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The brain has traditionally been considered to be a target site of peripheral steroid hor-
mones. In addition to this classical concept, we now know that the brain has the capacity
to synthesize steroids de novo from cholesterol, the so-called “neurosteroids.” In the mid-
dle 1990s, the Purkinje cell, an important cerebellar neuron, was identified as a major site
for neurosteroid formation in the brain of mammals and other vertebrates. This discovery
has provided the opportunity to understand neuronal neurosteroidogenesis in the brain.
In addition, biological actions of neurosteroids are becoming clear by the studies using
the Purkinje cell, an excellent cellular model, which is known to play an important role in
memory and learning processes. Based on the studies on mammals over the past decade,
it is considered that the Purkinje cell actively synthesizes progesterone and estradiol from
cholesterol during neonatal life, when cerebellar neuronal circuit formation occurs. Both
progesterone and estradiol promote dendritic growth, spinogenesis, and synaptogenesis
via each cognate nuclear receptor in the developing Purkinje cell. Such neurosteroid actions
mediated by neurotrophic factors may contribute to the formation of cerebellar neuronal cir-
cuit during neonatal life. 3α,5α-Tetrahydroprogesterone (allopregnanolone), a progesterone
metabolite, is also synthesized in the cerebellum and considered to act as a survival factor
of Purkinje cells in the neonate. This review summarizes the current knowledge regard-
ing the biosynthesis, mode of action, and functional significance of neurosteroids in the
Purkinje cell during development in terms of synaptic formation of cerebellar neuronal
networks.
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INTRODUCTION
The cerebellar cortex forms relatively simple neuronal networks
compared to those of other brain regions. Therefore, the cere-
bellar cortex has been used as an excellent model system to study
synaptic formation of neural networks in vertebrates, in particular
mammals. It is well known that marked morphological changes
occur in the cerebellum after birth during neonatal life and the for-
mation of the cerebellar cortex completes in the neonate through
the processes of migration of external granule cells, neuronal and
glial growth, and synaptogenesis in the rat (Altman, 1972a,b). It
is important to understand the mechanism underlying synaptic
formation of cerebellar neuronal networks during development
in mammals and other vertebrates.

In the middle 1990s, Tsutsui and colleagues discovered that the
Purkinje cell, an important cerebellar neuron, is a major site for
neurosteroid formation in a variety of vertebrates including mam-
mals (Tsutsui and Yamazaki, 1995; Usui et al., 1995; Ukena et al.,
1998, 1999; Takase et al., 1999; Matsunaga et al., 2001; Sakamoto
et al., 2001a, 2003a; Agís-Balboa et al., 2006, 2007). This was the
first observation of neuronal neurosteroidogenesis in the brain.
This discovery has provided the opportunity to understand neu-
ronal neurosteroidogenesis in the brain. Furthermore, the Purkinje
cell has served as an excellent cellular model for the study of bio-
logical actions of neurosteroids and provided new insights into

the mechanisms underlying the formation of cerebellar neuronal
networks during development.

Here we summarize the biosynthesis and biological actions of
neurosteroids in the Purkinje cell during development in terms
of synaptic formation of cerebellar neuronal networks. We also
describe what are currently known about the mode of action
and the functional significance of neurosteroids produced in the
Purkinje cell.

OVERVIEW OF PURKINJE CELLS AS A MAJOR SITE FOR
NEUROSTEROIDOGENESIS
The identification of neurosteroidogenic cells is essential to ana-
lyze neurosteroid actions in brain function. It is also necessary to
know which neurosteroids are synthesized in specific brain regions
at specific period during development. Such information enables
us to develop hypotheses predicting the potential roles of those
neurosteroids in the brain. Thus, the studies for this exciting area
in “neuroendocrine science” should be focused on the biosynthesis
and biological actions of neurosteroids produced locally in the
identified neurosteroidogenic cells underlying important brain
functions.

The oligodendrocyte was first accepted to be the primary site
for neurosteroid formation in the brain (for reviews, see Baulieu,
1997; Compagnone and Mellon, 2000). Subsequently, astrocytes
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and some neurons were shown to express some steroidogenic
enzymes (Mellon and Deschepper, 1993). Thus, glial cells were
generally accepted to be the site for neurosteroid formation. How-
ever, whether neurons located in the brain produce neurosteroids
was unknown in vertebrates until the middle 1990s. Tsutsui and
colleagues discovered that the Purkinje cell is a major site for neu-
rosteroid formation in birds and subsequently in other vertebrates
including mammals (Tsutsui and Yamazaki, 1995; Usui et al., 1995;
Ukena et al., 1998, 1999; Takase et al., 1999; Matsunaga et al., 2001;
Sakamoto et al., 2001a, 2003a; Agís-Balboa et al., 2006, 2007). From
the past 10 years of research on mammals, the colocalization of sev-
eral kinds of steroidogenic enzymes in the Purkinje cell has been
demonstrated.

In mammals, the Purkinje cell possesses several kinds of
steroidogenic enzymes, such as cytochrome P450 side-chain cleav-
age (P450scc) enzyme and 3β-hydroxysteroid dehydrogenase/Δ5-
Δ4-isomerase (3β-HSD), and actively produces progesterone dur-
ing neonatal life (Furukawa et al., 1998; Ukena et al., 1998, 1999;
Figure 1). 3α,5α-Tetrahydroprogesterone (allopregnanolone), a
progesterone metabolite, is also synthesized in the neonatal cere-
bellum (Tsutsui and Ukena, 1999; Tsutsui et al., 2003b,c, 2004;
Agís-Balboa et al., 2006, 2007; Figure 1). Subsequently, biologi-
cal actions of progesterone (Sakamoto et al., 2001b, 2002, 2003b;
Ghoumari et al., 2003) and the progesterone metabolite allopreg-
nanolone (Griffin et al., 2004) are becoming clear by the studies
on mammals using the Purkinje cell which is known to play an

FIGURE 1 | Neurosteroid formation in the Purkinje cell during

development. The Purkinje cell possesses several kinds of steroidogenic
enzymes. The expression of P450scc remains during neonatal
development and in adulthood, indicating the constant production of
pregnenolone. This neuron also produces actively progesterone due to an
increase of 3β-HSD activity only during neonatal life. Allopregnanolone (3α,
5α-tetrahydroprogesterone) is also metabolized by the enzymes
5α-reductase and 3α-HSD from progesterone during neonatal life.

Estrogen formation in the Purkinje cell also occurs in the neonate because
this neuron further expresses P45017α,lyase and P450arom. See the text for
details. StAR, steroidogenic acute regulatory protein; P450scc,
cytochrome P450 side-chain cleavage enzyme; 3β-HSD, 3β-hydroxysteroid
dehydrogenase/Δ5-Δ4-isomerase; P45017α,lyase, cytochrome P450 17α-
hydroxylase/c17,20-lyase; 17β-HSD, 17β-hydroxysteroid dehydrogenase;
3α-HSD, 3α-hydroxysteroid dehydrogenase; P450arom, cytochrome P450
aromatase.
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essential role in the process of memory and learning. In addi-
tion, this neuron expresses a key enzyme of estrogen formation,
cytochrome P450 aromatase (P450arom), and actively produces
estradiol in the neonate (Sakamoto et al., 2003a; Tsutsui et al.,
2003b; Figure 1). Estradiol may also contribute to important
events in the developing Purkinje cell (Sakamoto et al., 2003a;
Sasahara et al., 2007).

NEUROSTEROIDS PRODUCED IN THE PURKINJE CELL
PREGNENOLONE
Pregnenolone, a 3β-hydroxy-Δ5-steroid, is a main precursor of
steroid hormones. The formation of pregnenolone is initiated by
the cleavage of cholesterol side-chain by P450scc, a rate-limiting
mitochondrial enzyme. The first immunohistochemical study in
quail using an antibody against P450scc reported that the distri-
bution of immunoreactive cell bodies and fibers was coincident
with the location of somata and dendrites of Purkinje cells in the
cerebellum (Tsutsui and Yamazaki, 1995; Usui et al., 1995). West-
ern immunoblot analysis with the P450scc antibody confirmed
the presence of P450scc in the cerebellum (Tsutsui and Yamazaki,
1995; Usui et al., 1995). It is considered that Purkinje cells pos-
sess P450scc, because P450scc immunoreactivity was restricted to
this neuron in the cerebellum (Tsutsui and Yamazaki, 1995; Usui
et al., 1995). These avian findings provided the first evidence for
the location of P450scc in neurons in the brain.

Immunohistochemical studies of the rat cerebellum using an
antibody to P450scc also showed immunoreaction confined to the
somata and dendrites of Purkinje cells (Ukena et al., 1998). The
Purkinje cells were identified by immunostaining with an anti-
body for the inositol trisphosphate (IP3) receptor, a marker for
Purkinje cells (Ukena et al., 1998). P450scc immunoreactivity was
not observed in astrocytes, which were identified by immunoreac-
tion to glial fibrillary acidic protein (GFAP). Interestingly, P450scc
appeared in the rat Purkinje cell at its differentiation, and the
expression of this enzyme persisted during neonatal development
into adulthood (Ukena et al., 1998). In addition to higher ver-
tebrates, Tsutsui and colleagues further identified P450scc in the
Purkinje cell of amphibians (Takase et al., 1999). Taken together,
these findings indicate that Purkinje cells possess P450scc and
produce pregnenolone in vertebrates (Figure 1).

Steroidogenic acute regulatory protein (StAR) was also found in
Purkinje cells (Furukawa et al., 1998; Figure 1). StAR is involved in
the transport of cholesterol to the inner mitochondrial membrane,
in which P450scc is localized, and thus plays a key role in acute
steroid biosynthesis in peripheral steroidogenic glands (Clark
et al., 1994). Therefore, StAR may also contribute to the regulation
of pregnenolone formation in the Purkinje cell (Figure 1).

PROGESTERONE AND ITS METABOLITE
Progesterone is known to be a sex steroid hormone and acts on
brain tissues through nuclear progesterone receptors (PR). Prog-
esterone formation from cholesterol in the Purkinje cells has
been demonstrated in the Purkinje cells, along with 3β-HSD, a
membrane-bound mitochondrial enzyme that is responsible for
the biosynthesis of progesterone from pregnenolone (Ukena et al.,
1999). Tsutsui and colleagues found that Purkinje cells express not
only P450scc (Ukena et al., 1998) but also 3β-HSD (Ukena et al.,

1999; Figure 1). RT-PCR and biochemical techniques combined
with high-performance liquid chromatography (HPLC) analysis
showed the expression of 3β-HSD and its enzymatic activity in
the rat cerebellum (Ukena et al., 1999). Using in situ hybridization
of 3β-HSD mRNA, the site of 3β-HSD expression was localized
in Purkinje cells and external granule cells (Ukena et al., 1999).
Thus, both P450scc and 3β-HSD are expressed in Purkinje cells
(Figure 1). The colocalization of P450scc and 3β-HSD in exter-
nal granule cells is still unclear. The expression of 3β-HSD in
Purkinje cells was also evident in other vertebrates (Tsutsui et al.,
1999; Sakamoto et al., 2001a). Surprisingly, the expression of 3β-
HSD in the mammalian cerebellum increased during neonatal life
(Ukena et al., 1999), unlike P450scc (Ukena et al., 1998). Such an
age-dependent expression of 3β-HSD was confirmed by biochem-
ical studies together with HPLC analysis, indicating an increase of
progesterone formation during neonatal life (Ukena et al., 1999).
Thus, this neuron actively produces progesterone as a product of
an increase of 3β-HSD activity during neonatal life (Ukena et al.,
1999; Figure 1).

Biochemical analysis together with HPLC and thin-layer chro-
matography (TLC) further revealed that the progesterone metabo-
lite allopregnanolone is also found in the mammalian cerebellum
during neonatal life (Tsutsui and Ukena, 1999; Tsutsui et al.,
2003a,b, 2004; Figure 1). The expression of 5α-reductase and 3α-
HSD that metabolize progesterone to allopregnanolone has been
found in the Purkinje cell (Agís-Balboa et al., 2006, 2007; Figure 1).

ESTRADIOL
Estradiol is also known to be a sex steroid and acts on brain tissues.
P450arom is a key enzyme of estrogen formation in peripheral
steroidogenic glands. Tsutsui and colleagues have further demon-
strated the expression of P450arom in rat Purkinje cells during
neonatal life (Sakamoto et al., 2003a; Figure 1). RT-PCR and in situ
hybridization analyses showed that the expression of P450arom
mRNA is restricted to Purkinje cells and external granule cells
in the cerebellum in neonatal rats (Sakamoto et al., 2003a). A
specific enzyme immunoassay for estradiol further indicated that
cerebellar estradiol concentrations in the neonate are higher than
those in prepubertal and adult rats (Sakamoto et al., 2003a). In
addition, a recent study has shown the expression and activity
of cytochrome P450 17α-hydroxylase/c17,20-lyase (P45017α,lyase),
which converts pregnenolone to dehydroepiandrosterone (DHEA)
or progesterone to androstenedione, an immediate precursor of
estrogen formed by P450arom, in the Purkinje cell (Matsunaga
et al., 2001; Figure 1). These studies indicate estrogen formation
in the Purkinje cell during neonatal life (Figure 1). Therefore,
not only progesterone and its metabolite allopregnanolone but
also estrogen may be synthesized in the developing Purkinje cell
(Figure 1).

POSSIBLE ACTIONS OF NEUROSTEROIDS PRODUCED IN THE
PURKINJE CELL
PROMOTION OF PURKINJE DENDRITIC GROWTH, SPINOGENESIS, AND
SYNAPTOGENESIS
It is well known that in the rat marked morphological changes
occur in the cerebellum after birth during neonatal life and the for-
mation of the cerebellar cortex completes in the neonate through
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the processes of migration of external granule cells, neuronal and
glial growth, and synaptogenesis (Altman, 1972a,b). According to
Altman and Bayer (1978), the rat Purkinje cell is prenatally formed
and its maturation starts immediately after birth. Purkinje cells
actively synthesize progesterone during the neonatal period, as the
expression of 3β-HSD and its enzymatic activity increase in neona-
tal rats (Ukena et al., 1999; Figure 1). The progesterone metabolite
allopregnanolone is also synthesized in the cerebellum of neonatal
rats (Tsutsui and Ukena, 1999; Tsutsui et al., 2003b,c, 2004). Thus,
cerebellar development is dramatic during neonatal life, when
cerebellar concentrations of progesterone and allopregnanolone
are high (Tsutsui and Ukena, 1999; Ukena et al., 1999; Tsutsui et al.,
2003b). Therefore, progesterone and/or allopregnanolone may be
involved in the formation of the cerebellar neuronal circuit by
promoting neuronal growth and neuronal synaptic contact.

In vitro studies using cultured cerebellar slices of newborn
rats showed that progesterone promotes dendritic growth and
dendritic spine formation of the Purkinje cell (Sakamoto et al.,
2001b, 2002; Figure 2). A similar result was obtained by in vivo
studies (Sakamoto et al., 2001b, 2002). The stimulatory action
of progesterone on Purkinje dendrites was completely blocked
by a combined administration of the PR antagonist mifepristone
(RU486) in vitro (Sakamoto et al., 2001b, 2002). Furthermore,
in vivo administration of RU486 during the endogenous peak
of progesterone inhibited dendritic growth and dendritic spine
formation of the Purkinje cell (Sakamoto et al., 2001b, 2002).
Electron microscopic analysis further revealed that progesterone
induces an increase in the density of dendritic axospinous synapses
on the Purkinje cell (Sakamoto et al., 2001b, 2002; Figure 2). In
contrast, there was no significant change in the density of den-
dritic shaft synapses after progesterone administration (Sakamoto
et al., 2001b, 2002). The effect of progesterone on Purkinje den-
dritic spine synapses was also blocked by RU486 (Sakamoto et al.,
2001b, 2002). In contrast to progesterone, there was no significant
effect of allopregnanolone on Purkinje dendritic growth, spino-
genesis, and synaptogenesis (Sakamoto et al., 2001b, 2002). These
results indicate that progesterone promotes the dendritic growth,
spinogenesis, and synaptogenesis of Purkinje cells during cerebel-
lar development (Figure 2). To draw a firm conclusion, however,
further study is needed because RU486 is considered to be not a
pure PR antagonist, but rather a PR modulator (Ghoumari et al.,
2003).

Purkinje cells also express P450arom, a key enzyme of estro-
gen formation, highly in the neonate (Sakamoto et al., 2003a).
Estradiol levels in the neonate are higher in the cerebellum than
in the plasma (Sakamoto et al., 2003a). The effect of estradiol
on dendritic growth of Purkinje cells was investigated in both
in vitro and in vivo studies (Sakamoto et al., 2003a). Treatment of
cerebellar cultures with estradiol promoted the dendritic growth
of Purkinje cells in a dose-dependent manner with active doses
being in physiological levels of estradiol measured in the cerebel-
lum (Sakamoto et al., 2003a; Figure 3). A similar morphological
effect was also obtained by the in vivo treatment with estradiol
(Sakamoto et al., 2003a; Figure 3). In contrast, the blockage of
action of endogenous estrogen by a treatment with tamoxifen, an
estrogen receptor antagonist, had reversed effects on the morphol-
ogy of Purkinje cells. Further, estradiol treatment increased the

FIGURE 2 | Schematic model depicting possible actions of

progesterone in the Purkinje cell during development. Progesterone
acts on the Purkinje cell through intranuclear receptor (PR)-mediated
mechanisms that promote dendritic growth, spinogenesis, and
synaptogenesis in this neuron by genomic mechanisms. Thus,
progesterone produced in the Purkinje cell may mediate its actions through
an “intracrine” mechanism. Progesterone may induce the expression of
some neurotrophic factors that directly promote Purkinje dendritic growth,
spinogenesis, and synaptogenesis during neonatal life. Progesterone may
also act on Purkinje cells through the mechanisms mediated by 25-Dx,
which is associated with membrane structures of the endoplasmic
reticulum and Golgi apparatus. See the text for details. StAR, steroidogenic
acute regulatory protein; P450scc, cytochrome P450 side-chain cleavage
enzyme; 3β-HSD, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase; PR,
progesterone receptor; PRE, progesterone response element; Golgi, Golgi
apparatus; ER, endoplasmic reticulum.

densities of Purkinje dendritic spines (Sakamoto et al., 2003a) and
spine synapses (Sasahara et al., 2007; Figure 3). These effects were
also inhibited by tamoxifen (Sakamoto et al., 2003a; Sasahara et al.,
2007). Thus, estradiol also promotes the dendritic growth, spin-
ogenesis, and synaptogenesis of Purkinje cells (Figure 3). These
estrogen actions were confirmed by the study using P450arom
knock-out (ArKO) mice (Sasahara et al., 2007) as described in
Section“Functional Significance of Neurosteroids Produced in the
Purkinje Cell.”

On the other hand, DHEA is also known to be an abundant neu-
rosteroid in the mammalian brain (Corpéchot et al., 1981, 1983; Jo
et al., 1989). Compagnone and Mellon (1998) reported a similar
action of DHEA and its sulfate ester (DHEAS) on neuronal growth
using primary cultures of mouse embryonic neocortical neurons.
According to Compagnone and Mellon (1998), DHEA selectively
increased the length of axons and the incidence of varicosities and
basket-like process formations in vitro, whereas DHEAS selectively
promoted branching and dendritic growth in vitro. Therefore,
neurosteroids may play an important role in cortical organiza-
tion in both the mammalian cerebellum and cerebrum during
development.
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FIGURE 3 | Schematic model depicting possible actions of estradiol in

the Purkinje cell during development. Estradiol acts on the Purkinje cell
through intranuclear receptor (ERβ)-mediated mechanisms that promote
dendritic growth, spinogenesis, and synaptogenesis in this neuron by
genomic mechanisms. Both Purkinje cells and granule cells express BDNF
and TrkB, a receptor for BDNF. Estradiol induces the expression of BDNF,
which may act on Purkinje cells and granule cells through TrkB-mediated
mechanisms to promote Purkinje dendritic growth, spinogenesis, and
synaptogenesis. See the text for details. StAR, steroidogenic acute
regulatory protein; P450scc, cytochrome P450 side-chain cleavage enzyme;
3β-HSD, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase; P45017α,lyase,
cytochrome P450 17α-hydroxylase/c17,20-lyase; 17β-HSD,
17β-hydroxysteroid dehydrogenase; P450arom, cytochrome P450
aromatase; ERβ, estrogen receptor-β; ERE, estrogen response element;
BDNF, brain-derived neurotrophic factor; TrkB, BDNF receptor.

NEUROPROTECTION OF PURKINJE CELLS
In addition to organizing actions of progesterone as described
above, it has been reported that RU486 protects Purkinje cells from
developmental cell death, although progesterone does not possess
any effect on Purkinje cell survival (Ghoumari et al., 2003). This
protective effect of RU486 is considered to be independent of the
activation of nuclear PR (Ghoumari et al., 2003).

It has been shown that allopregnanolone is involved in Purk-
inje and granule cell survival (Griffin et al., 2004; Figure 2),
although allopregnanolone failed to promote the dendritic growth,
spinogenesis, and synaptogenesis of Purkinje cells (Sakamoto
et al., 2001b, 2002). The Niemann–Pick type C (NP-C) mouse
has been used as an excellent animal model for understanding
the action of allopregnanolone. NP-C is an autosomal reces-
sive, childhood neurodegenerative disease characterized by defec-
tive intracellular cholesterol trafficking, resulting in Purkinje cell
degeneration as well as neuronal degeneration in other regions.
Brains from adult NP-C mice contained less allopregnanolone
than wild-type (WT) brain (Griffin et al., 2004). Administration
of allopregnanolone to neonatal NP-C mice increased Purkinje
cell survival and delayed neurodegeneration (Griffin et al., 2004;
Figure 4).

FIGURE 4 | Summary of possible actions of neurosteroids in the

Purkinje cell during development. The Purkinje cell actively synthesizes
progesterone, allopregnanolone, and estradiol from cholesterol during
neonatal life when cerebellar neuronal circuit formation occurs in mammals.
Progesterone acts on the Purkinje cell through intranuclear receptor
(PR)-mediated mechanisms that promote dendritic growth, spinogenesis,
and synaptogenesis in this neuron by genomic mechanisms. Progesterone
may also promote dendritic growth, spinogenesis, and synaptogenesis via
25-Dx as well as its nuclear receptor in the Purkinje cell in the neonate.
Estradiol acts on the Purkinje cell through intranuclear receptor
(ER)-mediated mechanisms that promote dendritic growth, spinogenesis,
and synaptogenesis in this neuron by genomic mechanisms.
Allopregnanolone is involved in Purkinje cell survival. See the text for
details. PR, progesterone receptor; ER, estrogen receptor.

MODE OF ACTION OF NEUROSTEROIDS PRODUCED IN THE
PURKINJE CELL
MODE OF PROGESTERONE ACTION
To elucidate the mode of action of progesterone, the expression
of PR in the cerebellum was then characterized in neonatal rats.
Interestingly, intranuclear PR-A and PR-B were expressed in the
Purkinje cell (Sakamoto et al., 2001b, 2002, 2003b; Figure 2). It
is therefore considered that progesterone acts directly on Purk-
inje cells through intranuclear receptor-mediated mechanisms to
promote Purkinje dendritic growth, spinogenesis, and synapto-
genesis during neonatal development (Sakamoto et al., 2001b,
2002, 2003b; Figure 2). Such genomic actions of progesterone
may be essential for the formation of cerebellar neuronal circuit
(Figure 4). Thus, progesterone produced in the Purkinje cell may
mediate its actions through an “intracrine” mechanism (Figure 2).
In addition to the central nervous system, progesterone has also
been shown to promote myelination in the peripheral nervous
system via nuclear PR (Koenig et al., 1995; Chan et al., 2000).

Interestingly, Purkinje cells also express the putative mem-
brane PR, 25-Dx, during neonatal life (Sakamoto et al., 2004;
Figure 2). RT-PCR and Western immunoblot analyses revealed
the expressions of 25-Dx and its mRNA in the rat cerebellum,
which increased during neonatal life (Sakamoto et al., 2004). By
immunocytochemistry, the expression of 25-Dx was localized in
the Purkinje cell and external granule cell layer (Sakamoto et al.,
2004). 25-Dx immunoreactivity was associated with membrane
structures of the endoplasmic reticulum and Golgi apparatus in
the Purkinje cell (Sakamoto et al., 2004). Accordingly,progesterone
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may promote dendritic growth, spinogenesis, and synaptogene-
sis via 25-Dx as well as its nuclear receptor in the Purkinje cell
in the neonate (Sakamoto et al., 2008; Figure 2). This protein
is now named “progesterone receptor membrane component-
1” (PGRMC1), and there is now strong evidence that PGRMC1
mediates the anti-apoptotic actions of progesterone in both rat
granulose and luteal cells and it associates with another membrane
protein, such as plasminogen activator inhibitor RNA-binding
protein-1 (PAIRBP1; Engmann et al., 2006; Peluso et al., 2006;
Cahill, 2007). Future study is needed to demonstrate whether
the promotion of Purkinje dendritic growth, spinogenesis, and
synaptogenesis by progesterone is due to both genomic and
non-genomic actions.

It is known that neurotrophins are attractive candidate regu-
lators of Purkinje dendrite and spine development. It has been
reported that neurotrophic factors, such as brain-derived neu-
rotrophic factor (BDNF) and neurotrophin-3 (NT-3), are highly
expressed in the developing cerebellum and are critical for proper
development of Purkinje cells and granule cells (Rocamora et al.,
1993; Ernfors et al., 1994; Schwartz et al., 1997; Bates et al., 1999).
Therefore, progesterone may induce the expression of some neu-
rotrophic factors that directly promote Purkinje dendritic growth,
spinogenesis, and synaptogenesis during neonatal life (for reviews,
see Tsutsui, 2008a,b, 2009; Figure 2).

MODE OF ESTROGEN ACTION
It has been reported that in the neonatal rat, Purkinje cells express
estrogen receptor-β (ERβ; Price and Handa, 2000; Jakab et al.,
2001; Figure 3). Therefore, it is likely that estradiol acts directly
on Purkinje cells through intranuclear ERβ-mediated mechanisms
(Figure 3). This hypothesis was confirmed by the study using the
ER antagonist tamoxifen, which inhibited the effects of estrogen
on Purkinje dendritic growth, spinogenesis, and synaptogenesis
(Sakamoto et al., 2003a; Sasahara et al., 2007). It is known that
this anti-estrogen binds to ERs (ERα and ERβ) and activates tran-
scription via activating protein-1 response elements (Webb et al.,
1995) but blocks transcriptional activation through the classical
estrogen response element and not producing any agonist effect
via this pathway (McDonnell et al., 1995; Paech et al., 1997). Thus,
it is considered that the anti-estrogen tamoxifen blocks transcrip-
tional activation of ERβ in the developing Purkinje cell. On the
other hand, granule cells also express ERβ (Price and Handa, 2000;
Jakab et al., 2001; Figure 3). Involvement of ERβ in the brain func-
tion has also been reported in the rat hypothalamus (Orikasa et al.,
2002; Ikeda et al., 2003).

While ERβ appears to mediate the effects of estradiol on Purk-
inje cell function, other receptors may also mediate the effects of
estradiol on other brain regions, such as hippocampus (Gould
et al., 1990; Woolley et al., 1990; Woolley and McEwen, 1994;
Murphy and Segal, 1996; McEwen et al., 2001) and hypothala-
mus (Pérez et al., 1993). The effect of estradiol on hippocampal
CA1 pyramidal cell dendrite spine density requires the activation
of N -methyl-d-aspartate (NMDA) receptors in adult female rats
(Woolley and McEwen, 1994). Such non-genomic estrogen actions
may lead to alterations in gene expression. Hence, NMDA recep-
tors may also mediate estradiol action in Purkinje cells. Further
studies are needed to draw a firm conclusion.

To understand the mode of action of estradiol, Tsutsui and
colleague further examined the expression of BDNF and NT-3 in
response to estrogen actions in the neonate (Sasahara et al., 2007),
because these neurotrophic factors are known to be critical for
proper development of Purkinje cells (Rocamora et al., 1993; Ern-
fors et al., 1994; Schwartz et al., 1997; Bates et al., 1999). Estrogen
administration to neonatal WT mice or ArKO mice increased the
BDNF level in the cerebellum, whereas the anti-estrogen tamoxifen
decreased the BDNF level in WT mice similar to ArKO mice (Sasa-
hara et al., 2007). BDNF administration to tamoxifen-treated WT
mice increased Purkinje dendritic growth (Sasahara et al., 2007).
In contrast to BDNF, estrogen administration did not influence the
level of NT-3 in the cerebellum (Sasahara et al., 2007). The NT-3
level did not change in ArKO mice as well (Sasahara et al., 2007).
These results indicate that BDNF mediates estrogen action on the
promotion of dendritic growth, spinogenesis, and synaptogenesis
in the Purkinje cell during neonatal development (Figure 3).

Importantly, the gene encoding BDNF contains a sequence
similar to the canonical estrogen response element found in
estrogen-target genes (Sohrabji et al., 1995). In addition, BDNF
increases levels of synaptic vesicle proteins, such as synaptophysin
and synapsin 1, which are reliable markers of synaptogenesis, in
the spinal neurons (Wang et al., 1995). Estrogen increases presy-
naptic and postsynaptic proteins, such as syntaxin, synaptophysin,
and spinophilin, in the CA1 region of the primate hippocampus
(Choi et al., 2003). Furthermore, it has been reported that estro-
gen treatment induces these synaptic proteins in the CA1 region
of hippocampus, and this effect is blocked by CI628, an anti-
estrogen of the tamoxifen type (Brake et al., 2001). The expression
of P450arom mRNA in the cerebellum is restricted to Purkinje
cells and external granule cells in the neonatal rats (Sakamoto
et al., 2003a; Tsutsui, 2006a,b; Tsutsui and Mellon, 2006). Both
Purkinje cells and granule cells express BDNF (Hofer et al., 1990;
Borghesani et al., 2002) and TrkB, a receptor for BDNF (Klein et al.,
1990; Segal et al., 1995; Carter et al., 2002; Figure 3). It is therefore
likely that estrogen induces the expression of BDNF, which acts
on Purkinje cells and granule cells through TrkB-mediated mech-
anisms to promote Purkinje dendritic growth, spinogenesis, and
synaptogenesis during neonatal life (Sasahara et al., 2007; Tsutsui,
2008b, 2009; Figure 3).

FUNCTIONAL SIGNIFICANCE OF NEUROSTEROIDS
PRODUCED IN THE PURKINJE CELL
To demonstrate the functional significance of endogenous estra-
diol in the Purkinje cell during neonatal life, estrogen actions on
dendritic growth, spinogenesis and synaptogenesis in Purkinje
cells were investigated using ArKO mice (Sasahara et al., 2007).
ArKO mice used in the study lack exons 1 and 2 and the proximal
promoter region of the P450arom gene cyp19 (cytochrome P450,
family 19; Honda et al., 1998). Estradiol deficiency in ArKO mice
decreased dendritic growth, spinogenesis, and synaptogenesis in
Purkinje cells in the neonate (Sasahara et al., 2007). In addition,
administration of estradiol to ArKO mice increased Purkinje den-
dritic growth, spinogenesis, and synaptogenesis (Sasahara et al.,
2007). These results indicate physiological actions of endogenous
estrogen on the promotion of dendritic growth, spinogenesis, and
synaptogenesis in the Purkinje cell during neonatal development.
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Neuroprotective and neurotrophic actions of estrogen on other
brain regions have been reported by the studies using ArKO mice
(Azcoitia et al., 1999; Carswell et al., 2005). Neuroprotective effects
of estrogen on dentate gyrus neurons in the hippocampus were
mediated by estrogen-induced insulin-like growth factor-1 (IGF-
1; Azcoitia et al., 1999), similar to neurotrophic effects of estrogen
on Purkinje cells mediated by estrogen-induced BDNF (Sasahara
et al., 2007).

In addition to the analysis of biological actions of endogenous
estradiol using ArKO mice, we need to elucidate the functional
significance of endogenous progesterone in the Purkinje cell dur-
ing neonatal life. To demonstrate the functional significance of
endogenous progesterone, the analysis of progesterone actions on
Purkinje dendritic growth, spinogenesis, and synaptogenesis using
3β-HSD knock-out mice is now in progress.

Progesterone and allopregnanolone have neurotrophic and
neuroprotective effects and may improve cognitive function
in mammals (Schumacher et al., 2003; Frye and Walf, 2008).
Estradiol is also implicated in the cognitive processes of the
mammalian brain (Jacobs et al., 1998; Drake et al., 2000; Hao
et al., 2007). Several regions of the mammalian brain involved
in memory and cognition, such as the cerebellar cortex, hip-
pocampus, amygdala, and cerebral cortex, are rich in ERs (Price
and Handa, 2000; Shughrue et al., 2000; Jakab et al., 2001;
Sakamoto et al., 2003a; Tsutsui et al., 2004; Sasahara et al.,
2007). Thus, it is considered that progesterone, allopregnanolone,
and estradiol alter the processes of memory and cognition
mediated by the cerebellar cortex, hippocampus, and cerebral
cortex.

CONCLUSION AND FUTURE DIRECTIONS
Purkinje cell is a major site for neurosteroid formation in the
brain. This neuron actively synthesizes progesterone and allo-
pregnanolone, a progesterone metabolite, from cholesterol during
neonatal life when cerebellar neuronal circuit formation occurs in
mammals. This neuron also produces estradiol in the neonate.
Both progesterone and estradiol promote Purkinje dendritic
growth, spinogenesis, and synaptogenesis. Allopregnanolone is
also considered to be involved in Purkinje and granule cell survival.
These neurosteroid actions may be essential for the formation of
the cerebellar neuronal circuit as summarized in Figure 4.

The discovery of Purkinje cell as a major site for neurosteroid
formation has improved our understanding of neuronal neu-
rosteroidogenesis and biological actions of neurosteroids in the
cerebellum. This exciting area of research should focus on physio-
logical roles of neurosteroids in the future, because Purkinje cells
play an important role in the process of memory and learning.
Therefore, behavioral studies using neurosteroidogenic enzyme
knock-out animals and electrophysiological studies on the occur-
rence of long-term potentiation and/or long-term depression are
needed.
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