leydig
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cell progenitors co-treated with MEHP and (Bu)2cAMP may result
in accumulation of functionally inactive StAR with low capacity
to deliver cholesterol into the mitochondria. In contrast, StAR
function and steroidogenesis were activated in granulosa cells co-
treated with MEHP and (Bu)2cAMP, indicating that this phthalate
did not counteract post-translational modifications induced by
cAMP-PKA dependent signaling pathway in the female cells. In
addition, we have recently demonstrated that MEHP decreased
hCG-activated StAR protein expression, a process that was associ-
ated with reduced transport of cholesterol into mitochondria and
attenuated androgen production in immature and adult Leydig
cells (Svechnikov et al., 2008).

Our data have also shown that the activation of StAR expres-
sion by cAMP-PKA signaling was associated with up-regulation of
SF-1 expression in both types of steroidogenic cells, a finding that
is in line with previous report (Sandhoff et al., 1998). However, in
contrast to StAR, co-treatment with (Bu)2cAMP and MEHP atten-
uated SF-1 expression in Leydig cells and had no significant effect
on the transcription factor level in granulosa cells. This observed
disagreement between StAR and SF-1 expression can be explained
by a complex regulation of StAR expression in steroidogenic cells
that includes dynamic and effective interaction between several
transcription factors (e.g., SF-1, CREB, GATA, cJun) and coac-
tivators (Stocco and Clark, 1996; Stocco, 2001), where SF-1 may
not play a primary role. This suggestion is supported by one recent
study showing that attenuation of the expression of SF-1-regulated
genes (e.g., StAR, P450scc, P450c17) in the fetal testis of rats that
underwent di (n-butyl) phthalate (DBP) exposure in utero was not
associated with changes in SF-1 mRNA and protein levels, suggest-
ing that this downregulation was indirect and perhaps involved
cofactor starvation (Plummer et al., 2007). Moreover, (Bu)2cAMP
and ciglitazone stimulated StAR expression in immortalized KK1
mouse granulosa cells and MA-10 mouse Leydig tumor cells was
linked to activation of PPARγ and up-regulation of cJun expres-
sion but not SF-1 (Kowalewski et al., 2009). We also observed that
basal and MEHP-treated granulosa cells did not express detectable
amount of SF-1. This finding may be due to weak steroidogenic
activity of immature granulosa cells compare to Leydig cells, which
in our experiments reached 10- to 20-fold differences, suggesting
that SF-1 is not a major player in the regulation of basal granulosa
cell steroidogenesis.

The concentrations of MEHP (100 and 250 μM) employed in
the present in vitro investigation are relevant to in vivo situa-
tions in humans. Human exposure to DEHP can be as high as
4.3 mg/kg/day for adults (Lovekamp-Swan and Davis, 2003) and
10–20 mg/kg/day for infants exposed to neonatal transfusion or
parenteral nutrition (Loff et al., 2000; Calafat et al., 2004), resulting
in 150 and 400 μM concentrations in the blood, respectively.

In our present study we have used primary cultures of steroido-
genic cells isolated from 20-day-old rats to explore the effects of
MEHP. This age represents prepubertal stage of human develop-
ment. Phthalates are widely used as plasticizers in the production

of plastics and children are thought to be more susceptible for
harmful action of these anthropogenic chemicals than adults.
Recent studies reported the negative correlation between AGD and
maternal (urinary) levels of phthalates in male infants (Swan et al.,
2005; Swan, 2008). Moreover, these studies also demonstrated
that AGD correlated to penile volume and the incidence of cryp-
torchidism (Swan et al., 2005). Additionally, phthalates present in
breast milk are proposed to alter the function of the hypothalamic–
pituitary–gonadal axis in male offspring (Main et al., 2006). How-
ever, it should be noted that negative effect of MEHP on testicular
steroidogenesis in human fetal testis is not yet proven. One in vitro
study reported that this phthalate had no effect on basal and
LH-stimulated steroidogenesis in first-trimester human fetal testis
explant (Lambrot et al., 2009).

Alteration in steroidogenesis during development may signif-
icantly affect the reproductive health of children. Pubertal devel-
opment is closely regulated by sex hormones in both sexes and
activation or suppression of steroidogenesis may induce hormonal
disturbances resulting in pathological conditions. For example,
increased production of progesterone by MEHP stimulated gran-
ulosa cells may induce their advanced luteinization, a process that
may lead to dysregulation of the estrous cycle and anovulatory
cycles in rats (Davis et al., 1994). Further, in this context, a recent
study demonstrated that exposure of prepubertal rats to low envi-
ronmentally relevant DEHP levels for 28 days increased Leydig cell
capacity to produce testosterone that was associated with enhanced
plasma levels of LH (Akingbemi et al., 2001), indicating potential
for phthalates to modulate the pituitary–testicular axis in rodents.
Similarly, we have recently reported that the ability of primary
cultures of pituitary cells isolated from DEHP-treated prepubertal
female rats to produce LH in response to GnRH was significantly
enhanced (Svechnikova et al., 2007).

Taken together, our current data indicate that MEHP affects
gonadal steroidogenesis in a gender-specific manner. This phtha-
late stimulated basal steroidogenesis and StAR expression in both
male and female steroidogenic cells. However, when MEHP was
incubated with (Bu)2cAMP, steroid production was increased in
granulosa cells and suppressed in Leydig cell progenitors, a process
associated with up-regulation of StAR expression. Based on these
results it may be hypothesized that males and females react dif-
ferentially to the endocrine disrupting actions of phthalates, with
boys being more susceptible than girls. This may be related to the
clinical observation that DSD are more prevalent in boys than girls.
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