frontiers in

ENDOCRINOLOGY

ORIGINAL RESEARCH ARTICLE
published: 14 November 2011
doi: 10.3389/fendo.2011.00074

=

Biosynthetic pathway for sex pheromone components
produced in a Plusiinae moth, Plusia festucae

Hayaki Watanabe, Aya Matsui, Sin-ichi Inomata, Masanobu Yamamoto and Tetsu Ando *

Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan

Edited by:
Shogo Matsumoto, Advanced
Science Institute — RIKEN, Japan

Reviewed by:

Shogo Matsumoto, Advanced
Science Institute — RIKEN, Japan
Russell Jurenka, lowa State
University, USA

*Correspondence:

Tetsu Ando, Graduate School of
Bio-Applications and Systems
Engineering, Tokyo University of

Agriculture and Technology, Koganei,

Tokyo 184-8588, Japan.
e-mail: antetsu@cc.tuat.ac.jp

While many Plusiinae species commonly secrete (Z)-7-dodecenyl acetate (Z7-12:0Ac) as
a key pheromone component, female moths of the rice looper (Plusia festucae) excep-
tionally utilize (Z)-5-dodecenyl acetate (Z5-12:0Ac) to communicate with their partners.
GC-MS analysis of methyl esters derived from fatty acids included in the pheromone
gland of P festucae showed a series of esters monounsaturated at the w7-position,
i.e., (Z)-5-dodecenoate, (Z)-7-tetradecenoate, (Z)-9-hexadecenoate (Z9-16:Me), and (2)-
11-octadecenoate (Z11-18:Me). By topical application of D3-labled palmitic acid (16:Acid)
and stearic acid (18:Acid) to the pheromone glands, similar amounts of D3-Z5-12:0Ac
were detected. The glands treated with D43-labeled monoenoic acids (Z9-16:Acid and
Z11-18:Acid), which were custom-made by utilizing an acetylene coupling reaction with
D13-1-bromohexane, also produced similar amounts of D13-Z5-12:0OAc. These results sug-
gested that Z5-12:OAc was biosynthesized by w7-desaturase with low substrate specificity,
which could introduce a double bond at the 9-position of a 16:Acid derivative and the 11-
position of an 18:Acid derivative. Additional experiments with the glands pretreated with an
inhibitor of chain elongation supported this speculation. Furthermore, a comparative study
with another Plusiinae species (Chrysodeixis eriosoma) secreting Z7-12:0Ac indicated that
the pB-oxidation systems of P festucae and C. eriosoma were different.
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INTRODUCTION

About 160,000 lepidopteran species are known world wide, and
each species is believed to establish a species-specific mating com-
munication system for species conservation. Not only nocturnal
moths but also diurnal moths utilize special sex pheromones as a
chemical cue. Lepidopteran sex pheromones have been identified
from more than 600 moth species and about three-quarters of
them are composed of C;p—Cig unsaturated fatty alcohols, their
acetates, and aldehyde derivatives, including one, two, or three
C=C bonds (Type I pheromones; Ando et al., 2004; Ando, 2011;
El-Sayed, 2011). These components are biosynthesized from satu-
rated fatty acyl intermediates, into which double bonds are intro-
duced at definite positions by desaturases working in a pheromone
gland (Jurenka, 2004). The double bonds locate at various posi-
tions, i.e., from the terminal methyl group to the next carbon to
the functional group. In addition to the different chain lengths and
kinds of terminal functional groups, the chemical structural vari-
eties are attributed to the different positions of the double bonds
(Ando et al., 2004).

Plusiinae is a well-assembled subfamily in Noctuidae, which
is the biggest family in Lepidoptera, and includes many pest
species secreting Type I pheromones. Since a pioneering study
on the chemical communication of the cabbage looper, Tri-
choplusia ni (Berger, 1966), sex pheromones have been iden-
tified from 22 Plusiinae species (Ando, 2011; El-Sayed, 2011).
Most of them secrete (Z)-7-dodecenyl acetate (Z7-12:0Ac) as a
main pheromone component and blend some structurally related

compounds to make species-specific pheromones, suggesting that
a primitive species in Plusiinae utilized Z7-12:0Ac and speciated to
many existing species while establishing the ability to produce new
pheromone components. Z7-12:0Ac is biosynthesized via A11-
desaturation of a saturated C;4 acyl compound (16:Acyl), probably
a CoA-derivative of palmitic acid (16:Acid; Bjostad and Roelofs,
1983), and this key step has been confirmed by identification of the
gene encoding All-desaturase from T. ni (Knipple et al., 1998).
The All-desaturation is an important biosynthetic step because
pB-oxidation of the produced (Z)-11-hexadecenyl intermediate in
different degrees yields a series of monoenyl compounds unsat-
urated at the w5-position, such as (Z)-9-tetradecenyl acetate
(Z29-14:0Ac) and (Z)-5-decenyl acetate (Z5-10:0Ac). Among the
Plusiinae species, Z9-14:0Ac is secreted by Macdunnoughia con-
fusa, and Z5-10:OAc is secreted by Anadevidia peponis as a minor
pheromone component (Inomata et al., 2000).

On the other hand, the sex pheromone of the rice looper, Plusia
festucae, is composed of (Z)-5-dodecenyl acetate (Z5-12:0Ac) as a
main component and (Z)-7-tetradecenyl acetate (Z7-14:0Ac) as a
minor component (Ando et al., 1995). Both components include
a double bond at the w7-position, and the female moths pro-
duced no pheromone components unsaturated at the w5-position.
This exceptional Plusiinae pheromone is noteworthy, and we are
interested in the biosynthetic pathway of the w7-unsaturated com-
ponents. Based on the information on the desaturation of many
lepidopteran sex pheromones (Jurenka, 2004), we speculated that
the P. festucae pheromone is produced by A9-desaturation of
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16:Acyl or All-desaturation of 18:Acyl. To clarify the pathway
in P. festucae, we analyzed fatty acids in the pheromone glands by
GC-MS at the start of the study. Next, deuterated C; and Cg sat-
urated and monoenoic fatty acids were treated to the pheromone
glands, and the manner in which they were incorporated into
Z5-12:0Ac was compared. The results suggested that both desatu-
ration made a contribution. The incorporation was also examined
with a pheromone gland pretreated with an inhibitor of chain
elongation to eliminate the possibility of the conversion of 16:Acid
into 18:Acid. Furthermore, a similar biosynthetic experiment was
carried out using another Plusiinae species, Chrysodeixis erio-
soma, which secretes Z7-12:0Ac as a main pheromone component
(Komoda et al., 2000). Incorporation of deuterium was observed
only in C. eriosoma females treated with the Cj¢ acids, indicat-
ing different B-oxidation systems in P. festucae and C. eriosoma
females.

MATERIALS AND METHODS

INSECTS

Larvae of three Plusiinae species (P. festucae, C. eriosoma, and A.
peponis) were collected in a paddy field or a vegetable field of
Tokyo University of Agriculture and Technology (Fuchu, Tokyo).
The P. festucae larvae were also collected in a paddy field in Yama-
gata Prefecture. Rearing for successive generations was separately
carried out on an artificial diet consisting mainly of kidney beans
(Kawasaki et al., 1987) at 25°C under a 16L-8D cycle. The female
pupae were separated from the males, and 2- to 3-day-old vir-
gin females were used for experiments. Their sex pheromones are
composed of the following monoenyl compounds: P. festucae, Z5-
12:0Ac, Z7-14:0Ac, and Z5-12:0H (100:15:6; Ando et al., 1995);
C. eriosoma, Z7-12:0Ac and 79-12:0Ac (17:3; Komoda et al,,
2000); A. peponis, Z7-12:0Ac, Z5-10:0Ac, and Z7-12:0H (10:5:1;
Inomata et al., 2000).

LIPID EXTRACTION AND DERIVATIZATION

From 10 pheromone glands removed from the females of each
species, lipids were extracted with a mixed solvent of chloro-
form and methanol (v/v=2:1) and used for basic hydrolysis to
yield fatty acids. After purification by preparative TLC, the free
acids were converted to esters by diazomethane and quantitatively
analyzed by GC-MS. The fatty acid methyl esters (FAMEs) of
P. festucae were also analyzed after derivatization with dimethyl
disulfide (DMDS; Buser et al., 1983). The FAMEs were dissolved
in a mixture of DMDS (50 1) and diethyl ether (100 1) includ-
ing iodine (500 g) and then warmed at 40°C overnight. The
crude products, which were treated with a 5% sodium thiosul-
fate solution (0.5 ml), were extracted with hexane and analyzed by
GC-MS.

ANALYTICAL INSTRUMENTS

'H and '*C NMR spectra were recorded by a Jeol Delta 2 Fourier
transform spectrometer (JEOL Ltd., Tokyo, Japan) at 399.8 and
100.5 MHz, respectively, for CDCl3 solutions containing TMS as
an internal standard. GC-MS was conducted in the EI mode
(70eV) with an HP5973 mass spectrometer system (Hewlett-
Packard) equipped with a split/splitless injector. A DB-23 column
(0.25mm ID x 30 m, 0.25 wm film, ] & W Scientific, Folsom, CA,

USA) was commonly used for analyses of the pheromone compo-
nents and FAMEs, except for DMDS adducts, which were analyzed
with an HP-5 column (0.25 mm ID x 30 m,0.25 jwm film, Hewlett-
Packard, Wilmington, DE, USA). The temperature program for the
DB-23 column was 80°C for 1 min and 8°C/min to 220°C, and that
for HP-5 column was 100°C for 2 min, 15°C/min to 280°C, and
held for 15 min. The carrier gas was He.

DEUTERIUM-LABELED PRECURSORS

[16,16,16-D3]Palmitic acid (Dg-16:Acid, 99.7 atom% of D)
and [18,18,18-Dj]stearic acid (D3-18:Acid, 99.7 atom% of
D) were purchased from ISOTEC Inc. The synthesis of
[13,13,14,14,15,15,16,16,16-Dg](Z)-11-hexadecenoic acid (Dg-
Z11-16:Acid) has been reported (Ando et al., 1998). Other deuter-
ated monoenyl fatty acids were synthesized by the routes described
below (shown in Figure 1).

D,3-29-16:Acid
[11,11,12,12,13,13,14,14,15,15,16,16,16-D3](Z)-9-Hexadecenoic
acid was prepared starting from 1,8-octanediol (1, 7 = 8). By half-
bromination with HBr and protection of the remaining hydroxyl
group by dihydropyran, this alcohol was converted into the THP
ether of 8-bromooctan-1-ol (2, m =8). The bromide was treated
with lithium acetylide and the produced terminal acetylene com-
pound (3, m=28) was coupled with Dj3-1-bromohexane (98
atom% of D, ISOTEC, Inc., OH, USA) to yield a hexadecyne deriv-
ative (4, m =38, n=>5) that incorporated D;3. The triple bond of
4 was partially reduced to a double bond under hydrogen gas
with a Pd-BaSOy catalyst poisoned with quinoline, and D;3-(Z)-
9-pentadecen-1-ol (5, m=8, n=1>5) was obtained after cleavage
of the THP protective group. This alcohol was oxidized with the
Jones reagent to yield the D;3-Z9-16:Acid (5, m=8, n=5). NMR
(3 ppm); 'H: 1.30 (8H, broad), 1.63 (2H, tt, ] =7.5, 7.5 Hz), 2.02
(2H, dt, J =7, 7Hz), 2.35 (2H, t, ] =7.5Hz), 5.34 (2H, m), °C:
24.7,27.2,29.1 (x2),29.2,29.7, 34.1, 129.8, 130.0, 180.2. GC-MS
of methyl ester: Rt 13.75 min, m/z 281 (M™, 11%), 249 (38%), 74
(100%).

D13-Z11-18.'A8id
[13,13,14,14,15,15,16,16,17,17,18,18,18-D13](Z)-11-Octadecen-
oic acid was synthesized starting from 1,10-decanediol (1, m = 10)

b
OH(CH,),OH L LN Br(CH,),,OTHP —° CH=C(CH,),,OTHP
1 2 3
e f HH
CD4(CD,),C =C(CH,),,OTHP —»  CD4(CD,),C=C(CH,),,OH
4 5

.

g m=8,n=5 D,;Zo-16:Acid
T CDy(CDC=C(CH)n1COMH 1110 =5 D, Z11-18:Acid

6 m=12, n=3 Dy-Z13-18:Acid

FIGURE 1 | Synthetic routes to deuterated monoenyl acids (6);
D.;-(2)-9-hexadecenoic acid (D;;-29-16:Acid, m=8, n=5),
D,;-(2)-11-octadecenoic acid (D;;-Z11-18:Acid, m= 10, n=5), and
D,-(2)-13-octadecenoic acid (D,-213-18:Acid, m= 12, n=3). Reagents: a,
HBr; b, 3,4-dihydro-2 H-pyran; ¢, LIC=CH-EDA/DMSO; d, (1) BuLi/THF, (2)
CDs(CD,),Br/HMPA; e, H,/Pd-BaSO,-quinoline/hexane; f, p-TsOH/EtOH; g,
Jones reagent/acetone-H,0.
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viaa deuterated 11-octadecyne derivative (4, m = 10, n = 5), which
was prepared by a coupling reaction between an acetylene com-
pound (3, m=10) and D13-1-bromohexane. NMR (8§ ppm); 'H:
1.29 (12H, broad), 1.64 (2H, tt, ] =7.5, 7.5Hz), 2.01 (2H, dt,
J=7,7Hz),2.34 (2H, t, ] = 7.5 Hz), 5.34 (2H, m), 13C: 24.7,27.2,
29.1(x2),29.2 (x3),29.4,29.5,29.8,34.0,129.9 (x2), 180.0. GC-
MS of methyl ester: Rt 15.82 min, m/z 309 (M, 10%), 277 (33%),
74 (100%).

Dy-Z13-18:Acid
[15,15,16,16,17,17,18,18,18-Dg](Z)-13-Octadecenoic acid was
synthesized starting from 1,12-dodecanediol (1, m=10) via a
deuterated 13-octadecyne derivative (4, m = 12, n = 3). This inter-
mediate was prepared by a coupling reaction between an acety-
lene compound (3, m = 12) and Dg-1-bromobutane, which was
derived from Djg-1-butanol (98 atom% of D,ISOTEC, Inc.). NMR
(3 ppm); 'H: 1.29 (14H, broad), 1.64 (2H, tt, ] = 7.5, 7.5 Hz), 2.01
(2H, dt, ] =7, 7Hz), 2.34 (2H, t, ] = 7.5 Hz), 5.34 (2H, m), *C:
24.7,27.2,29.1,29.2 (x2),29.4,29.5,29.8, 34.0,129.9 (x2), 180.1.
GC-MS of methyl ester: Rt 15.80 min, m/z 305 (M™, 12%), 273
(41%), 74 (100%).

APPLICATION OF LABELED PRECURSORS AND AN ELONGATION
INHIBITOR
Deuterated fatty acids were dissolved in dimethyl sulfoxide
(DMSO) at a concentration of 20 pg/pl, and 1 pl of each solu-
tion was topically applied to the pheromone glands of 2-day-old
virgin females of P. festucae and C. eriosoma 4 h after lights-off.
Pheromone components were extracted from the glands with
hexane 3 h after the application, and the extract was analyzed by
GC-MS under a cyclic scan mode (from m/z 40 to m/z 500) or
a selected ion monitoring (SIM) mode. The quantitative analysis
of labeled and unlabeled compounds was accomplished by peak
areas of [M-60]" ions, referring to calibration curves made with
authentic standards. Five groups of the extract from five females
were used for each treatment.

Conversion of Ds-16:Acid was also examined with the
P. festucae females, which lost their ability for chain elongation
through treatment with an inhibitor, 2-hexadecynoic acid (Wood
and Lee, 1981). The acid was synthesized by an acetylene cou-
pling reaction between 1-pentadecyne and CO; in a similar man-
ner as that reported for the preparation of 2-octadecynoic acid
(Renobales et al., 1986). One microliter of the DMSO solution
of the acid at a 20 ug/pl concentration was topically applied
to each pheromone gland 30 min before treatment with Ds-
16:Acid, and D3-Z5-12:0Ac produced in the gland was quantitated
by GC-MS.

RESULTS

FATTY ACIDS IN THE PHEROMONE GLANDS

Figure 2 shows the GC-MS analysis (total ion chromatogram,
TIC) of FAMEs derived from lipids in the pheromone gland
of P. festucae females. In addition to a large amount of esters
derived from generally observed fatty acids, such as methyl palmi-
tate (V, Rt 13.74 min), stearate (VIII, Rt 15.63 min), and oleate
(IX, Z9-18:Me, Rt 15.89 min), esters of several monoenyl acids
were detected. Methyl (Z)-5-dodecenoate (II, Rt 9.48 min) and

n v VIl IX

vi

N O U

100 120 140 160

Rt (min)

FIGURE 2 | GC-MS analysis (total ion chromatogram, TIC) of fatty acid
methyl esters derived from the lipids in pheromone glands of Plusia
festucae. |, methyl laurate (12:Me); ll, methyl (Z)-5-dodecenoate
(Z5-12:Me); ll, methyl myristate (14:Me); IV, methyl (Z)-7-tetradecenoate
(Z7-14:Me); V, methyl palmitate (16:Me); VI, methyl (2)-9-hexadecenoate
(29-16:Me); VI, methyl (2)-11-hexadecenoate (Z11-16:Me); VIIl, methyl
stearate (18:Me); IX, methyl oleate (Z9-18:Me); X, methyl
(Z)-11-octadecenoate (Z11-18:Me); XI, methyl linoleate (29,212-18:Me); XII,
methyl linolenate (29,212,215-18:Me).

(Z)-7-tetradecenoate (IV, Rt 11.91 min) are expected to be direct
precursors of the pheromone components of Z5-12:0Ac and Z7-
14:0Ac, respectively. The Rts of Il and IV coincided with authentic
standards, and their chemical structures were further confirmed
by mass spectra of DMDS adducts, i.e., characteristic fragment
ions of DMDS adducts of II at m/z 161 and 145 and IV at m/z
189 and 145 revealed the double bond at the 5- and 7-positions,
respectively. This DMDS experiment also confirmed the structure
of other esters of monoenyl acids, methyl (Z)-9-hexadecenoate
(VI, Z9-16:Me, Rt 14.04 min), (Z)-11-hexadecenoate (VII, Z11-
16:Me, Rt 14.20 min), and (Z)-11-octadecenoate (X, Z11-18:Me,
Rt 15.97 min). Among the esters corresponding to the two possible
candidates for a biosynthetic intermediate with a long chain, the
titer of Z9-16:Me was remarkably higher than that of Z11-18:Me.

To understand the characteristic profile of FAMEs in P. festucae,
the contents of C;4 and C;3 monoenyl acids were compared with
those included in pheromone glands of the other two Plusiinae
species, C. eriosoma and A. peponis (Table 1). These two species,
which produce Z7-12:0Ac as a main pheromone component,
included more abundant Z11-16:Me than P. festucae, indicat-
ing All-desaturation of 16:Acid as a key step in their 7-12:0Ac
biosyntheses. On the other hand, while the titer of Z9-16:Me in P.
festucae was lower than those of the two species, the ratio of Z9-
16:Me to Z11-16:Me was notably higher than that of the others.
Both the titer of Z11-18:Me and its ratio to Z9-18:Me in P. festucae
were smaller than those of the other species.

INCORPORATION OF LABELED ACIDS INTO THE P, festucae
PHEROMONE

Figure 3 shows GC-MS analysis (TIC and mass chromatograms)
of the extracts, which were prepared from the glands treated
with deuterated Cj¢ acids. In addition to endogenous Z5-12:0Ac
(Rt 10.63 min) monitored by ions at m/z 166, 138, and 110,
ion peaks of m/z 169, 141, and 113 at 10.58 min suggested
the production of D3-Z5-12:0Ac by the topical application of
Ds3-16:Acid (Figure 3A). In the case of Dj3-Z9-16:Acid, an
ion peak of m/z 179 at 10.47 min suggested the production of
D3-7Z5-12:0Ac (Figure 3B). lon peaks of m/z 151 and 123
at 10.47 min, which were diagnostic for Dj3-Z5-12:0Ac, were
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Table 1 | Composition of monounsaturated fatty acids in the pheromone glands of three Plusiinae species®.

Insect species C16 Acid (methyl ester)

C1g Acid (methyl ester)

Titer (ng/gland)® Ratio® Titer (ng/gland)® Ratio®
Z9-Isomer Z11-Isomer 29/211 Z9-Isomer Z11-Isomer 211/29
(VI, ®7-ene) (VIl, ®5-ene) (07/®w5) (IX, ®9-ene) (X, »7-ene) (07/09)
Plusia festucae 1.65+0.02 0.24+0.13 6.88+2.17° 8.08+2.64 0.17+£0.09 0.024+0.012
Chrysodeixis eriosoma 2.36+0.09 3.27+0.37 0.7240.10P 10.51+0.53 0.48+0.03 0.05+0.01P
Anadevidia peponis 1.97+£0.24 2.59+1.29 0.76 +0.35P 703+ 1.04 0.73+0.30 0.1040.05P

@Fach acid was quantitatively analyzed by GC-MS as a methyl ester; Z9-16:Me W), Z11-16:Me VM), Z9-18:Me (IX), and Z11-18:Me (X) (see Figure 2).

bMean+ SE (n=4).

Values within each test followed by a different letter are significantly different at P < 0.05 by Tukey—Kramer Test.

very small because the fragment ions were also produced by
75-12:0Ac and an unknown component. By treatment with
Ds3-18:Acid and D;3-Z11-18:Acid, the corresponding deuterated
pheromone components were detected in the pheromone gland
extracts. Table 2 shows the titers of unlabeled endogenous and
deuterated exogenous pheromone components. The titers of D3-
75-12:0Ac in the pheromone glands treated with D3-16:Acid
and D3-18:Acid were almost equal. The titers of D;3-Z5-12:0Ac
derived from D;3-7Z9-16:Acid and Dj3-Z11-18:Acid were also
almost equal. The incorporation ratios of D;3-Z9-16:Acid and
D;3-Z11-18:Acid were higher than those of Ds3-16:Acid and
D3-18:Acid.

EFFECT OF 2-HEXADECYNOIC ACID ON PHEROMONE BIOSYNTHESIS
The incorporation of D3-16:Acid and Dj3-Z9-16:Acid was
examined with the P festucae glands pretreated with 2-
hexadecynoic acid. The GC-MS analysis of the pheromone
gland extracts showed the following titers of deuterated
pheromone components and the incorporation ratios; D3-Z5-
12:0Ac (0.25 £ 0.09 ng/gland, 1.5 £ 0.7%, n = 3) from D3-16:Acid
and Dj3-Z5-12:0Ac (0.48 +0.22 ng/gland, 2.0 £0.8%, n=3)
from D;3-7Z9-16:Acid. These values were similar to those in the
glands untreated with the inhibitor (Table 2), indicating that
the chain elongation inhibitor did not affect the pheromone
biosynthesis.

INCORPORATION OF LABELED ACIDS INTO THE C. ERIOSOMA
PHEROMONE

Experiments with labeled acids were also carried out with
C. eriosoma females (Table 2). While D3-16:Acid was converted
into D3-Z7-12:0Ac, the labeled pheromone was not detected in
the pheromone gland treated with D3-18:Acid. Similarly, while
Dy-Z11-16:Acid was converted into Dg-Z7-12:0Ac, the labeled
pheromone was not detected in the pheromone gland treated
with Dg-Z13-18:Acid. The titer of Dg-Z7-12:OAc was higher than
that of D3-Z7-12:0Ac. The incorporation ratio of D3-16:Acid was
about five times higher than that of Dg-Z11-16:Acid.

DISCUSSION

In Lepidoptera, biosynthesis of Type I pheromones has been stud-
ied with several species and the results have proposed the following
pathway operating in pheromone glands; formation of saturated

fatty acyl compounds from acetyl CoA — desaturation — chain
shortening or elongation — reduction of the acyl moiety to a
hydroxyl group — acetylation of alcohols or oxidation to alde-
hydes (Jurenka, 2004). Pheromone glands usually include unsat-
urated fatty acyl intermediates, and they have been detected by
GC-MS analysis of FAMEs from lipids in the glands. For exam-
ple, Z11-16:Me and Z9-14:Me were found in FAMEs derived from
lipids in T. ni females in addition to Z7-12:Me, which possessed
the same chain structure as the main pheromone component (Z7-
12:0Ac; Bjostad and Roelofs, 1983; Roelofs and Bjostad, 1984).
The key step for the biosynthesis in T. ni is A11-desaturation (w5-
desaturation) of 16:Acyl, and Z11-16:Me is the main ester derived
from the pheromone gland lipids. Z11-16:Me was not the longest
one among the esters of monoenoic acids. A trace amount of the
ester of a Cyg acid unsaturated at the w5-position (Z13-18:Me)
was detected and estimated to be produced by chain elongation of
a Z11-16:Acyl intermediate.

On the other hand, a series of acyl intermediates unsaturated
at the w7-position was found in the lipids of the P. festucae
females, which secreted Z5-12:0Ac as a main pheromone com-
ponent (Figure 2). Z9-16:Me is most abundantly included among
the esters unsaturated at the w7-position and the ratio of Z9-
16:Me to Z11-16:Me detected in P. festucae is higher than those
of other Plusiinae species, C. eriosoma and A. peponis (Table 1),
which secrete Z7-12:0Ac as a main pheromone component, as
T. ni does. The data suggest that Z9-16:Acyl, which is produced
by A9-desaturation (w7-desaturation) of 16:Acyl, is a key biosyn-
thetic intermediate of Z5-12:0Ac. The content of Z11-18:Me is
very small in P. festucae, and the ratio of Z11-18:Me to Z9-
18:Me detected in P. festucae was also smaller than those in the
other two Plusiinae species (Table 1). We speculated that Z11-
18:Me might not be derived from a key biosynthetic intermediate
of P. festucae, similarly to Z13-18:Me found in the FAMEs of
T. ni females.

The biosynthetic pathway of Z5-12:0Ac was confirmed by
experiments with labeled fatty acids (Table 2). By topical appli-
cation of D3-16:Acid and Dj3-79-16:Acid, D3-Z5-12:0Ac and
D13-Z5-12:0Ac were respectively produced in the pheromone
glands of P. festucae. The incorporation ratio of D13-Z9-16:Acid
was higher than that of D3-16:Acid, supporting the desaturation
step of 16:Acyl. Moreover, D3-18:Acid and D;3-Z11-18:Acid were
also incorporated into Z5-12:0Ac. The incorporation ratios of
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A 75-12:0A¢
'
D,-Z5-12:0A¢
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FIGURE 3 | GC-MS analysis of pheromone gland extracts of
Plusia festucae females which were treated with D;-palmitic
acid [D;-16:Acid (A)] and D,;-(2)-9-hexadecenoic acid
[D,;-Z9-16:Acid (B)]. The mass chromatograms indicated the

B Z5-12:0Ac
D,;-Z5-12:0Ac

TIC

m/z 110

miz 123

m/z 138

m/z 151

m/z 166

m/z 179

10.0 10.2 104 106 108 Rt (min)

following unlabeled and labeled pheromone components;
Z5-12:0Ac by the ions at m/z 166, 138, and 110, D;-Z5-12:0Ac by the
ions at m/z 169, 141, and 113, and D;5-Z5-12:OAc by the ions at m/z 179,
151, and 123.

Table 2 | Titers of endogenous and exogenous pheromone components in the sex pheromone glands of Plusia festucae and Chrysodeixis

eriosoma females, which were treated with deuterated fatty acids®.

Species Treatment Endogenous component Exogenous component Incorporation ratio
(%)€ [Y)/[X] x 100
Structure Titer [X] (ng/gland)? Structure Titer [Y] (ng/gland)P

P festucae D3-16:Acid 75-12:0Ac 15.6 £8.0 D3-Z5-12:0Ac 0.22+0.05 1.4+£0.5°
D3-18:Acid 75-12:0Ac 18.8+8.8 D3-75-12:0Ac 0.23+0.06 1.2+0.42
D43-29-16:Acid 75-12:0Ac 28.0+12.4 D13-25-12:0Ac 0.59+0.16 2.140.20
D13-Z211-18:Acid 75-12:0Ac 216+4.4 D13-25-12:0Ac 0.56+0.07 2.6+0.6°

C. eriosoma D3-16:Acid Z7-12:0Ac 102 +49 D3-Z7-12:0Ac 29+14 2.9+0.5°
D3-18:Acid 727-12:0Ac 141 +58 D3-27-12:0Ac Undetected 0
Dg-Z11-16:Acid 77-12:0Ac 179480 Dg-Z7-12:0Ac 25.0+9.9 14.0£4.2°
Dg-Z13-18:Acid 77-12:0Ac 131 +47 Dg-Z7-12:0Ac Undetected 0

aEach acetate was quantitatively analyzed by GC-MS.
*Mean+ SE (n=3).

*Values within each species followed by a different letter are significantly different at P< 0.05 by Tukey—Kramer Test.

D3-16:Acid and D3-18:Acid were not significantly different, and
those of D;3-Z9-16:Acid and Dj3-Z11-18:Acid are also similar.
These results indicate that the above speculation for Z11-18:Me is
incorrect. The very low content of Z11-18:Me suggests the rapid
p-oxidation of Z11-18:Acyl. Thus, we concluded that not only A9-
desaturation of 16:Acyl but also Al1-desaturation of 18:Acyl are
at work in the pheromone biosynthesis in the P. festucae females,
as shown in Figure 4, if D3-16:Acid is not easily converted into
Ds3-18:Acid in the pheromone glands. Since this chain elongation
seems to be a common reaction, we examined the incorpora-
tion of D3-16:Acid using females pretreated with 2-hexadecynoic
acid. This acetylene compound is a known inhibitor of chain
elongation of 16:Acid (Wood and Lee, 1981). The inhibitor did
not affect the incorporation in P. festucae, indicating that Ds-
16:Acid was desaturated without elongation and D3-Z9-16:Acid
produced from Dj3-16:Acid was converted into D3-Z5-12:0Ac
(Figure 4).

As a comparative study, the biosynthesis of Z7-12:0Ac in C.
eriosoma was examined with labeled fatty acids (Table 2). The
incorporation ratios of the deuterated C;s acids demonstrated
the All-desaturation of 16:Acyl as a key step similar to T.
ni and other Plusiinae species (Komoda et al., 2000). On the
contrary, deuterated Cjg acids were not incorporated into the
pheromone. Chain shortening of the C;g acids did not pro-
ceed in the pheromone gland of C. eriosoma, and it was inter-
estingly revealed that the P-oxidation systems of P. festucae
and C. eriosoma were different. The ability of B-oxidation of
the Cjg chain is not necessary for the C. eriosoma females
and the inability might fit their pheromone biosynthesis. The
silkworm (Bombyx mori) secreted Cjs dienyl alcohol (bom-
bykol) as a sex pheromone. Among a series of labeled fatty
acids with a saturated C;3-C;g chain, only 16:Acid was reli-
ably incorporated into the bombykol (Ando et al., 1986). The
other free acids did not enter into the biosynthetic pathway of
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bombykol. Although it is difficult to generalize, chain short-
ening and elongation of exogenous free acids do not seem to
happen easily in the B. mori females. If the enzymes in the
pheromone glands of P. festucae perform only a minimum nec-
essary function, our experiment with the labeled acids clearly
revealed their contribution to both types of desaturation in
pheromone production.

In Plusiinae, Thysanoplusia intermixta females secrete a mix-
ture of Z7-12:0Ac and (5E,7Z)-5,7-dodecadienyl acetate (E5,Z7-
12:0Ac) for mating communication (Ando et al., 1998). The
biosynthesis of the dienyl component was also investigated with
several deuterated acids (Ono et al., 2002). While the double bond
at the 5-position in the monoenyl pheromone of P. festucae is
introduced at an early stage of the biosynthesis, probably just
after construction of Cj¢ and C;s saturated fatty acids, desat-
uration at the same position in the dienyl pheromone of T.
intermixta is achieved on Z7-12:Acyl, which is produced by A11-
desaturation of 16:Acyl and p-oxidation of the produced Z11-
16:Acyl intermediate. This A5-desaturation is, in other words,
w7-desaturation. Some species in Plusiinae secrete pheromone
components produced by w3-desaturation, such as Z9-12:0Ac
of C. eriosoma and Z7-10:0Ac of Diachrysia chrysitis (Lofst-
edt et al.,, 1994). In these species, Al3-desaturation of 16:Acyl
and All-desaturation of 14:Acyl might proceed. Experimen-
tal proof for the actual substrate of w3-desaturase is antici-
pated.

Whereas some Plusiinae species produce more than 10 com-
ponents, only two or three compounds are essential for male
attraction. Based on the chemical structures of these primary com-
ponents, we have classified Plusiinae pheromones into nine groups
(Ando et al., 2004; Inomata et al., 2005). All monoenyl compo-
nents include the double bond at the w3-, w5-, or w7-position;
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