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In the recent past, deorphanization studies have described intermediates of energy metab-
olism to activate G protein-coupled receptors and to thereby regulate metabolic functions.
GPR81, GPR109A, and GPR109B, formerly known as the nicotinic acid receptor family, are
encoded by clustered genes and share a high degree of sequence homology. Recently,
hydroxy-carboxylic acids were identified as endogenous ligands of GPR81, GPR109A, and
GPR109B, and therefore these receptors have been placed into a novel receptor family of
hydroxy-carboxylic acid (HCA) receptors. The HCA1 receptor (GPR81) is activated by the
glycolytic metabolite 2-hydroxy-propionic acid (lactate), the HCA2 receptor is activated by
the ketone body 3-hydroxy-butyric acid, and the HCA3 receptor (GPR109B) is a receptor for
the β-oxidation intermediate 3-hydroxy-octanoic acid. While HCA1 and HCA2 receptors are
present in most mammalian species, the HCA3 receptor is exclusively found in humans
and higher primates. HCA receptors are expressed in adipose tissue and mediate anti-
lipolytic effects in adipocytes through Gi-type G protein-dependent inhibition of adenylyl
cyclase. HCA2 and HCA3 inhibit lipolysis during conditions of increased β-oxidation such
as prolonged fasting, whereas HCA1 mediates the anti-lipolytic effects of insulin in the
fed state. As HCA2 is a receptor for the established anti-dyslipidemic drug nicotinic acid,
HCA1 and HCA3 also represent promising drug targets and several synthetic ligands for
HCA receptors have been developed. In this article, we will summarize the deorphanization
and pharmacological characterization of HCA receptors. Moreover, we will discuss recent
progress in elucidating the physiological and pathophysiological role to further evaluate the
therapeutic potential of the HCA receptor family for the treatment of metabolic disease.
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INTRODUCTION
G protein-coupled receptors (GPCRs) form one of the largest
protein families and are encoded by about 800 genes in mam-
malian organisms (Lander et al., 2001; Venter et al., 2001; Pierce
et al., 2002). More than half of these genes are thought to
encode odorant GPCRs like olfactory receptors. While among
the non-odorant receptors endogenous ligands of approximately
210 receptors have been identified, there are still more than
100 orphan GPCRs whose natural ligands and biological func-
tions remain unknown (Wise et al., 2004). The typical endoge-
nous ligands of GPCRs are hormones, mediators, and neuro-
transmitters with broad chemical diversity including glycopro-
teins, peptides, nucleotides, prostanoids, biogenic amines, amino
acids, ions, and even photons of light (Foord et al., 2005).
Activation of GPCRs and downstream signaling pathways not
only regulate numerous physiological functions, but also medi-
ate the pharmacological effects of many of the approved drugs
(Drews, 2000). Thus, the deorphanization and pharmacologi-
cal characterization of orphan GPCRs is of continued scientific
and pharmaceutical interest. Studies on receptor deorphaniza-
tion often employ “reverse pharmacology”-approaches in high

throughput scales, in which compound libraries or tissue extracts
are tested for their ability to activate orphan GPCRs (Wise et al.,
2004).

During the last decade, deorphanization studies revealed that
nutrients and their metabolites, that were previously regarded
as basic substrates for energy metabolism, can activate GPCRs
and thereby regulate metabolic functions (He et al., 2004; Cov-
ington et al., 2006; Ahmed et al., 2009c; Ichimura et al., 2009).
While FFA1 (GPR40), FFA2 (GPR43), FFA3 (GPR41), GPR84,
and GPR120 were described as receptors for various free fatty
acids (Briscoe et al., 2003; Brown et al., 2003; Itoh et al., 2003;
Hirasawa et al., 2005; Wang et al., 2006), SUCNR1 (GPR99) and
SUCNR2 (GPR91) were identified as receptors for citric acid
cycle intermediates (He et al., 2004). In 2003, GPR109A was
identified as the receptor of the anti-dyslipidemic drug nico-
tinic acid or niacin (Tunaru et al., 2003), and shortly thereafter
the ketone body 3-hydroxybutyrate was described as the endoge-
nous agonist of GPR109A (Taggart et al., 2005). Most recently,
GPR109B and GPR81, which are structurally and phylogeneti-
cally closely related to GPR109A, were described as receptors for
hydroxy-carboxylic acids. Specifically, GPR81 and GPR109B have
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been identified as receptors for the glycolytic product 2-hydroxy-
propionate (lactate; Cai et al., 2008) and the β-oxidation inter-
mediate 3-hydroxy-octanoate (Ahmed et al., 2009a), respectively.
Because all three receptors are activated by endogenous hydroxy-
carboxylic acid ligands, GPR109A, GPR109B, and GPR81 have
quite recently been classified as Hydroxy-Carboxylic Acid recep-
tors (HCA) with the individual members being HCA1 (GPR81),
HCA2 (GPR109A),and HCA3 (GPR109B; Offermanns et al., 2011)
(Table 1). In addition, several studies have shed light on the
biological functions of HCA receptors (Table 2). While HCA2

and HCA3 inhibit lipolysis during physiological and pathophys-
iological conditions of increased β-oxidation and ketogenesis
(Taggart et al., 2005; Ahmed et al., 2009a), HCA1 was shown
to mediate the anti-lipolytic effects of insulin during the post-
prandial phase (Ahmed et al., 2010). All three HCA receptors
have in common that they regulate lipolysis in a negative feed-
back manner and thus function as metabolic sensors (Figures 1
and 2).

This review will summarize the deorphanization and phar-
macological characterization of HCA receptors. Moreover, it will
discuss the recent progress in elucidating the physiological and
pathophysiological functions of HCA receptors and evaluate their
therapeutic potential in the treatment of metabolic and immune
disease.

IDENTIFICATION AND CHARACTERIZATION OF HCA
RECEPTORS
CLONING OF HYDROXY-CARBOXYLIC ACID RECEPTORS
In 1993, the HCA3 receptor (GPR109B) was cloned from a human
monocyte cDNA library and originally identified as a new orphan

GPCR termed HM74 (Nomura et al., 1993). The HCA1 recep-
tor was first found and identified as orphan receptor GPR81 by
BLAST analysis using genomic sequence databases and known
GPCR-encoding sequences. It was then cloned from a bacterial
artificial chromosome (BAC) clone carrying the human genomic
region 12q (Lee et al., 2001). It was noticed that HCA1 shares high
sequence homology with the HCA3 receptor (GPR109B/HM74)
and both genes were located in proximity on the same BAC
clone. In 2001, the HCA2 receptor (GPR109A) was identified as a
transcript induced in interferon-γ-treated murine macrophages
and subsequently termed PUMA-G (protein up-regulated in
macrophages by IFN-γ; Schaub et al., 2001). The sequence of the
murine PUMA-G receptor showed high similarity when compared
to human HM74/GPR109B.

SEQUENCE ALIGNMENT AND PHYLOGENETIC TREE
HCA2 and HCA3 receptors are highly homologous with 96%
sequence identity on the protein level. The HCA1 receptor shares
approximately 55% amino acid sequence identity to both HCA2

and HCA3. The protein sequence of HCA2 and HCA3 differs in
only 16 amino acids that are located within the first and second
extracellular loops as well as the transmembrane regions 2 and 3.
In addition, the C terminal tail of the HCA3 receptor has an exten-
sion of 24 amino acids. Importantly, all three receptors share an
arginine residue within transmembrane helix 3 that is essential for
binding of carboxylic acid ligands (Tunaru et al., 2005). Based
on phylogenesis, the orphan receptor GPR31 and OXER1, the
receptor for 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE),
are the most closely related receptors to the HCA receptor family
sharing approximately 30% sequence identity with HCA receptors

Table 1 | Structures and EC50 values of endogenous ligands of HCA receptors. EC50 values were determined by ligand-induced GTPγS-binding

assay.

Receptor Endogenous ligand Structure EC50 (μM)

HCA1 (GPR81) (S)-2-OH-propanoate 1,300 (Liu et al., 2009), 1,500 (Ahmed et al., 2010), 4,870 (Cai et al., 2008)

HCA2 (GPR109A) (R)-3-OH-butyrate 770 (Taggart et al., 2005)

HCA3 (GPR109B) 3-OH-octanoate 8 (Ahmed et al., 2009a)

Table 2 | Pharmacological and biological properties of HCA receptors.

Receptor G protein coupling Expression in humans Cellular function Phenotype of receptor-deficient mice

HCA1 Gi/Go Adipocytes Inhibition of lipolysis Impaired insulin-induced inhibition of lipolysis,

reduced weight gain under hypercaloric diet

HCA2 Gi/Go Adipocytes, macrophages, neutrophils,

epidermal Langerhans cells,

keratinocytes, colonic epithelial cells

Inhibition of lipolysis,

activation of immune cells

Lack of nicotinic acid-induced anti-lipolysis and

modulation of plasma lipids, abolished nico-

tinic acid-induced flushing

HCA3 Gi/Go Adipocytes, macrophages, neutrophils,

colonic epithelium

Inhibition of lipolysis,

activation of immune cells
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(Ahmed et al., 2009b; Offermanns et al., 2011). Interestingly, the
aforementioned arginine residue of the third transmembrane helix
is conserved within GPR31 and OXER1 (Ahmed et al., 2009b).
While genes encoding for HCA1 and HCA2 can be found in most
mammalian species including humans and rodents, HCA3 is only
present in humans and higher primates like chimpanzee. It is likely
that the HCA3 gene has evolved by a rather recent gene duplication
of HCA2.

Several single nucleotide polymorphisms have been identified
for HCA2 and HCA3 in humans (Zellner et al., 2005). To date, it
is unclear whether these genetic variations affect the physiological
or pharmacological properties of HCA2 and HCA3 receptors.

DEORPHANIZATION OF HYDROXY-CARBOXYLIC ACID RECEPTORS
HCA1

In 2008, lactate was described as an agonist of the HCA1 receptor
(Cai et al., 2008). Lactate stimulated binding of GTPγS to mem-
branes of HCA1-expressing CHO-K1 cells with a half-maximal
effective concentration (EC50) of 1.3 mM. In addition, lactate
inhibited forskolin-induced stimulation of cyclic AMP (cAMP)
production in HCA1-transfected cells with an EC50 of 2.2 mM.
Moreover, lactate-induced an increase in intracellular calcium
concentrations in cells coexpressing promiscious G protein Gqi5

and HCA1 with an EC50 of 4.7 mM. Lactate had no effect on
HCA2- or HCA3-expressing cells. Potency and efficacy of the
physiologically relevant stereoisomer (S)-lactate were more than
twofold higher when compared to its enantiomer (R)-lactate.
Among other carboxylic acids tested for activity toward HCA1,
only propionate was able to activate the HCA1 receptor with an
EC50 of 2.9 mM. However, given the low systemic plasma levels
of propionate, it is quite unlikely that propionate is a physiolog-
ically relevant ligand of HCA1. Shortly thereafter, another study
also described lactate as a specific agonist of the HCA1 recep-
tor with EC50 values for lactate-induced binding of GTPγS and

FIGURE 2 | Model of the physiological function of the HCA1 receptor.

During feeding, adipocytes can produce and release significant amounts of
lactate, a process stimulated by insulin-induced glucose uptake. Lactate
activates HCA1 receptors on adipocytes in an autocrine and paracrine
fashion and decreases intracellular cAMP levels through Gi/Go-dependent
inhibition of adenylyl cyclase.This leads together with the insulin-dependent
activation of PDE3B to increased degradation and decreased formation of
intracellular cAMP resulting in an inhibition of lipolysis. Thus, the lactate
receptor HCA1 mediates the anti-lipolytic of insulin effects during the
transition from the fed to the fasted state and thereby helps to preserve
endogenous energy stores when food-derived nutrients are abundant. AC,
adenylyl cyclase; IR, insulin receptor; PDE3B, phosphodiesterase 3B; PI3K,
phosphatidylinositol-3-kinase; PKA, protein kinase A.

FIGURE 1 | Schematic representation of the chromosomal location of genes encoding hydroxy-carboxylic acid (HCA) receptors. Protein-coding
sequences are shown by filled rectangles. Adapted from Ensembl Genome Browser.
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inhibition of cAMP formation of 4.87 and 4.16 mM, respectively.
(Liu et al., 2009). While the ketone body and HCA2 agonist 3-
hydroxybutyrate did not activate HCA1, other hydroxy-carboxylic
acids like 2-hydroxy and 4-hydroxybutyrate showed some activity
toward HCA1 but with reduced potencies (EC50 values of 8 and
15 mM, respectively). Interestingly, dichloroacetate and trifluo-
roacetate were identified as partial agonists of HCA1. These basic
pharmacological properties of HCA1 were later confirmed in an
independent study (Ahmed et al., 2010). The reported potencies
of lactate to activate HCA1 are rather low when compared to clas-
sic GPCR ligands like hormones or neurotransmitters. However,
while basal plasma concentrations of lactate are between 0.5 and
2 mM (and would be therefore too low to fully activate the HCA1

receptor), systemic lactate levels can increase up to 20 mM during
intensive exercise. In addition, lactate concentrations within the
adipose tissue are elevated upon glucose infusion (Ahmed et al.,
2010). Thus, it is conceivable that HCA1 would function as a sensor
for lactate during certain metabolic conditions.

HCA2

In 2003, HCA2 was identified as the receptor for the anti-
dyslipidemic drug nicotinic acid (Tunaru et al., 2003). Nicotinic
acid was shown to bind with high affinity to human HCA2 with
dissociation constants (K d) between 55 and 96 nM (Soga et al.,
2003; Tunaru et al., 2003; Wise et al., 2003), and it activated mouse
and human HCA2 in a Ca2+ reporter assay with EC50 values of
about 3 and 1 μM, respectively (Tunaru et al., 2003). Because
endogenous plasma levels of nicotinic acid are too low to activate
HCA2, it is unlikely that nicotinic functions as a physiological lig-
and of the HCA2 receptor (Gille et al., 2008). In 2005, the ketone
body 3-hydroxybutyrate was described as the first endogenous
agonist of HCA2 (Taggart et al., 2005). While other ketone bodies,
such as acetoacetate and acetone, were inactive at HCA2, racemic
3-hydroxybutyrate induced GTPγS-binding to human and mouse
HCA2 with an EC50 value of approximately 0.7 mM. Notably, the
physiologically relevant stereoisomer (R)-3-hydroxybutyrate was
twice as potent as its respective (S)-enantiomer at both mouse and
human HCA2 receptors. By contrast, HCA1 and HCA3 receptors
were not activated by 3-hydroxybutyrate. In addition, several other
carboxylic acids with carbon chain lengths ranging from C4 to C8
activated human and mouse HCA2 with EC50 values ranging from
0.13 to 1.6 mM. However, systemic plasma levels of these short
chain fatty acids would be too low to activate HCA2. In contrast,
plasma concentrations of the ketone body 3-hydroxybutyrate are
strongly elevated during fasting and can reach up to 6–8 mM dur-
ing prolonged starvation (Owen et al., 1969; Cahill, 2006). These
plasma levels are sufficient to fully activate the HCA2 receptor.

HCA3

Despite its pronounced homology to HCA2, the HCA3 recep-
tor is not activated by the HCA2-agonists nicotinic acid and
3-hydroxybutyrate and has remained as an orphan receptor until
recently, when 2- and 3-hydroxy medium chain fatty acids were
described as the first endogenously occurring HCA3-specific ago-
nists (Ahmed et al., 2009a). 2-hydroxy-octanoic acid and 3-
hydroxy-octanoic acid-induced GTPγS-binding in membranes
of HCA3-transfected HEK-293T cells with an EC50 of 4 and

8 μM, respectively. Notably, both 2- and 3-hydroxy-octanoic acid
did not activate HCA1, HCA2, or the free fatty acid receptors
FFA1, FFA2, and FFA3. While the physiological relevance of 2-
hydroxyoctanoate is unknown, 3-hydroxy medium chain car-
boxylic acids are intermediates of mitochondrial β-oxidation of
fatty acids. Under conditions of increased β-oxidation, such as
starvation, ketogenic diet, or diabetic ketoacidosis, plasma levels
of 3-hydroxy-octanoate can reach up to 5–20 μM, levels that are
sufficient to activate HCA3 receptors (Costa et al., 1998; Ahmed
et al., 2009a).

In another study aromatic d-amino acids were reported as spe-
cific agonists of the HCA3 receptor (Irukayama-Tomobe et al.,
2009). d-phenylalanine and d-tryptophan inhibited forskolin-
induced activation of cAMP responsive element (CRE)-driven
luciferase activity with EC50 values of 9 and 3.7 μM, respectively
(Irukayama-Tomobe et al., 2009). Aromatic d-amino acids have
been found in some peptides from amphibian skin (Jilek et al.,
2005). Whether aromatic d-amino acids are produced in mam-
malian species and can reach plasma levels sufficient to activate
HCA3 is currently unknown. Thus, the physiological relevance of
aromatic d-amino acids as potential endogenous HCA3 agonists
remains elusive.

GENOMIC LOCATION AND EXPRESSION OF HCA RECEPTORS
GENOMIC LOCATION
The genes encoding for HCA1, HCA2, and HCA3 are tandemly
located on human chromosome 12q24.31. In Mus musculus the
genes of HCA1 and HCA3 are found next to each other on chro-
mosome 5F. It is noteworthy that in all species the genes encoding
for HCA receptors consist of a single exon (Figure 1).

EXPRESSION OF HCA RECEPTORS
HCA1

Lee et al. (2001) detected mRNA of HCA1 in human pituitary
by Northern blot analysis. While others have never confirmed this,
several studies have independently shown by quantitative PCR that
the HCA1 receptor is predominantly expressed in adipose tissue
(Wise et al., 2003; Ge et al., 2008; Jeninga et al., 2009; Liu et al.,
2009; Ahmed et al., 2010). By using transgenic reporter mice that
express monomeric red fluorescent protein under the transcrip-
tional control of endogenous HCA1 regulatory elements, it was
demonstrated on a cellular level that HCA1 expression is indeed
localized to adipocytes (Ahmed et al., 2010). Interestingly, HCA1

expression was induced during differentiation of 3T3-L1 adipocyte
precursors and highest in terminally differentiated adipocytes (Ge
et al., 2008; Jeninga et al., 2009). In addition, it was shown that
the peroxisome proliferator-activated receptor-γ (PPARγ) agonist
rosiglitazone induced transcription of the HCA1 gene by bind-
ing of PPARγ/retinoid X receptor to PPAR-response elements in
the HCA1 promoter (Jeninga et al., 2009). Recently, it was shown
that mRNA levels of HCA1 were reduced in mouse adipose tissue
in response to lipopolysaccharide administration (Feingold et al.,
2011).

HCA2

Similar to HCA1, HCA2 expression was detected at high levels in
white and brown adipose tissue (Soga et al., 2003; Tunaru et al.,
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2003; Wise et al., 2003; Benyo et al., 2005), as well as in differ-
entiated 3T3-L1 adipocytes upon treatment with rosiglitazone
(Jeninga et al., 2009). In contrast to the HCA1 receptor, HCA2

is expressed in various immune cells including macrophages, neu-
trophils, dendritic cells, and epidermal Langerhans cells (Schaub
et al., 2001; Benyo et al., 2005, 2006; Maciejewski-Lenoir et al.,
2006; Kostylina et al., 2008; Tang et al., 2008; Ahmed et al., 2009a).
HCA2 expression in macrophages was induced by treatment with
IFN-γ or TNF-α (Schaub et al., 2001). Recent studies reported
expression of HCA2 in epithelial cells. For instance, expression
of HCA2 has been described in mouse retinal pigment epithe-
lium (Martin et al., 2009), as well as in luminal colonic epithelium
(Thangaraju et al., 2009). While some reports detected mRNA lev-
els of HCA2 in primary human keratinocytes and immortalized
keratinocytes (Maciejewski-Lenoir et al., 2006; Tang et al., 2008;
Bermudez et al., 2011), Hanson et al. (2010) recently demon-
strated by immunohistochemical analysis of transgenic HCA2-
reporter mice that HCA2 expression was localized to keratinocytes.
Recently, another study suggested expression of HCA2 and HCA3

in the epidermis of human skin sections as well as in a skin can-
cer cell line by using an antibody against HCA2/HCA3 (Bermudez
et al., 2011).

HCA3

The expression pattern of the HCA3 receptor is comparable to
that of HCA2. HCA3 is highly expressed in human white adi-
pose tissue (Soga et al., 2003; Tunaru et al., 2003; Wise et al.,
2003), and HCA3 expression was induced at least in vitro by
treatment with PPARγ agonists in human multipotent adipose-
derived stem cells (Jeninga et al., 2009). Similar to HCA2, HCA3 is
also found in various immune cells, such as macrophages, mono-
cytes, and neutrophils (Nomura et al., 1993; Yousefi et al., 2000;
Ahmed et al., 2009a; Irukayama-Tomobe et al., 2009). Moreover,
HCA3 expression was induced upon stimulation of neutrophils
with cytokines (Yousefi et al., 2000). Some data suggest expression
of HCA3 receptor at the apical membrane of human colonic
epithelium by using antibodies directed at HCA3 (Thangaraju
et al., 2009).

G PROTEIN COUPLING AND SIGNALING
G PROTEIN COUPLING
Aktories et al. (1983) showed that the nicotinic acid-induced
effects on adenylyl cyclase activity in rat adipocyte membranes
were sensitive to treatment with pertussis toxin, a protein that
specifically inactivates α-subunits of Gi/Go-type G proteins. With
the deorphanization of HCA receptors several studies have inde-
pendently demonstrated that the effects mediated by HCA1,
HCA2, and HCA3 were sensitive to pertussis toxin treatment (Soga
et al., 2003; Tunaru et al., 2003; Wise et al., 2003; Cai et al., 2008;
Ahmed et al., 2009a, 2010; Irukayama-Tomobe et al., 2009; Liu
et al., 2009) and, thus, HCA1, HCA2, and HCA3 receptors couple
to Gi/Go-type G proteins.

DOWNSTREAM SIGNALING
Activation of Gi/Go coupled GPCRs results in decreased adeny-
lyl cyclase activity and decreased production of cAMP. For all
three HCA receptors it was shown that receptor activation leads

decreased cAMP levels in heterologous expression systems as well
as in primary human and mouse adipocytes (Soga et al., 2003;
Tunaru et al., 2003; Wise et al., 2003; Cai et al., 2008; Ge et al.,
2008; Ahmed et al., 2009a, 2010; Irukayama-Tomobe et al., 2009).
In adipocytes, cAMP is an important second messenger to induce
lipolysis by activation protein kinase A, which in turn phosphory-
lates and activates lipolytic enzymes including hormone-sensitive
lipase (Duncan et al., 2007). Thus, activation of HCA receptors
has been demonstrated to result in an anti-lipolytic effect in pri-
mary adipocytes and in mice (Tunaru et al., 2003; Taggart et al.,
2005; Ahmed et al., 2009a, 2010). In immune cells, activation
of Gi/Go coupled receptors leads to increased intracellular cal-
cium release through activation of phospholipase C β-isoforms
which is most likely dependent on βγ-subunits (Exton, 1996).
Accordingly, HCA2 and HCA3 activation in immune cells has been
shown to evoke an increase in intracellular calcium concentra-
tions (Benyo et al., 2006; Ahmed et al., 2009a; Irukayama-Tomobe
et al., 2009). It has been hypothesized that the niacin-induced
HCA2-dependent increase in intracellular calcium levels may acti-
vate Ca2+-sensitive phospholipase A2 (PLA2) which would result
in the release of arachidonic acid and the subsequent formation
of prostanoids. Indeed, this mechanism could explain the rapid
formation of prostaglandin E2 and prostaglandin D2 observed
in response to nicotinic acid. An alternative mechanism of nico-
tinic acid-induced PLA2-activation and formation of prostanoids
could involve HCA2-dependent activation and phosphorylation
of extracellular signal regulated kinase (ERK), which has been
described for all HCA receptors (Tunaru et al., 2003; Richman
et al., 2007; Ahmed et al., 2009a; Liu et al., 2009; Walters et al.,
2009). Walters et al. (2009) provide evidence that this effect
requires the recruitment of β-arrestin to the plasma membrane
upon receptor activation. Moreover, it was shown that β-arrestin
could bind and activate cytosolic PLA2, which resulted in increased
liberation of arachidonic acid (Walters et al., 2009).

RECEPTOR DESENSITIZATION
Observations in patients described the development of tolerance
to flushing in response to treatment with niacin which was accom-
panied by reduced plasma levels of prostanoids (Stern et al.,
1991). A study by Benyo et al. (2005) showed that nicotinic acid-
induced HCA2 receptor-dependent flushing in mice desensitizes
within minutes as well as nicotinic acid-induced increases in intra-
cellular calcium concentrations in neutrophils (Kostylina et al.,
2008). To date, the precise molecular mechanisms underlying these
desensitization phenomena are unknown. However, when HCA1

and HCA2 were heterologously expressed, receptor internaliza-
tion upon agonist exposure has been observed (Richman et al.,
2007; Liu et al., 2009; Li et al., 2010). Interestingly, partial ago-
nists of HCA2, which did not activate ERK and showed reduced
flushing, were unable to induce receptor internalization (Rich-
man et al., 2007). Moreover, internalization of the HCA2 receptor
in response to nicotinic acid seems to involve G protein-coupled
receptor kinase 2 (GRK2) and arrestin 3 (Li et al., 2010).

RECEPTOR DIMERIZATION
Some GPCRs can assemble into homo-/heterodimeric or
oligomeric complexes. By using bioluminescence resonance
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energy transfer it was recently shown that HCA2 and HCA3

receptor constructs can interact when heterologously expressed
in human embryonic kidney cells, suggesting the formation of
homodimers and heterodimers, respectively (Mandrika et al.,
2010). HCA2 and HCA3 are highly homologous and have a largely
overlapping expression pattern in humans. However, whether
dimeric complexes of HCA2 and HCA3 receptors occur in native
tissues and whether they affect HCA receptor function or signaling
remains unknown.

BIOLOGICAL ROLES OF HCA RECEPTORS
HCA1

Given the fact that the HCA1 receptor is expressed in adipocytes
and that it mediates lactate-induced Gi-dependent inhibition of
adenylyl cyclase, it is plausible that HCA1 would mediate an inhibi-
tion of lipolysis in adipocytes. Indeed, several studies have shown
that HCA1 mediates lactate-induced inhibition of lipolysis in pri-
mary adipocytes as well as in mice (Cai et al., 2008; Liu et al., 2009;
Ahmed et al., 2010).

During intensive exercise, the skeletal muscle is the major
source of lactate production in the body (Brooks and Mercier,
1994). With increasing exercise intensity, carbohydrate utilization
becomes the major energy source and lactate accumulates in the
plasma since lactate removal by oxidative metabolism is reduced
(Brooks and Mercier, 1994). Since the accumulation of lactate in
the blood during intensive exercise coincides with a decrease in
fatty acid oxidation, a direct effect of lactate on fatty acid release
from adipocytes has been suggested (Issekutz and Miller, 1962;
Fredholm, 1971; Boyd et al., 1974). Although a causal link between
elevated lactate levels and decreased fatty acid release and oxida-
tion is plausible, no evidence for this concept has been provided; it
has rather remained controversial (Trudeau et al., 1999). Exercise
studies on wild type and HCA1-deficient mice that were trained
to exercise at an intensity to reach plasma levels of lactate suffi-
cient to activate HCA1, showed no differences in free fatty acid
or glycerol plasma concentrations between wild type and HCA1-
deficient mice (Ahmed et al., 2010). These findings suggest that it
is quite unlikely that HCA1 is critically involved in the regulation
of lipolysis during intensive exercise.

Another source of lactate is the adipose tissue. In the pres-
ence of insulin, it can convert more that 50% of the metabolized
glucose into lactate (DiGirolamo et al., 1992). Lactate is released
by adipocytes and serves mainly as a substrate for hepatic glu-
coneogenesis. Microdialysis studies in adipose tissue of humans
and mice have demonstrated that insulin-induced glucose uptake
results in a several-fold increase in interstitial lactate concentra-
tion within the adipose tissue (Jansson et al., 1990, 1994; Qvisth
et al., 2007; Ahmed et al., 2010) raising the intriguing possibil-
ity that lactate produced by adipocytes in the postabsorptive state
would inhibit lipolysis through HCA1 and thereby contribute to
the anti-lipolytic effects of insulin. By using mice lacking the HCA1

receptor, Ahmed et al. (2010) demonstrated that insulin-induced
decrease in cAMP and insulin-induced inhibition of lipolysis
were strongly reduced in HCA1-deficient mice. Similarly, the anti-
lipolytic effects of insulin on isolated adipocytes incubated in the
presence of high glucose, were greatly reduced in HCA1-deficient
adipocytes (Ahmed et al., 2010). Thus, lactate and HCA1 function

in an autocrine and paracrine loop to mediate insulin-induced
inhibition of lipolysis in the fed state (Figure 2).

When placed on a hypercaloric diet, mice lacking HCA1 show
a reduced weight gain by about 10% as compared to wild type lit-
termates (Ahmed et al., 2010). The reduced body weight was not
accompanied by an increase in glucose tolerance, most likely due
to transient elevations of free fatty acids, which may impair insulin
sensitivity.

HCA2

The ketone body 3-hydroxybutyrate has been identified as the
endogenous agonist of the HCA2 receptor and activates the recep-
tor with an EC50 of 0.7 mM (Taggart et al., 2005). In the fed state,
plasma concentrations of 3-hydroxybutyrate are below 0.5 mM
but they increase up to 2 mM after an overnight fast and can reach
even up to 6–8 mM during prolonged starvation (Owen et al.,
1969; Cahill, 2006). Ketone bodies are produced by the liver by
enzymatic condensation of acetyl-CoA molecules that arise from
β-oxidation of fatty acids. Because the lipolytic rate determines
the amount of fatty acids available for β-oxidation and subsequent
ketone body formation, activation of HCA2 by 3-hydroxybutyrate
and the subsequent anti-lipolytic effect represent a negative feed-
back regulation of lipolysis during starvation. Taggart et al. (2005)
have shown that the anti-lipolytic effect of 3-hydroxybutyrate
observed in adipocytes from wild type mice is abolished in
adipocytes isolated from HCA2-deficient mice. It is therefore sug-
gested that HCA2, being activated by 3-hydroxybutyrate, senses
increased β-oxidation and ketone body formation, and, through
inhibition of lipolysis, restricts further supply of fatty acids for
ketogenesis in order to economize triglyceride utilization and to
maintain energy homeostasis (Figure 3).

The HCA2 receptor not only mediates the anti-lipolytic effects
of the drug nicotinic acid, it is also involved in its lipid-modifying
and anti-atherosclerotic effects (Gille et al., 2008; Lukasova et al.,
2011). At pharmacological doses, nicotinic acid reduces plasma
concentrations of VLDL and LDL cholesterol, triglycerides, and
lipoprotein(a) while it increases levels of HDL cholesterol (Gille
et al., 2008). Specifically, activation of HCA2 by nicotinic acid
rapidly decreases plasma levels of free fatty acids which lead to
lower fatty acid supply to the liver and in turn to reduced syn-
thesis of VLDL cholesterol and triglycerides, and subsequently to
lower plasma levels of LDL cholesterol. To date, the underlying
mechanism of nicotinic acid-induced increases in HDL cholesterol
and a role of HCA2 in this respect are unclear. One hypoth-
esis is that a reduced triglyceride content in apolipoprotein B
containing particles, such as VLDL and LDL, lead to decreased
exchange of triglycerides for cholesteryl esters from HDL par-
ticles, a process mediated by cholesterol ester transfer protein
(CETP) (Gille et al., 2008). In mice that were engineered to
express human CETP it was shown that HDL elevation depends
on the presence of CETP (Hernandez et al., 2007). Because
mice naturally lack CETP and have a quite different lipoprotein
metabolism as compared to humans, the evaluation of genetic
mouse models with regard to HDL metabolism becomes chal-
lenging. The development of HCA2 receptor-selective antago-
nists would provide essential tools to dissect the role of HCA2

in vivo.
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FIGURE 3 | Model of the physiological functions of HCA2 and HCA3

receptors. During conditions of increased β-oxidation rates (e.g., during
fasting), plasma concentrations of the ketone body 3-hydroxybutyrate and
β-oxidation intermediates, in particular 3-hydroxy-octanoate, reach levels
sufficient to activate their respective receptors HCA2 and HCA3, which then
mediate an inhibition of adipocyte lipolysis through Gi/Go-dependent inhibition

of adenylyl cyclase. Thereby, HCA2 and HCA3 regulate lipolysis in a negative
feedback manner, and counter-regulate pro-lipolytic stimuli in order to
economize triglyceride utilization and avoid a waste of energy substrates. AC,
adenylyl cyclase; β-AR, β-adrenergic receptor; PKA, protein kinase A; TG,
triglyceride; HSL, hormone-sensitive lipase; ATGL, adipocyte triglyceride
lipase; FFA, free fatty acids; 3-OHB, 3-hydroxybutyrate; AcAc, acetoacetate.

Apart from adipocytes, the HCA2 receptor is expressed in var-
ious immune cells including macrophages. A recent study has
shown that the anti-atherosclerotic effects of nicotinic acid are not
only based on changes in lipid profile but also involve direct effects
of nicotinic acid on immune cells expressing HCA2 (Lukasova
et al., 2011). Nicotinic acid-induced reduction in atherosclerotic
lesion size was observed in wild type mice, whereas this effect was
reduced in HCA2-deficient mice or mice that were transplanted
with HCA2-deficient bone marrow. Moreover, it was shown that
HCA2 was expressed in macrophages localized to atheroscle-
rotic plaques, and HCA2 mediated the nicotinic acid-induced
inhibition of macrophage recruitment to atherosclerotic lesions
(Lukasova et al., 2011). In addition, nicotinic acid stimulated cho-
lesterol efflux from macrophages through HCA2. However, the
physiological role of HCA2 receptors in immune cells remains
unclear. Whether the natural agonist of HCA2, 3-hydroxybutyrate,
which is elevated during prolonged starvation, would exert anti-
inflammatory effects during starvation and whether these effects
are of physiological relevance is currently unknown.

HCA2 is also expressed in epidermal Langerhans cells, a popula-
tion of dendritic cells residing in the skin, as well as in keratinocytes
and both cell types have been shown to mediate flushing, a cuta-
neous vasodilation, and the major side effect of nicotinic acid
(Benyo et al., 2005, 2006; Hanson et al., 2010). In fact, flush-
ing albeit harmless is the main reason for patients to abrogate
nicotinic acid therapy. Nicotinic acid and the anti-psoriatic drug
monomethylfumarate, which also activates HCA2, induce flushing
through HCA2, a reaction that is characterized by a biphasic
increase in dermal blood flow (Hanson et al., 2010). The first peak

is mediated by HCA2 on Langerhans cells and cyclooxygenase-1-
dependent formation of PDE2 and PGD2, whereas the second peak
involves HCA2 on keratinocytes and cyclooxygenase-2-dependent
production of PGE2 (Hanson et al., 2010).

Besides its pharmacological role, the physiological function of
HCA2 in the skin is rather unknown. One may speculate that
HCA2 would be involved in modulation of various inflamma-
tory conditions in the skin, including tissue damage through UV
radiation or even cancer, for instance. A recent study reported
expression of HCA2 in the squamous cell carcinoma cell line SCC-
25, however a functional role of HCA2 has not been established
(Bermudez et al., 2011). Another type of cells expressing HCA2

are cells of the intestinal and colonic epithelium where HCA2 may
respond to butyrate, a short chain fatty acid present at millimolar
concentrations in the gut lumen, and to thereby act as an anti-
inflammatory receptor or tumor suppressor (Thangaraju et al.,
2009).

HCA3

Similar to HCA2, HCA3 mediates an inhibition of lipolysis in
adipocytes (Ahmed et al., 2009a). During various conditions
of increased β-oxidation rates, including fasting, ketogenic diet,
diabetic ketoacidosis and inherited mitochondrial β-oxidation
disorders, plasma concentrations of β-oxidation intermediates,
like 3-hydroxy-octanoate, reach levels sufficient to activate HCA3

(Costa et al., 1998; Jones et al., 2000; Ahmed et al., 2009a).
Under these conditions, HCA3 mediates – similarly to HCA2 – a
negative feedback mechanism by inducing an inhibition of lipoly-
sis (Figure 3). Adipose tissue stores an enormous amount of energy
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in the form of fat and its mobilization must be precisely controlled
in order to optimize triglyceride utilization and to avoid waste
of energy. Because HCA3 is exclusively expressed in humans and
higher primates, it is conceivable that during evolution HCA3 may
have been advantageous in these species acting as an additional
mechanism to control lipolysis during periods of starvation.

Similar to HCA2, HCA3 was reported to be expressed in various
human immune cells and shown to be activated by endogenous
agonists resulting in intracellular calcium release (Ahmed et al.,
2009a; Irukayama-Tomobe et al., 2009). In addition, HCA3 is sug-
gested to be expressed in gut epithelial cells (Thangaraju et al.,
2009). Therefore one may expect similar functions of HCA2 and
HCA3 in immune cells, however, the physiological role of HCA3

in human immune functions has yet to be determined.

THERAPEUTIC POTENTIAL OF HCA RECEPTORS
To date, the HCA2 receptor is the only member of the HCA family
that is used as a target in clinical therapy. Nicotinic acid has been
used for more than 50 years in anti-dyslipidemic therapy (Carlson,
2005), and it was rather recently shown that nicotinic medi-
ates its anti-lipolytic, anti-dyslipidemic, and anti-atherosclerotic
effects through HCA2 (Tunaru et al., 2003; Lukasova et al., 2011).
Several clinical trials indicated that a combination of nicotinic
acid and HMG-CoA reductase inhibitors (statins) is effective in
lowering LDL cholesterol and raising HDL cholesterol plasma
levels and reducing cardiovascular events as well as size of ath-
erosclerotic lesions (Brown et al., 2001; Taylor et al., 2004, 2009).
Currently, large clinical studies evaluate the efficacy of a nicotinic
acid in combination with statins in reducing relevant clinical
endpoints including progression of cardiovascular-disease, inci-
dence of major cardiovascular events, and cardiovascular-disease
associated mortality.

Flushing is the major side effect of nicotinic acid treatment
and is mediated by HCA2-induced cyclooxygenase-dependent for-
mation of prostanoids. Because flushing severely affects patients’
compliance, several anti-flushing strategies have been developed.
While extended-release formulations of nicotinic acid did not
sufficiently reduce flushing (Capuzzi et al., 1998), blockade of
prostaglandin synthesis, or signaling, would be a causal approach
to decrease flushing in patients. Inhibition of cyclooxygenase-1
using acetylsalicylic acid can reduce flushing (Oberwittler and
Baccara-Dinet, 2006), however, long-term treatment with effective
doses of acetylsalicylic acid may in turn cause severe side effects.
A more recent approach is to selectively inhibit prostaglandin D2

(PGD2)-mediated effects in the development of flushing (Cheng
et al., 2006). In clinical studies, the combination of nicotinic
acid with the PGD2 receptor antagonist laropiprant was able to
effectively reduce flushing symptoms (McKenney et al., 2010).
As a consequence, a fixed dosage formulation of nicotinic acid
and laropiprant has been approved for therapy by the European
Medical Agency.

Several groups have developed synthetic HCA2-specific ligands
including full receptor agonists such as pyrazole-3-carboxylic acids
and anthranilic acid derivatives, allosteric agonists like pyrazolopy-
rimidines as well as partial agonists such like bicyclic pyrazoles
(van Herk et al., 2003; Shen et al., 2007, 2008; Boatman et al.,
2008; Semple et al., 2008). A detailed discussion of synthetic HCA
ligands is not a main theme of this article, however, a recent review

on the nomenclature and classification of HCA receptors by Offer-
manns et al. (2011), comprehensively covers this topic, to which
the interested reader is kindly referred to. Interestingly, a partial
agonist of HCA2, MK-0354, shows full anti-lipolytic activity but
reduced vasodilation in mice when compared to nicotinic acid
(Richman et al., 2007). While the anti-lipolytic effect is medi-
ated by Gi proteins, molecular evidence has been provided that
β-arrestin-dependent recruitment of ERK is involved in the mech-
anism of flushing and thus would be independent of G protein
signaling (Walters et al., 2009). Thus, the efficacy of MK-0354 has
been evaluated in clinical trials on dyslipidemic patients, however,
while showing reduced flushing, no beneficial effects on plasma
lipids have been observed (Lai et al., 2008).

Because the expression pattern of HCA3 is quite similar to
HCA2, it is rather unlikely that HCA3-specific agonists would
cause reduced flushing as compared to HCA2-agonists. Several
HCA3-specific agonists have been synthesized that are expected to
inhibit lipolysis in human adipocytes (Semple et al., 2006; Skin-
ner et al., 2007, 2009), however, because rodents and most other
mammals lack HCA3 studies in humans or primates would be
required to evaluate the pharmacological effects of HCA3 ago-
nists. Alternatively, a transgenic mouse model expressing HCA3

may serve as a system to examine HCA3-specific ligands in vivo. In
contrast to HCA2 and HCA3, HCA1 is not expressed in immune
cells but is also present in adipocytes where it couples to Gi

proteins (Table 2). Therefore, agonists of HCA1 may represent
a rational approach to preserve the anti-lipolytic effects while
eliminating the unwanted effects of flushing. However, a recent
study using HCA1-deficient mice showed that HCA1 mediates the
anti-lipolytic effects of insulin and that lack of HCA1-mediated
anti-lipolysis causes reduced weight gain on a hypercaloric diet
(Ahmed et al., 2010). Therefore, also antagonizing HCA1 is of
pharmacotherapeutic potential yet to be explored. To date, syn-
thetic ligands of HCA1 have only been reported in the patent
literature that is not being discussed here.

Apart from anti-dyslipidemic treatment strategies, HCA2 and
HCA3 receptors being expressed in immune represent potential
drug targets for anti-inflammatory therapy. Recently, monomethyl
ester of fumaric acid, an established drug in anti-psoriatic therapy,
has been shown to specifically activate HCA2 but not HCA3 or
HCA1 (Tang et al., 2008). Fumaric esters have long been used as
oral formulations and their efficacy and safety has been evaluated
in clinical studies. Interestingly, some side effects of monomethyl-
fumarate including diarrhea and especially flushing are similar to
the unwanted effects of nicotinic acid (Nugteren-Huying et al.,
1990; Hoefnagel et al., 2003; Reich et al., 2009). In mice it has
been shown that both nicotinic acid and monomethylfumarate-
induced flushing is mediated by HCA2 (Hanson et al., 2010).
Finally, studies in mice lacking HCA2 in a disease model of pso-
riasis are needed to determine whether the anti-psoriatic effects
of monomethylfumarate are essentially mediated by HCA2. In
addition, antagonists of HCA2 would help to further dissect the
pharmacological effects of fumaric acid esters in vivo. Consis-
tent with the anti-inflammatory effects of monomethylfumarate
observed in psoriasis therapy, the dimethyl ester of fumaric acid
exerted anti-inflammatory and neuroprotective effects in a phase
II clinical trail with patients suffering from multiple sclerosis (Kap-
pos et al., 2008). Currently, the same formulation named BG-12
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consisting of dimethyl fumarate is being evaluated in a larger phase
III clinical study (Gold, 2011). HCA2 and HCA3 receptors are also
expressed in the apical membrane of human intestinal epithelial
cells. It is intriguing to speculate about the pathophysiological
function and therapeutic potential of HCA2 and HCA3 for the
treatment of immune diseases like psoriasis, multiple sclerosis, or
inflammatory bowel disease.

CONCLUSION AND FUTURE PERSPECTIVES
In 2003, the HCA2 receptor was identified as the target of the
anti-dyslipidemic drug nicotinic acid (niacin) and various syn-
thetic agonists of HCA2 have been developed since then. How-
ever, the physiological ligands of HCA receptors remained elusive
until recently, when hydroxy-carboxylic acids have been identified
as endogenous agonists of HCA1, HCA2, and HCA3 (Table 1).
Traditionally, hormones, mediators, and neurotransmitters were
regarded as the classic endogenous ligands of GPCRs, and there-
fore metabolites themselves, including hydroxy-carboxylic acids
or fatty acids may have been overlooked in the search for potential
ligands of orphan GPCRs. In addition, the relatively low potencies
of HCA receptor ligands have probably hampered their identi-
fication, especially in the case of HCA1 and HCA2, with EC50

values being in the millimolar range (Table 1). However, under
various physiological and pathophysiological conditions plasma
concentrations of these hydroxy-carboxylic acids reach levels suf-
ficient to activate their respective receptors and to inhibit lipolysis.
Similar to the receptor families of free fatty acids and citric acid
cycle metabolites, HCA receptors represent another subfamily of
GPCRs that is activated by intermediates of energy metabolism
and functions as a metabolic sensor.

Besides the established drug target HCA2, HCA1, and HCA3

are also being evaluated as potential targets for anti-dyslipidemic
therapies. Activation of HCA1, which is not expressed in immune
cells or keratinocytes, would be expected to exert anti-lipolytic
effects that are possibly not accompanied by flushing. In contrast,
studies on HCA1-deficient mice suggest that antagonism at HCA1

could be used for treatment of obesity by reducing the postpran-
dial anti-lipolytic effects of insulin mediated by HCA1. However,

to date, no antagonists of HCA receptors have been reported.
The development of HCA1-specific antagonists will help to fully
explore the therapeutic potential of HCA1 in the treatment of obe-
sity. Most importantly, it needs to be further investigated under
which conditions patients would benefit from one or the other
treatment strategy, i.e., the anti-lipolytic effects through activa-
tion of HCA1 or the weight-lowering effects of blocking HCA1

receptors.
Moreover, there is growing evidence that agonism at HCA2

and HCA3, which are both present in various immune cells, could
be exploited for the treatment of various inflammatory diseases.
For instance, HCA2 was recently shown to reduce atheroscle-
rotic lesions by inhibiting macrophage recruitment and increasing
cholesterol efflux from macrophages in atherosclerotic plaques,
providing a causal mechanism of HCA2 to reduce atherogenesis.
In this respect, it is intriguing to speculate about the therapeu-
tic potential of other (orphan) Gi-coupled GPCRs to reduce
inflammation and atherosclerosis. In addition, HCA2, which is
expressed in keratinocytes and dermal immune cells, is activated
by the anti-psoriatic drug monomethyl fumarate. Studies using
animal disease models of psoriasis and the development of HCA2-
specific antagonists are needed to explore a possible role of HCA2

in the etiology and progression of psoriasis and to evaluate the
therapeutic potential of HCA2 in anti-psoriatic therapy. Much
more future work is needed to investigate the pathophysiologi-
cal function of HCA2 and HCA3 in intestinal epithelial cells with
respect to the development of intestinal autoimmune diseases or
cancer.

In conclusion, the generation and analysis of genetic animal
models in combination with the development of potent and
subtype-specific agonists and antagonists of HCA receptors will
be a powerful strategy to further advance the evaluation of HCA
receptors as potential drug targets for new therapeutic strategies
against metabolic and immune disease.
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