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The hypothalamic-pituitary system is considered to be a vertebrate innovation and sem-
inal event that emerged prior to or during the differentiation of the ancestral agnathans.
Lampreys are the earliest evolved vertebrates for which there is a demonstrated neu-
roendocrine system. Lampreys have three hypothalamic gonadotropin-releasing hormones
(GnRHs; lGnRH-I, -II, and -III) and two and possibly three pituitary GnRH receptors involved
in mediating reproductive processes. Estradiol is considered to be a major reproductive
steroid in both male and female lampreys. The purpose of this study was to investigate
estrogen receptor (ER) expression in the lamprey brain in adult sea lampreys. Expression
of ER mRNA was confirmed in the adult lamprey brain using RT-PCR. Using digoxigenin
(DIG)-labeled probes, ER expression was shown to yield moderate, but distinct reaction
products in specific neuronal nuclei of the lamprey brain, including the olfactory lobe, hypo-
thalamus, habenular area, and hindbrain. Expression of ER in the hypothalamic area of the
brain provides evidence of potential interaction between estradiol and GnRH(s), and is
consistent with previous evidence showing estrogen feedback on GnRH in adult lamprey
brain. Earlier studies have reported that there is a close distribution of glutamic acid decar-
boxylase (GAD; GABA-synthesizing enzyme) and lamprey GnRH in the preoptic region in
adult lampreys.The establishment of a direct estradiol–kisspeptin–GABA–GnRH interaction
in lamprey has yet to be determined and will require future functional and co-localization
studies.The phylogenetic position of lampreys as a basal vertebrate allows lampreys to be
a basis for understanding the molecular evolution of the neuroendocrine system that arose
in the vertebrates.
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INTRODUCTION
Modern vertebrates are classified into two major groups, the
gnathostomes (jawed vertebrates) and the agnathans (jawless ver-
tebrates). The agnathans are classified into two groups, myxi-
noids (hagfish) and petromyzonids (lampreys), while the gnathos-
tomes constitute all other living vertebrates including the bony
and cartilaginous fishes and the tetrapods. The hypothalamic-
pituitary system is considered to be a vertebrate innovation and
seminal event that emerged prior to or during the differentia-
tion of the ancestral agnathans (Sower et al., 2009). Lampreys
are the earliest evolved vertebrates for which there is a demon-
strated neuroendocrine system. Lampreys have three hypothala-
mic gonadotropin-releasing hormone (GnRHs; lGnRH-I, -II, and
-III) and two and possibly three pituitary GnRH receptors involved
in mediating reproductive processes (Sower et al., 2009; Hall et al.,
2011).

In lampreys, there is a general pattern of GnRH distribution
in the anterior-preoptic-neurohypophysial tract to the neurohy-
pophysis of adult lampreys as determined by several immunohis-
tochemical (IHC) studies using specific GnRH antisera to each
of the lamprey GnRHs and also by in situ hybridization studies
using specific GnRH probes (Crim et al., 1979a,b; Nozaki and

Kobayashi, 1979; King et al., 1988; Nozaki et al., 1994; Reed et al.,
2002; Kavanaugh et al., 2008). Data showing GnRH immunore-
active (ir) neurons in adult lampreys using IHC showed cells
restricted to a single bilateral dense arc along the third ventricle in
the rostral hypothalamus and preoptic area. Of all vertebrates, only
the agnathan and teleosts lack a portal vascular system (median
eminence) for transferring neurohormones from the hypothal-
amus to the adenohypophysis (Gorbman, 1965). Studies were
done to experimentally examine the functional anatomical rela-
tionship between the hypothalamus and adenohypophysis in sea
lamprey (Nozaki et al., 1994). It was shown that neurosecretory
peptides like GnRH diffuse from the brain (neurohypophysis) to
the adenohypophysis, and thus regulate its secretory activity in
lampreys. Thus, there is evidence of normal occurrence of GnRH
in a part of the lamprey brain homologous with that brain region
in later evolved vertebrates in which GnRH localization forms
part of a neuroendocrine mechanism for gonadotropin secretion.
In other words, neurosecretory peptides like GnRH are able to
diffuse from the brain to the pituitary to regulate its secretory
activity. In addition, Crim (1981) and King et al. (1988) showed
that GnRH neurons project into the third ventricle. These authors
proposed an additional route of GnRH via secretion into the third
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ventricle and transported by tanycytes to the adenohypophysis
(King et al., 1988).

There are several important brain neurohormones/factors
that have been shown to stimulate/modulate GnRH and/or
gonadotropin synthesis and/or release in vertebrates. In
some teleosts, those neurohormones/factors include dopamine,
neuropeptide Y, gamma-aminobutyric acid (GABA), and
more recently gonadotropin-inhibitory hormone (GnIH) and
kisspeptin (KiSS; Kah and Dufour, 2010). In lampreys, GABA and
neuropeptide Y have been shown to be involved with brain GnRH
and reproduction (Conlon et al., 1994; Root et al., 2004, 2005).
Glutamic acid decarboxylase (GAD; GABA-synthesizing enzyme)
mRNA was expressed in four distinct cell populations in the lam-
prey brain, ranging from the telencephalon and diencephalon of
the forebrain to the mesencephalon and rhombencephalon of the
midbrain and hindbrain in adult lamprey (Root et al., 2005). The
close distribution of GAD and lamprey GnRH in the preoptic
region supports the hypothesis that GABA might act on the repro-
ductive axis through the feedback on GnRH neurons (Reed et al.,
2002; Root et al., 2005).

Data supporting estrogen feedback on GnRH has been shown
in lamprey. Sower (1997) observed that adult female lamprey
injected with microencapsulated E2 experienced an elevation in
GnRH concentrations, and activity of E2 in the hypothalamic
region is supported in vitro autoradiography studies demonstrat-
ing binding of E2 in that area (Kim et al., 1980, 1981). However, it
is unclear if the E2–GnRH interaction in lamprey occurs through
a direct or an indirect mechanism. Within the preoptic anterior
hypothalamus, co-localization studies of GABA and GnRH in lam-
prey have indicated GABA and GnRH-containing cells are closely
associated (Reed et al., 2002; Root et al., 2005), supporting the pos-
sibility of a GABA-mediated (indirect) mechanism of E2–GnRH
interaction in lamprey.

With the cloning of an estrogen receptor (ER), it is now possi-
ble to examine the expression of the receptor in the adult lamprey
brain (Thornton, 2001). In contrast to teleost fish that have three
types of ER (Hawkins et al., 2000; Menuet et al., 2002), lampreys
apparently only have one ER (Thornton, 2001). Earlier studies in
mammals suggested that the mechanism of E2 action on GnRH
is largely indirect, and neurons of the anteroventral periventricu-
lar brain region that express the neurotransmitter, gamma amino
butyric acid (GABA), are believed to be responsible for facilitat-
ing interaction between E2 and GnRH (Petersen et al., 2003). The
discovery of kisspeptin and subsequent studies now suggest that
steroid feedback may also be occurring on GnRH neurons via
kisspeptin and its receptor (Roa et al., 2009).

The proximity of GnRH to GABAergic neurons and the effects
of GABA/muscimol on GnRH support a role for GABA in the
regulation of lamprey GnRH. However, such studies do not nec-
essarily imply E2 involvement in GABA–GnRH interaction. Until
recently, it was not clear that a classical ER existed in lamprey.
Thornton’s (2001) discovery and cloning of a lamprey provides
an opportunity to enhance our understanding of the relation-
ships between GABA, GnRH, and E2 in lamprey. Therefore, in the
present study, we examined the expression patterns of ER in the
adult sea lamprey, Petromyzon marinus, brain in relation to GnRH
and GABA.

MATERIALS AND METHODS
COLLECTION AND SAMPLING
Adult female sea lampreys were collected from the fish ladder
on the Cocheco River in Dover, New Hampshire. Collection of
lamprey occurred in May and June during two successive sea-
sons during the lamprey’s upstream spawning migration from
the ocean to coastal rivers. The lampreys were transported to the
freshwater fish hatchery at the University of New Hampshire and
maintained in an artificial spawning channel supplied with flow-
through water from a nearby stream-fed reservoir at an ambient
temperature range of 13–20˚C, under natural photoperiod follow-
ing the University of New Hampshire Institutional Animal Care
and Use guidelines.

RT-PCR
Expression of ER was examined in the lamprey brain using RT-
PCR, both for the purpose of verifying expression and to generate
cDNA template for the synthesis of in situ hybridization probes.
Expression was also assessed in ovary, testis, and muscle tissue
for the purpose of comparison with expression in the brain.
One adult, female lamprey was killed by decapitation. Tissues for
were snap frozen in liquid nitrogen and stored at −80˚C. Total
RNA was isolated from ∼100 mg of each tissue using Tri-Reagent
(Molecular Research Center, Inc., Cincinnati, OH, USA). Gene
specific primers were selected against the partial cDNA sequence
of ER cloned from the sea lamprey by Thornton (2001), Accession
#AY028456, using Primer31 and were obtained from Integrated
DNA technology (Coralville, IA, USA).

Estrogen receptor left primer (first set): 5′-CCTCGTGCACAGAG
TTCT-3′
Estrogen receptor right primer (first set): 5′-GTAGCGATCCGGA
GCTGA-3′
Estrogen receptor left primer (second set: 5′-GACATGTTCGACA
TGCTGCT-3′
Estrogen receptor right primer (second set): 5′-AGCGGGATCAC
ATTCTTACG-3′

RT-PCR reactions were prepared (16.75 μl H20, 2.5 μl buffer,
1.5 μl MgCl2, 0.5 μl dNTPs, 0.25 μl Taq Polymerase, 500 nM
primer concentration, and 1 μl template). RT-PCR reactions
were performed using an Eppendorf Thermal Cycler under
the following conditions: 48˚C/1 min; (95˚C/15 s; 60.1˚C/1 min;
72˚C/1 min) × 35 cycles; 72˚C/5 min; 10˚C/hold. The reaction
products were analyzed on 1% agarose gels electrophoresed at
90 V for 1 h and stained with ethidium bromide for purposes of
visualization.

For the purpose of verifying the sequence identity of candidate
ER-bands, RT-PCR products were first gel purified as described in
the QIAEX II Gel Purification Kit© (QUIGEN,Valencia, CA, USA).
Purified products were then inserted into the pGEM-T-Easy vec-
tor (Promega, Madison, WI, USA) and subsequently transformed
into E. coli JM109 cells (Promega). Ligations and transformations
were performed following the protocol described in the pGEM-
T-Easy Vector System (Promega). Overnight cultures were used

1http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
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for plasmid preparation with the Wizard Plus Miniprep system
(Promega), following the manufacturer’s protocol. Purified plas-
mid was then sent for sequencing at the University of Utah’s Health
Science Center2.

RNA PROBE SYNTHESIS
Templates for probe synthesis were prepared in plasmids as
described above. Purified plasmid containing the ER insert was
then digested overnight at 37˚C with either SalI or NcoI [2 μg
BSA and 1× Buffer D (Promega)] restriction enzymes producing
singly digested linearized plasmid. Digestions were analyzed by 1%
agarose gel electrophoresis to confirm presence of expected clones.
Riboprobes were synthesized using the SP6 Riboprobe Synthesis
Kit (Promega), and either 35S- or Digoxigenin (DIG)-labeled UTP
as previously described (Rubin et al., 1997). This protocol was
slightly modified in that the transcription reactions were allowed
to continue overnight instead of 2 h.

EVALUATION OF RNA PROBE YIELD
The yield of DIG-labeled probes was evaluated by spectrometric
analysis of total RNA and a modified DIG Northern blot pro-
tocol (Allen et al., 2000). For the Northern blot, in the place
of total RNA, full length probe template cDNA used for each
riboprobe synthesis was cross-linked to a nylon membrane and
hybridized with the different anti-sense and sense riboprobes.
Briefly, template cDNA was denatured for 2 min at 100˚C, spotted
onto nylon membrane and UV cross-linked. Hybridization solu-
tion (50% dextran sulfate, 4 × SSC, 1 × Denhardt’s, 1 mg/ml yeast
tRNA, 10 mM DTT) was prepared and mixed with 0.5 mg/ml DIG-
labeled RNA diluted in DEPC water. Probes were applied to each
template cDNA and allowed to hybridize overnight at 55˚C. Fol-
lowing hybridization, membranes were washed twice in 2 × SSC
for 5 min each at RT, 1 × SSC for 15 min at 55˚C, and Maleate
Buffer (0.1 M maleic acid, 0.3% Tween, 0.15 M NaCl; pH 7.5)
for 2 min at RT. Membranes were blocked in Blocking Buffer for
30 min at RT and then incubated in anti-DIG-alkaline phosphatase
(AP; Roche) antibody (1:5000) for 30 min at RT. Membranes were
washed twice in Maleate Buffer for 15 min each at RT, and then
incubated in nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl
phosphate [NBT/BCIP (Roche) 1:50 diluted in 100 mM Tris–
HCl, 100 mM NaCl, 50 mM Mg2Cl2; pH 9.5)] in darkness for
3 h at RT.

For 35S-labeled probes, radioactivity in the waste products from
the LiCl precipitation and washing of probes was measured and
compared against the activity of the purified probes. Based on
this relationship, the % incorporation of 35S-UTP was calculated.
And based on the % of label incorporated, product yield from the
synthesis reactions was calculated.

IN SITU HYBRIDIZATION
Forty-seven adult, female lamprey were killed by decapitation.
Brains were dissected, immersed in O.C.T. Compound (Miles
Inc. Elkhart, IN), and then frozen on dry ice. Sagittal tis-
sue sections of 16–18 μm were cut the day of dissection on

2http://hci-w1.hci.utah.edu/OrderTracking/index.html

a cryostat (Reichert-Jung, Leica Instruments, Heidelberg, Ger-
many) at −12˚C. Sections were then mounted onto Vectabond
(Vector Laboratories, Burlingame, CA, USA) coated slides and
immediately moved into tissue preparation steps of day 1
of the in situ hybridization protocol. Tissue sections were
incubated with either anti-sense (odd numbered slides) or
sense (even numbered slides) riboprobes for lamprey ER. The
application and signal development of DIG-labeled probes
followed the protocol previously described by Rubin et al.
(1997), and characterized for use in lamprey by Root et al.
(2005).

The application and signal development of 35S-labeled probes
followed the protocol characterized by Root et al. (2005), with
the exception of signal development, which followed the proto-
col described by Hrabovszky et al. (2004). The concentration of
probe in the hybridization solution, the concentration of anti-
body applied, and the stringency of the washes were all varied to
optimize the results. Following signal development, both 35S and
DIG-labeled tissue sections were viewed under light microscopy
using an Olympus BH2 microscope, and digital photographs were
captured with a Nikon Coolpix 5000 camera. A detailed visual
assessment was made of signal deposition for each slide. In addi-
tion, images were also collected at Tufts Medical School using
a Zeiss Axioscope and Spot RT color camera (Diagnostic Instru-
ments, Inc.), and submitted for analysis by Optimus™analysis soft-
ware, which quantitatively compared the signal intensity between
sense and anti-sense slides.

RESULTS
RT-PCR
The first set of primers for lamprey ER yielded specific tran-
scripts in ovarian tissue, but not in brain, testis, or muscle tissue
(results not shown). In contrast, the second set primers for lam-
prey ER yielded specific transcripts in all tissues examined, with
strongest expression in ovarian and muscle tissues (Figure 1).

FIGURE 1 | Expression of ER in lamprey tissues. Lamprey ER was most
strongly expressed in the ovarian and muscle tissues, but was also
expressed in the testis and brain. 100 kb ladder from Promega (Madison,
WI, USA).
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Notably, the expression of ER in the target tissue (brain) was excep-
tionally weak. Megalign™analysis software was used to compare
sequenced PCR products with the published sequence for lam-
prey ER. Specifically, the transcript cloned from the first set of
primers (ER1 = 407 bp total length) had 100% identity with the
published sequence for lamprey ER (Thornton, 2001). In contrast,
the transcript cloned from second set of primers (ER2 = 341 bp
total length) contained a single deletion at position 285, relative
to the published sequence. The sequence confirms the analyzed
RT-PCR product is from the ER gene; as to the single base-pair
difference noted – while presumably changing the reading frame –
it is most likely an artifact. A pseudogene would be expected to
be much more different over the 341-bps sequenced, thus was not
pursued further.

EVALUATION OF RNA PROBE YIELD
The fidelity of DIG-labeled probes was supported through Dot
Blot analysis that revealed binding of ER1, ER2, and LIII (GnRH-
III) to respective cDNAs (Figure 2). In addition, probes yield was
determined to high, as determined by absorption at 260 nm. For
35S-labeled probes, a high amount of label was determined to
have been incorporated into all probes, generating a high yield of
product that was also consistent between probes (data not shown).

IN SITU HYBRIDIZATION
A total of 44 lamprey brains were used for DIG-labeled in situ
hybridization experiments. DIG-labeled, anti-sense ER probes
demonstrated moderate, yet distinct reaction product in spe-
cific neuronal nuclei across many regions of the lamprey brain,
including the olfactory lobe, hypothalamus, habenular area, and
hindbrain. Major brain regions were scored for signal intensity on
every slide. Patterns of staining were consistent between all brains
examined. Slides were subjected to image analysis performed at
Tufts University, and in most cases, indicated that staining on sense
slides was significantly less robust than that on anti-sense slides. In
addition, similar results were observed in both sagittal (Figure 3)
and transverse tissue sections (Figure 4).

FIGURE 2 | Fidelity of estrogen receptor and GnRH-III (DIG-labeled)

probes. Probe fidelity was supported through Dot Blot analysis that
revealed binding of ER1, ER2, and LIII (GnRH-III) to respective cDNAs.

For 35S-labeled tissue sections, a total of three lamprey brains
were used, and for samples in which the high stringency wash
was omitted, results were similar to those seem using DIG-
labeled probes. However, while anti-sense slides tended to be
more heavily stained than sense slides, a high degree of back-
ground staining prevented a detailed analysis (Figure 5). In con-
trast, for 35S-labeled tissue sections exposed to 10 min of a high
stringency wash, no signal was observed (results not shown).
The limited range of stringencies attempted (0 and 10 min)
using 35S-labeled probes limits the derivative power of these
results.

DISCUSSION
In this study, ER was shown to be expressed in the lamprey brain by
RT-PCR and DIG-labeled in situ hybridization. Specifically, in situ
hybridization indicated that ER is expressed in the olfactory bulb,
hypothalamus, habenular area, midbrain, and hindbrain of the
lamprey. As stated earlier, in lampreys, there is a general pattern
of GnRH distribution in the anterior-preoptic-neurohypophysial
tract to the neurohypophysis of adult lampreys (Crim et al.,

FIGURE 3 | DIG-labeled In situ hybridization for lamprey ER. Light
micrographs of sagittal tissue sections showing reaction product using
probe ER2 within the olfactory bulb (A), the hypothalamus (B), and the
midbrain (C). (200× mag).
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FIGURE 4 | DIG-Labeled In situ hybridization for lamprey ER. Light micrographs of transverse tissue sections showing reaction product using probe ER2
within the olfactory bulb (A), the hypothalamus (B), the midbrain (C), and the hindbrain (D). (200× mag).

FIGURE 5 | 35 S-labeled In situ hybridization for lamprey ER. Light micrographs of sagittal tissue sections showing reaction product within the olfactory bulb
(A), the hypothalamus (B), and the hindbrain (C). (200× mag).

1979a,b; Nozaki and Kobayashi, 1979; Nozaki and Gorbman, 1984;
King et al., 1988; Reed et al., 2002; Kavanaugh et al., 2008). Expres-
sion of ER in the hypothalamic area of the brain supports the

possibility of interaction between E2 and GnRH, and is consistent
with previous evidence that E2 feedback is occurring indirectly or
directly via GnRH neurons (Sower, 1987).
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The current study revealed much broader expression of ER
than that of previous studies in lamprey. Autoradiographic studies
using 3H-labeled E2 previously documented binding only within
the hypothalamic region and regions immediately adjacent the
hypothalamus (Kim et al., 1980, 1981). In the current study, stain-
ing was observed in and around the hypothalamus, but also within
the olfactory lobe, habenular area, and hindbrain. In vertebrates
other than lamprey, expression of ER occurs widely in the brain
(Shima et al., 2003), and it may be that the distribution of ER in
the lamprey brain more closely parallels that of other vertebrates
than was previously thought. The discrepancy between autoradi-
ographic and in situ hybridization studies may have occurred due
to the presence of another as yet unknown ER isoform in lam-
prey or due to non-specific binding. There is increasing evidence
suggesting that ERs are capable of activation by means other than
E2 (Blaustein, 2004), therefore in situ hybridization may reveal
regions of ER expression that function independently of E2, and
are otherwise undetectable by autoradiographic methods using
3H-labeled E2.

The pattern of ER expression observed in this study is simi-
lar to that of ER expression previously observed in the brains of
teleost fish (Menuet et al., 2003; Pellegrini et al., 2005). Interac-
tion between E2 and GnRH has been demonstrated in teleosts
(Trudeau et al., 1993), and the absence of ER expression in the
GnRH neurons of teleosts suggests that E2–GnRH interaction in
this vertebrate class occurs indirectly (Navas et al., 1995). While
lamprey have a single identified ER (Thornton, 2001), teleost fish
have three types of ER (Hawkins et al., 2000; Menuet et al., 2002).
These ERs are differentially expressed in the brain (Hawkins et al.,
2000; Pellegrini et al., 2005), and also appear to have distinct func-
tions in the neuroendocrine control of reproduction and behavior
(Hawkins et al., 2005). In comparison to teleosts, the possession
of only a single ER by lamprey may suggest alternative signaling
pathways for E2 in the lamprey brain.

The current study identified ER expression within the same
hypothalamic region where GnRH expression occurs, but did
not offer any insight into how E2 may interact with GnRH in
lamprey. A key question remains as to whether E2 acts directly
on GnRH-expressing neurons, or indirectly through a mecha-
nism utilizing GABA or kisspeptin. Root et al. (2005) identified
GABA-expressing neurons in close proximity to neurons express-
ing lamprey GnRH, supporting the possibility of an indirect action
of E2 on GnRH. However, the critical evidence needed in order to
establish the direct and/or indirect nature of E2–GnRH interac-
tion in lamprey lies in the determination of cellular co-localization
between GABA, GnRH, kisspeptin, and ER. Kisspeptin and its
receptor is another system that may also be involved in feedback
studies. The Kiss1/GpR54 system was discovered and shown to be
the central gatekeeper in the regulation of GnRH and puberty in
mammals (Seminara et al., 2003; Seminara and Crowley, 2008). In
mammals, the kisspeptin system acts in regulating many aspects
of reproduction functions including the mediation of steroid
feedback (Roa et al., 2009). The identification and function of
kisspeptin(s) and respective receptors in lampreys has not yet been
elucidated. Future studies will be required to examine the inter-
relationship between the kisspeptin, GnRH, GABA, and steroid

feedback systems and to determine whether there is another ER in
lampreys.

Estradiol is considered to be a major reproductive hormone in
both male and female lampreys (Sower and Kawauchi, 2010). The
role of estradiol in reproduction is supported by the cloning of
an estrogen-like receptor in sea lamprey (Thornton, 2001). In sea
and Japanese river (Lethenteron camtschaticum) lampreys, estra-
diol concentrations increased during spermiation (Fukayama and
Takahashi, 1985; Sower et al., 1985; Fahien and Sower, 1990) and
decreased during ovulation (Sower et al., 1985; Bolduc and Sower,
1992). In the first reported study examining sex steroid profiles
in the Pacific lamprey (Entosphenus tridentatus) during overwin-
tering and sexual maturation, estradiol levels were usually higher
in males than in females and increases coincided with the devel-
opment of secondary sex characteristics (Mesa et al., 2010). In
another study, there were higher plasma concentrations of estra-
diol in females compared to males and in both sexes, plasma
estradiol significantly increased as the season progressed corre-
lating with a temperature increase that is in general agreement
with these earlier studies (Sower and Kawauchi, 2010). In males,
higher estradiol concentrations corresponded to males that have
mature sperm as shown in maturing lampreys (Fukayama and
Takahashi, 1985; Sower et al., 1985; Linville et al., 1987) and are
consistent with the presence of an ER in the male testes (Ho et al.,
1987). While estradiol is considered to be a major steroid involved
in reproductive processes, the precise function(s) of estradiol and
its corresponding receptor(s) in both male and female lampreys
need to be elucidated. There are still many questions remaining
as to the type of steroids that are synthesized and their respec-
tive functions (reviewed in Bryan et al., 2008). For example, there
is growing evidence that all lampreys produce gonadal steroids
that are different from those of other vertebrates by possessing an
additional hydroxyl group at the C15 position (Bryan et al., 2006,
2008).

In conclusion, the current study identifies for the first time
expression of ER in the lamprey brain using both RT-PCR and
in situ hybridization. A broad expression of ER was observed
using in situ hybridization, including expression in the olfac-
tory lobe, hypothalamus, habenular area, and hindbrain. Expres-
sion of ER in the hypothalamic region supports the possi-
bility of an E2 feedback mechanism the GnRH system, sim-
ilar to that observed in other vertebrate groups. By demon-
strating ER expression in the lamprey brain using in situ
hybridization, the current study provides a means for further
investigation of possible mechanisms of interaction between
E2 and GnRH in lamprey and other critical neurohormone
systems.
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