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A large body of evidences have shown that both the IGF-I receptor (IGF-IR) and the insulin
receptor (IR) play a role in cancer development and progression. In particular, IR overacti-
vation by IGF-II is common in cancer cells, especially in dedifferentiated/stem-like cells. In
spite of these findings, until very recently, only IGF-IR but not IR has been considered a tar-
get in cancer therapy. Although several preclinical studies have showed a good anti-cancer
activity of selective anti-IGF-IR drugs, the results of the clinical first trials have been disap-
pointing. In fact, only a small subset of malignant tumors has shown an objective response
to these therapies. Development of resistance to anti-IGF-IR drugs may include upregula-
tion of IR isoform A (IR-A) in cancer cells and its overactivation by increased secretion of
autocrine IGF-II. These findings have led to the concept that co-targeting IR together with
IGF-IR may increase therapy efficacy and prevent adaptive resistance to selective anti-IGF-
IR drugs. IR blockade should be especially considered in tumors with high IR-A:IGF-IR ratio
and high levels of autocrine IGF-II. Conversely, insulin sensitizers, which ameliorate insulin
resistance associated with metabolic disorders and cancer treatments, may have impor-
tant implications for cancer prevention and management. Only few drugs co-targeting the
IR and IGF-IR are currently available. Ideally, future IR targeting strategies should be able to
selectively inhibit the tumor promoting effects of IR without impairing its metabolic effects.
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INTRODUCTION
Several studies have convincingly shown that the insulin receptor
(IR) pathway is more directly and intimately involved in cancer
development and progression than previously thought. Overac-
tivation of this pathway by both insulin and IGF-II is common
in cancer cells, particularly in dedifferentiated/stem-like cells, and
may represent an important factor of resistance to various anti-
cancer drugs (Papa et al., 1990; Belfiore, 2007). Dysregulated
expression of the IR isoform A (IR-A), which binds IGF-II with
high affinity, has a crucial role in these mechanisms. Moreover,
it has been shown that overactivation of the IGF-II/IR-A loop in
cancer cells may represent a mechanism of adaptive resistance to
anti-IGF-I receptor (anti-IGF-IR) drugs (Garofalo et al., 2011).

Oddly enough, type 2 diabetes mellitus (T2DM), a com-
mon disorder associated with insulin resistance (i.e., reduced
glycometabolic effects of insulin), may also contribute to the
unbalanced activation of the mitogenic effects of insulin through
compensatory hyperinsulinemia (Jiang et al., 1999; Cusi et al.,
2000). Accordingly, T2DM and other conditions associated with
insulin resistance, such as obesity and metabolic syndrome, are
now recognized as important risk factors for the development and
progression of a variety of malignancies (Strickler et al., 2001;
Kaaks and Lukanova, 2002; Vainio et al., 2002; Coughlin et al.,
2004; Vigneri et al., 2006; Fair et al., 2007; Pisani, 2008).

Therefore, the IR pathway, traditionally representing the focus
of antidiabetic therapies, has rapidly gained attention as a novel
target in cancer. Learning how to exploit these new concepts for
cancer prevention and therapy constitutes an important chal-
lenge. As far as therapy is concerned, we face the dilemma of how

inhibiting the mitogenic IR pathway in cancer patients while min-
imizing or avoiding deterioration of the IR glucometabolic effects,
which are of crucial importance for the normal functions of the
entire organism.

The present review will focus on recent advances and new
challenges in this rapidly evolving field.

IR AND CANCER
IR STRUCTURE AND SIGNALING
The insulin and the insulin-like growth factors I and II (IGF-I and
IGF-II) signaling is mediated by hormone interaction with cog-
nate tyrosine kinase receptors, IR and IGF-IR. Although these two
receptors are highly homologous and are coupled to very similar
intracellular substrate networks, in normal adult tissues insulin
and IGFs stimulate specific functions, such as glucose metabolism
for insulin and cell growth and proliferation for IGFs. However,
in particular conditions, such as cancer, this signaling specificity
is partially lost and both receptors may share similar biological
functions. As the shared signaling pathway has an important role in
cancer development and progression, both receptors have emerged
as targets for cancer therapy.

Insulin receptor and IGF-IR are protein tyrosine kinases that
belong to the IGF system and regulate many crucial aspects of
cellular physiology (Ebina et al., 1985; Ullrich et al., 1985; Drakas
et al., 2004). Both receptors are products of two distinct genes,
which are believed to derive from a common ancestral gene
through a duplication event. Reflecting this common heritage, IR
and IGF-IR share a high degree of homology (Ullrich et al., 1985,
1986). Indeed, both receptors are expressed at the cellular surface
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in α2β2 configuration. The α subunit of each receptor contains
the ligand binding sites, usually located at a cysteine-rich domain
on the extracellular region (Andersen et al., 1995; Whittaker and
Whittaker, 2005). In both receptors, the α subunit contains also
a 16-aminoacid residue C-terminal sequence (CT peptide) that
contributes to ligand binding. Contiguous to the IR CT peptide, a
12-aminoacid sequence (encoded by exon 11 of IR gene, which is
alternatively spliced) is either excluded or included giving rise to
isoform A (IR-A) or isoform B (IR-B), respectively (Moller et al.,
1989; Mosthaf et al., 1990).

The β subunits of IR and IGF-IR include a large cytoplasmic
region with tyrosine kinase activity. This region is the most con-
served domain in IR and IGF-IR, showing approximately 85%
similarity at the aminoacid level. The most structurally and func-
tionally divergent region between the two receptors is the cytoplas-
mic carboxy-terminal domain within the intracellular β subunit.
It shows three phospho-tyrosine residues in the IGF-IR, while two
phospho-tyrosines are present in the corresponding region of the
IR (Figure 1). This domain appears to mediate the transforming
and differentiative response to IGF-IR but not its mitogenic or
anti-apoptotic actions (Miura et al., 1995; O’Connor et al., 1997).
Conversely, in IR, this region seems to mediate the mitogenic but
not the metabolic functions (Faria et al., 1994).

As a consequence of the high level of homology of the two
receptors, hybrid receptors (HRs) formed by an IR (IR-A or IR-
B) αβ-hemireceptor and an IGF-IR αβ-hemireceptor (HR-A and
HR-B, respectively) are also expressed in all tissues co-expressing
IR and IGF-IR (Ullrich et al., 1986).

Insulin receptor, IGF-IR, and HRs bind the same ligands
(insulin, IGF-I, and IGF-II), although with very different affinities

FIGURE 1 | Structure of IR and IGF-IR and autophosphorylation sites.

The ligand binding sites of both receptors are predominantly located at a
cysteine-rich region (CR) in the extracellular α-subunit. The homology
between IR and IGF-IR in this region ranges 45–65%. The CT peptide in the
α-subunit contributes to the binding properties of both receptors. In IR the
hatched fragment on the bottom of the CT region is encoded by exon 11
and is present in IR-B isoform but not in IR-A. The tyrosine kinase domain
(TK) in the β-subunit is highly conserved showing 85% of similarity
between both receptors. The most divergent region is the C-terminal
domain (C-tail). JM, juxtamembrane domain; TM, trans-membrane domain.

(Table 1). Upon ligand binding, receptors become autophos-
phorylated on conserved tyrosine residues and activate similar
intracellular signaling events. Tyrosine kinase domains within the
β-subunit of both IR and IGF-IR catalyze the phosphorylation of
specific substrates, such as the members of IR substrates fam-
ily (IRS-1 to IRS-4), Gab-1, Cbl, and Shc. Following tyrosine
phosphorylation, IRS proteins interact with GRB2 (growth factor
receptor binding protein 2) and with the p85 regulatory subunit
of phosphoinositide 3-kinase (PI3K). PI3K, in turn, regulates the
activation of Akt via the phosphoinositide-dependent kinase 1
(PDK1). Akt activation is crucial in mediating metabolic effects by
regulating metabolic enzymes, but also in mediating cell growth,
proliferation, and survival (Hers et al., 2011).

Another pathway regulated by PI3K/Akt is the mammalian tar-
get of rapamycin (mTOR) pathway, which also has a central role in
cell growth and metabolism (Hay and Sonenberg, 2004; Sarbassov
et al., 2005). Downstream to mTOR, both p70S6K and 4EBP1
control mRNA translation and protein synthesis. The PI3K/Akt
pathway is negatively regulated by the lipid phosphatase PTEN
(phosphatase and tensin homolog), which dephosphorylates PI3K
and inhibits cell growth and cell cycle progression through its inter-
action with cyclin D (Stambolic et al., 1998; Blanco-Aparicio et al.,
2007). PTEN is the second most common tumor suppressor gene
mutated in human cancer and the loss of its activity induces an
increase in IR and IGF-IR signaling (Perks et al., 2007).

The second major signaling pathway downstream to IR and
IGF-IR involves Ras, a GTP-binding protein, which cycles from
the active (GTP-bound) to the inactive (GDP-bound) form. By
binding to GRB2, IRS proteins couple GRB2 to IR or IGF-IR. Once
associated with IRS proteins, GRB2 forms a complex with the Son
of Sevenless (SOS) p21Ras. This event triggers the translocation
of SOS to plasma membrane and activation of serine/threonine
phosphorylation events that propagate insulin and IGFs signal
through the Ras/Raf/MEK/ERK cascade. Activated ERK1/2 phos-
phorylate proteins in the cytosol (such as p90 ribosomal S6 kinases,
RSKs; Roux and Blenis, 2004) and also translocate to the nucleus
where they ultimately regulate important cellular processes includ-
ing gene expression, cell motility, cell proliferation, cell survival,
differentiation, and death (Ceresa and Pessin, 1998; Brunet et al.,
1999; Roux and Blenis, 2004). A schematic representation of the

Table 1 | Relative ligand binding affinity of IR isoforms, IGF-IR, and HRs

containing either IR-A (HR-A) or IR-B (HR-B) moieties.

Receptor Insulin IGF-II IGF-I Reference

IR-A ++++ +++ +/++ Yamaguchi et al. (1993), Frasca et al.

(1999), Benyoucef et al. (2007)

IR-B ++++ +−/+ − Yamaguchi et al. (1993), Frasca et al.

(1999), Benyoucef et al. (2007)

IGF-IR − +++/

++++
++++ Pandini et al. (2002), Denley et al.

(2004), Benyoucef et al. (2007)

HR-A −/++ +++/

++++
+++/

++++
Pandini et al. (2002), Slaaby et al.

(2006), Benyoucef et al. (2007)

HR-B − ++/

++++
+++ Pandini et al. (2002), Slaaby et al.

(2006), Benyoucef et al. (2007)
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main signaling pathways activated by both IR and IGF-IR is shown
in Figure 2.

THE IR/IGF-IR SIGNALING PATHWAY AND ITS INVOLVEMENT IN
CANCER
It is commonly accepted that insulin primarily mediates metabolic
effects through IR and PI3K pathway activation, whereas IGFs
mainly regulate growth processes through IGF-IR and mitogen-
activated protein kinase (MAPK) signaling, which includes
ERK1/2 (Nakae et al., 2001). Although this scheme may look
simplistic, a complex and highly integrated network containing
several points of regulation, signal divergence as well as overlap
and crosstalk with other signaling cascades are involved in insulin
and IGFs signaling. For example, the MAPK and PI3K path-
ways are interconnected and both converge on the mTOR/p70S6K
axis, a crucial mediator of cell growth, survival and metabolism
(Figure 2).

As previously mentioned, in physiological conditions and in
adult life, IR and IGF-IR biological functions are distinct (Nakae
et al., 2001). Whereas IR plays a key role in the regulation of a

FIGURE 2 | Schematic diagram of IR and IGF-IR signaling. IR, IGF-IR,
and Hybrid receptors (HR) induce the phosphorylation of IRSs proteins after
binding to their ligands (insulin and IGFs). Activated IRSs trigger the
activation of two intracellular signaling networks: Ras/Raf/Mek/Erk and PI3K
pathways. The first one is mainly involved in mediating the mitogenic effect
of insulin and IGFs, while the PI3K pathway, via Akt, mediates both
metabolic and cell growth responses. The Akt-mediated metabolic effects
are induced by the activation of enzymes involved in gluconeogenesis,
glucose uptake, protein synthesis, and lipogenesis, whereas the cell
growth responses are mainly induced by the mTOR pathway.

variety of metabolic functions, the IGF-IR has mainly a growth
regulation function.

The molecular mechanisms involved in regulating signaling
specificity between these two receptors are only partially under-
stood and include: tissue-specific receptor expression, different
ligand binding affinity and kinetics, different regulation in ligand
secretion and bioavailability, differential expression and function
of IR isoforms and HRs, differential abundance and sub-cellular
distribution of signaling substrates.

However, in cancer IR/IGF-IR signaling is often deregulated
with consequent loss of signaling specificity and overlap between
IR and IGF-IR actions. The stimulation of two main intracellu-
lar cascades common to both receptors (i.e., the PI3K/mTOR and
the MAPK cascades) may also become unbalanced with the con-
sequent amplification of mitogenic signals. Various mechanisms
may account for the disruption of the physiological specificity
in IR and IGF-IR signaling. Cancer cells often overexpress both
IGF-IR and IR, the latter being predominantly expressed as IR-A.
IR-A contributes to the amplification of IGFs signaling by directly
binding IGF-II and, to a lesser extent, IGF-I (Papa et al., 1990;
Frasca et al., 1999; Vella et al., 2002; Samani et al., 2007; Belfiore
and Frasca, 2008), and also by increasing the formation of HRs,
which bind both IGF-I and IGF-II with high affinity (Table 1;
Pandini et al., 1999). Moreover, cancer cells produce IGFs in
an autocrine/paracrine manner (Samani et al., 2007). Lastly, a
chronic increase in circulating insulin levels resulting from insulin
resistance may affect cancer growth and progression through a
prevalent activation of IR signaling along the mitogenic pathway
and by increasing IGF-I bioavailability (Strickler et al., 2001; Kaaks
and Lukanova, 2002; Vainio et al., 2002; Vigneri et al., 2009).

Therefore, in cancer cells, the IR may stimulate more strongly
the protumoral responses rather than the metabolic effects thus
contributing to induce resistance to various anti-cancer therapies.

IR AND IGF-IR: TWO DIFFERENT TEAM PLAYERS IN CANCER?
As mentioned before, the main signaling pathways activated by
IR and IGF-IR are very similar and interconnected. However, one
may ask the question whether the IR role in cancer is unique or just
overlaps with that of IGF-IR. A clear answer is not available yet,
although several pieces of evidences suggest that the IR and IGF-IR
are rather two different team players in cancer biology. Indeed, the
two receptors may selectively phosphorylate different substrates
or the shared substrates may be phosphorylated at different sites.
Moreover, specific and different protein–protein interactions with
both receptors may occur (Table 2; Kim and Accili, 2002). For
example, carcinoembryonic antigen-related cell adhesion mole-
cule 2 (CEACAM-2), a cell surface molecule that is involved in
receptor trafficking, appears to be a preferential substrate of IR
and not of IGF-IR (Najjar et al., 1997). Similarly, mitotic arrest
deficient 2 (MAD2), a cell cycle regulator, interacts with IR but
not with IGF-IR (O’Neill et al., 1997). In contrast, c-Crk proto-
oncogene (an adapter protein belonging to the Ras pathway) as
well as 14-3-3 (a scaffolding protein involved in apoptosis) and IIP-
1 (a protein involved in cell motility) specifically bind IGF-IR but
not IR (Craparo et al., 1997; Furlanetto et al., 1997; Ligensa et al.,
2001). Yet, the adapter protein Growth factor receptor-bound pro-
tein 10 (Grb-10), although phosphorylated by both IR and IGF-IR,
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Table 2 | Principal substrates found to be differentially involved by IR and IGF-IR activation and that may have a role in functional specificity of

these two receptors.

Molecules Functions Reference

IRSs Docking proteins Rakatzi et al. (2006)

Gai G-protein, signal transduction Dalle et al. (2001)

Gαq/11 G-protein, signal transduction Imamura et al. (1999), Dalle et al. (2001)

Grb-10 Adapter protein Laviola et al. (1997)

Grb-14 Adapter protein Bereziat et al. (2002)

C-terminal Src Protein tyrosine kinase, growth, differentiation, adhesion Arbet-Engels et al. (1999)

CEACAM-2 Trafficking, cell adhesion Soni et al. (2000)

FAK Cell adhesion, cytoskeleton structure Baron et al. (1998)

α-5 Integrin Cell adhesion Palmade et al. (1994), Pillay et al. (1995)

MAD2 Cell cycle regulator O’Neill et al. (1997)

14-3-3 Scaffolding protein, chaperon, apoptosis regulator Craparo et al. (1997)

CrkII and CrkL Adaptor proteins, transformation Beitner-Johnson and LeRoith (1995)

IIP-1 Cell motility Ligensa et al. (2001)

c-Abl Tyrosine kinase, adhesion, differentiation, cell division Frasca et al. (2007)

Farnesyltransferase p21Ras farnesylation Goalstone et al. (1997), Solomon and Goalstone (2001)

RACK-1 Scaffolding protein Kiely et al. (2005)

Vav3 Nucleotide exchange factors Zeng et al. (2000)

p85 Subunit of PI3K Regulatory subunit of PI3K, metabolism, proliferation Tartare-Deckert et al. (1996)

Twist Apoptosis, differentiation Dupont et al. (2001)

Heparin-binding epidermal

growth factor-like growth factor

Proliferation Mulligan et al. (2002)

seems to interact differently with the two receptors (Laviola et al.,
1997; He et al., 1998; Table 2).

Furthermore, gene expression studies suggest that IR and IGF-
IR differentially regulate genes involved in the control of prolif-
eration, apoptosis, differentiation, and cell adhesion. For example
IGF-IR, but not IR, induces the expression of twist, a gene regulat-
ing the apoptotic process as well as the cell invasion and metastasis
(Dupont et al., 2001). The two receptors may act differently toward
α-5 integrin and focal adhesion kinase (Fak). In particular IGF-IR
causes α-5 integrin upregulation and Fak phosphorylation (Pal-
made et al., 1994), while IR induces α-5 integrin downregulation
and Fak dephosphorylation (Pillay et al., 1995; Table 2). Further-
more, it has been found that IGF-IR forms a ternary complex
with α-5 integrin and E-cadherin (Canonici et al., 2008). This
crosstalk between the IGF-IR and cell adhesion molecules could
be of importance in sustaining alterations in cell adhesion and
mobility that occur during the epithelial–mesenchymal transi-
tion (EMT) and cancer metastasis. A direct role in EMT has been
described for IGF-IR and involves the activation of NF-kB, Snail,
SLUG, and ZEB-1/2 transcription factors (Chua et al., 2007; Kim
et al., 2007b; Sivakumar et al., 2009). The possible role of IR in
EMT has not been validated yet. However, recent evidences high-
light a novel role for IRS-1 and IRS-2 in the regulation of EMT
process (Shi et al., 2009).

A unique feature of IR is the promotion of the phosphoryla-
tion and activation of farnesyltransferase, an enzyme responsible
for p21Ras farnesylation. Farnesylation of Ras protein is essential
for its translocation to the plasma membrane and subsequent acti-
vation by the various growth factors. Since the activation of the
Ras pathway mediates cellular mitogenic responses, the effect of

insulin in increasing the pool of farnesylated p21Ras amplifies the
mitogenic effects of insulin itself and other growth factors, such as
IGF-I. This mechanism could explain the exaggerated mitogenic
response to growth factors in patients with high levels of circulat-
ing insulin (Goalstone et al., 1997; Solomon and Goalstone, 2001;
Table 2).

To better understand the functional differences and overlaps
between IR and IGF-IR, cell lines derived from mice lacking
IR or IGF-IR have been used. In mouse fibroblasts deprived
of endogenous IGF-IR (R-cells), IGF-IR but not IR showed a
unique permissive effect on cell transformation (Sell et al., 1994;
Valentinis et al., 1997). However, in NIH3T3 fibroblasts IR over-
expression increases cell proliferation, chemotaxis, and induces a
ligand-dependent transformed phenotype (Giorgino et al., 1991).

IR ISOFORM A: A GATEWAY TO THE CROSSTALK BETWEEN THE IR AND
THE IGF-IR PATHWAY
The generation of IR isoforms and their specific tissue distribu-
tion represents a link between the IR and the IGF-IR pathway. The
IR-A is predominant in the fetal life while the IR-B predominates
in most adult and differentiated tissues. Both IR isoforms may
be overexpressed in cancer, but usually IR-A is the predominant
subtype accounting for 60–100% of total IR. As already men-
tioned, the two isoforms show different ligand binding affinity.
IR-A is a high-affinity receptor not only for insulin but also for
IGF-II (Frasca et al., 1999) and IGF-I (Denley et al., 2007; Sacco
et al., 2009), while IR-B may be considered a specific receptor for
insulin (Table 1). Because of these differences in ligand affinity,
kinetics of activation and trafficking, IR-B is preferentially associ-
ated with metabolic and differentiating signals. In contrast, IR-A
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mainly favors cell growth, proliferation, and survival. Given that
IR-A binds IGF-II with similar affinity than IGF-IR (Frasca et al.,
1999), in cells that express both receptors, IGF-II exerts its biolog-
ical effects through both receptors according to their molar ratio.
Thus, in cancer tissues showing a high IR-A:IGF-IR ratio, IGF-II
mainly signals via the IR-A.

In contrast, IGF-I binds with high affinity to the IGF-IR and
HRs but with much lower affinity to the IR-A (Frasca et al., 1999;
Table 1). However, IGF-I may activate intracellular signaling and
stimulate mitogenesis in IR-A overexpressing cells (Sacco et al.,
2009). It is worth noting that HRs containing IR-A (HR-A) or
IR-B (HR-A) moieties may differ for binding affinity (Table 1).
The potential implications of HRs in cancer have been recently
reviewed (Belfiore, 2007; Belfiore et al., 2009a).

Several evidences suggest that intracellular signals and biolog-
ical effects mediated by IR-A in response to IGFs are partially
different from those elicited by insulin. Studies conducted in vitro
using mouse fibroblasts expressing only IR-A but not IGF-IR
(R-/IR-A cells), have shown that IGF-II induces more potent
mitogenic effects than insulin itself (Frasca et al., 1999). Yet, in
human rhabdomyosarcoma cells expressing almost only IR-A and
lacking functional IGF-IR, IGF-II is more potent than insulin in
inducing migration (Sciacca et al., 2002). Global gene expression
studies performed in R-/IR-A cells have confirmed that certain
genes are differentially regulated by IGF-II and insulin (Pandini
et al., 2003). Similarly, proteomics analysis revealed that several
proximal effectors of the IR-A are selectively and differentially
recruited by IGF-II or insulin (Morcavallo et al., 2011). The mol-
ecular mechanisms responsible for the potent mitogenic action
exerted by IGF-II binding to IR-A are incompletely understood.
In R-/IR-A cells IGF-II elicits unbalanced intracellular signaling
as compared to insulin by favoring the activation of p70S6K and
ERK rather than Akt activation (Sacco et al., 2009). This specific
signaling pattern appears to involve a preferential activation of
IRS-2 rather than IRS-1 and a reduction in the activation of nega-
tive feedbacks (Sacco et al., 2009). Furthermore, IR-A activation by
IGF-II may differentially affect substrate recruitment to the recep-
tor and receptor internalization and trafficking. The importance
of isoform balance and IR-A/IGF-II loop in cancer has been also
highlighted by studies conducted in stem/progenitors cells. These
cells may undergo transformation and become cancer stem cells
(CSC) through a dysregulation of the self-renewal program. CSC
may drive tumor growth, progression and spread and be respon-
sible for resistance to conventional anti-cancer therapies (Wicha
et al., 2006). In human embryonic stem (ES) cells, it has been seen
that self-renewal and pluripotency properties depend on IGF-II
production by ES-cell-derived fibroblast-like cells that act as stem
cell niche (Bendall et al., 2007). Consistent with these findings,
we have recently found that IGF-II production by thyroid prog-
enitor cells influence their self-renewal capacity. Furthermore, we
have found that IR and IGF-IR were expressed at high levels in
thyrospheres and markedly decreased in differentiated cells. IR-A
was the predominant isoform in thyroid stem cells and its relative
abundance was associated with characteristics of stemness and
cancer, while a decrease in IR-A:IR-B ratio was associated with cell
differentiation (Malaguarnera et al., 2011). Although the molecu-
lar mechanisms by which stemness and differentiation programs

are influenced by IR isoforms, IGF-IR, and IGFs, are still unclear,
it is undoubted that this emerging scenario will have important
implication for cancer prevention and therapy.

THE IR PATHWAY AS A CANDIDATE TARGET FOR CANCER
PREVENTION AND THERAPY
VALIDATION OF IR AS A THERAPEUTICAL TARGET IN PRECLINICAL
MODELS: IN VIVO AND IN VITRO STUDIES
A large body of evidences have demonstrated the importance of
IR expression and chronic hyperinsulinemia in cell transforma-
tion and tumor development. Studies conducted in obese Zucker
(fa/fa) rats, as well as in insulin-resistant patients (Jiang et al.,
1999; Cusi et al., 2000), have shown that insulin resistance and
hyperinsulinemia may cause abnormal stimulation of mitogenic
intracellular signaling and increased cell proliferation and migra-
tion in spite of selective attenuation of the PI3K pathway and
impaired glucose homeostasis. The first animal model linking
insulin and cancer was a model of chemically induced colon tumor
in rats, where the injection of insulin enhanced tumorigenesis
whereas calorie restriction and low fat diet exerted a protective
role (Steinbach et al., 1993; Tran et al., 1996; Corpet et al., 1997).
In a different model of rat breast cancerogenesis, the induction
of insulinopenic diabetes completely prevented mammary tumor
formation or caused a rapid regression of established tumors
(Heuson and Legros, 1972).

Recent studies carried out in transgenic type 2 diabetic mice
(MKR) have confirmed and extended these findings. In MKR
mice severe hyperinsulinemia affected breast cancer progression
and tumor burden both of which were blocked by IR signaling
inhibition with either an IR/IGF-IR tyrosine kinase inhibitor or
by decreasing insulin circulating levels by the administration of
a β3 adrenergic receptor agonist (Fierz et al., 2010; Novosyadlyy
et al., 2010). In accordance with these findings, after implanta-
tion of Met-1 breast cancer cells into mice, the downregulation
of IR signaling by short hairpin (sh)RNA prevented tumor for-
mation (Novosyadlyy et al., 2009). Similarly, the downregulation
of IR by shRNA inhibited anchorage independent growth of both
LCC6 and T47D cells and tumor growth, angiogenesis and lym-
phangiogenesis in animals after LCC6 cells xenograft. LCC6-shIR
cells formed fewer pulmonary metastases compared to LCC6 wild
type cells, even in presence of functional IGF-IR. The concept
that insulin may induce tumor development is reinforced from
the finding that insulin AspB10 (X-10), an insulin analog never
used in the clinical setting, is associated with increased occurrence
of mammary tumors in rats and β-cell proliferation in transgenic
mice (Drejer, 1992; Vincent et al., 1995). After those findings, other
synthetic insulins, some of them used in T2DM therapy, have been
evaluated for their mitogenic activity. In vitro studies conducted on
this issue have shown that some of these insulin analogs (in partic-
ular glargine and detemir) are more potent than native insulin in
inducing proliferative effects, probably because of a higher affinity
for IGF-IR and preferential activation of mitogenic ERK pathway
(Kurtzhals et al., 2000; Mayer et al., 2008). Clinical studies have
so far focused the attention on cancer risk in diabetic patients
using the long acting analog glargine. Three retrospective stud-
ies published in 2009 have suggested a possible increase in cancer
risk in diabetics treated with glargine as compared to those treated
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with native insulin (Colhoun, 2009; Hemkens et al., 2009; Jonasson
et al., 2009). A fourth study, instead, found an increased cancer risk
for patients treated with all insulin preparations, with no difference
with those treated with glargine (Currie et al., 2009). An indepen-
dent analysis from all these studies have concluded that glargine
does not carry any additional cancer risk as compared with other
insulins (Pocock and Smeeth, 2009). Other recent studies have
confirmed the lack of association between glargine use and cancer
(Morden et al., 2011; Ruiter et al., 2011). Furthermore, glargine,
when administered in vivo, is rapidly metabolized to M1 and M2
compounds with a mitogenic:metabolic ratio similar to that of
native insulin (Sommerfeld et al., 2010). Overall these data indi-
cate that glargine safety profile is similar to that of other insulins.
Furthermore, in clinical setting, native insulin itself, at least in
particular conditions, may be associated to increased risk of can-
cer. However, it is important to note that insulin analogs may
interact differently with the two IR isoforms and/or with IGF-IR
and/or IR/IGF-IR hybrids. Therefore, their metabolic:mitogenic
ratio should be accurately investigated in order to assure a safe pro-
file of the new insulin analogs. More details regarding this topic will
be extensively discussed in a different chapter of this special issue.

TARGETING THE IR PATHWAY DYSREGULATION FOR CANCER
PREVENTION
As mentioned before, the long-term exposure to hyperinsulinemia
consequent to insulin resistance provides a link between diabetes,
obesity, and cancer. Therefore, one may expect that insulin sensi-
tizers, used as antidiabetic drugs, by lowering insulin levels, may
correct the dysfunctional IR signaling associated with hyperinsu-
linemia thus contributing to prevent cancerogenesis. Biguanides
and thiazolidinediones (TZDs) are the two classes of insulin
sensitizers studied so far.

Metformin, the only biguanide used in the clinical setting, has
shown encouraging antitumor effects and long-term safety profile.
Although the mechanisms underlying the antineoplastic activ-
ity of metformin are not yet clearly defined, several studies have
reported that this drug targets the complex I in mitochondrial
electron transport chain, impairing ATP production. This event
triggers the activation of 5′ adenosine monophosphate-activated
protein kinase (AMPK), a component of a complex regulatory
network (LKB1/AMPK/mTOR/Akt) involved in the control of
cellular energy homeostasis and cell size. The activation of the
LKB1/AMPK pathway causes downregulation of gluconeogenesis
in the hepatocytes and consequent reduction in blood glucose
and insulin levels. Furthermore, through the inhibition of the
mTOR/AKT pathway, metformin negatively affects cell growth
(Shaw et al., 2004; Zakikhani et al., 2006; Alimova et al., 2009).
Thus, metformin has a dual negative impact on IR-driven cancer
cells, not only through its insulin-lowering action but also through
a direct inhibition of IR mitogenic signaling. These actions are
shared with other AMPK activators, such as caloric restriction
and physical exercise, both powerful physiological inhibitors of
tumorigenesis.

Evidences from animal models have supported the potential
of metformin to reduce tumor development and progression
(Schneider et al., 2001; Hawley et al., 2003; Tomimoto et al., 2008;
Hosono et al., 2010; Johnson and Bowker, 2010; Zhu et al., 2011).

Most importantly, observational clinical studies have shown a sub-
stantial decrease in cancer risk in T2DM patients exposed to met-
formin as compared with those taking other treatments (Johnson
et al., 2002; Bowker et al., 2006; Monami et al., 2009). In par-
ticular, a retrospective cohort study of T2DM patients exposed to
metformin in monotherapy or in combination with other glucose-
lowering therapies, including insulin, has shown that insulin users
were more likely to develop solid tumors, especially colorectal
(hazard ratio, HR = 1.69) or pancreatic cancers (HR = 4.63) than
those taking metformin in monotherapy. Moreover, combination
therapies containing metformin plus insulin were associated with
a lower cancer risk (HR = 0.54; Currie et al., 2009). These data have
been supported by a recent retrospective cohort study conducted
in diabetic patients showing a lower cancer related mortality risk in
the metformin group (HR = 0.56) as compared with insulin users
(HR = 1.56; Bo et al., 2011). Further support for a metformin role
in breast cancer prevention has been provided by a population-
based case–control study in which metformin use was associated
with a reduced cancer risk (HR = 0.77; Bosco et al., 2011).

In light of these promising observations, two pilot clinical tri-
als are currently being conducted in non-diabetic women with
the purpose to evaluate the possible impact of metformin in
affecting breast cancer growth and/or progression (clinical trials:
NCT00897884, NCT01101438).

TZDs, the second class of insulin sensitizers available for clin-
ical use, belong to the group of PPARγ agonists and have raised
much hope as antidiabetic drugs and potential anti-cancer agents
(Tontonoz and Spiegelman, 2008). However, clinical results have
been disappointing because of concern for long-term toxicity and
for the controversial impact on cancerogenesis. TZDs may show
both anti-cancer effects as well as tumor promoting responses
depending on the cell context (Armengol et al., 2000; Butler et al.,
2000; Mueller et al., 2000; Inoue et al., 2001; Heaney et al., 2002;
Kawa et al., 2002; Shimada et al., 2002; Burstein et al., 2003; Li
et al., 2003; Patel et al., 2005; Kim et al., 2007a). Like metformin,
TZDs are able to ameliorate insulin resistance, although through
different mechanisms, and decrease insulin and free IGF-I levels
(Tontonoz and Spiegelman, 2008). TZDs also negatively impact
on the IGF system signaling pathways, an intriguing characteris-
tic suggesting potential antineoplastic activity (Aiello et al., 2006;
Belfiore et al., 2009b). Indeed, in vitro studies have shown that
TZDs are able to downregulate both MAPK and PI3K/mTOR/Akt
pathways following IR/IGF-IR activation. These findings may sug-
gest that the TZDs could be beneficial in cancers “addicted” to
overactivated IGF system and in insulin resistant, hyperinsuline-
mic patients. However, this hypothesis has not been confirmed
by the scanty data collected in the clinical setting. Recent studies
have reported no significant variations of cancer risk in diabetic
patients treated with TZDs (Monami et al., 2008; Ferrara et al.,
2011), while other studies have even suggested an increased risk for
bladder cancer in pioglitazone users (Lewis et al., 2011). Because
of these latter data, in some countries the use of pioglitazone has
been restricted. The second TZD, formerly extensively used in dia-
betic patients, rosiglitazone, has been removed from the market
because of significant cardiac toxicity (Loke et al., 2011). To date,
the full range of TZDs effects in IR-driven cancerogenesis is not
well understood.
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IR INVOLVEMENT IN CANCER RESISTANCE: THE ULTIMATE TK
RECEPTOR FOR CANCER CELLS?
Although preclinical studies have provided strong evidences for
the role of IR in cancer, until very recently the IR has not been a
deliberate target of cancer therapies. Rather, the attention has been
focused on the homologous IGF-IR. Indeed, several companies
have developed drugs to block the IGF-IR in cancer and numerous
trials have been designed (Gualberto and Pollak, 2009). Although
a variety of in vitro and in vivo studies have showed a good anti-
cancer activity of anti-IGF-IR drugs, especially in combination
with chemotherapy (Pollak, 2008b), the results of the first clinical
trials have been disappointing. In fact, only a small subset of malig-
nant tumors, including approximately 10% Ewing sarcomas and a
small percentage of NSCLC, have shown an objective response to
these therapies (Hofmann and Garcia-Echeverria, 2005; Scotlandi,
2006; Gualberto and Pollak, 2009). These unsatisfactory results
have contributed to turn our attention to the IR pathway as a
factor in the development of resistance to selective anti-IGF-IR
drugs and, therefore, as a possible new target. As documented for
several malignancies, IGF-IR itself is involved in cancer resistance
not only to traditional therapies (Dunn et al., 1997; Gooch et al.,
1999; Casa et al., 2008) but also to old and new targeted therapies
such as anti-estrogens and inhibitors of epidermal growth factor
receptor/human epidermal growth factor-2 (EGFR/HER2) and of
Akt/mTOR signaling (Carter et al., 1992; Lu et al., 2001; Nicholson
et al., 2004; Wan et al., 2007; Guix et al., 2008; Tamburini et al.,
2008). The model of breast cancer has been particularly studied
and has suggested that the IR/IGF-IR pathway has unique impor-
tance. Breast cancer cells treated with anti-estrogen therapies may
become estrogen-independent and exploit alternative pathways of
growth and survival such as those mediated by EGFR and HER2.
However, cells initially responsive to EGFR/HER2 inhibitors may,
in turn, become resistant to these drugs and acquire addiction to
IGF-IR signaling. However, anti-IGF-IR therapies may favor the
emergence of IR-driven resistant cancer clones through several
mechanisms that include: (a) increased cell sensitivity to insulin,
as observed in cultured breast cancer cells treated with selective
anti-IGF-IR small interfering RNAs (siRNAs; Zhang et al., 2007).
These cells express enhanced IR homodimers possibly because IR
hemidimers engaged in HRs formation are reduced; (b) increased
IR-A and/or IGF-II gene expression by the cancer cells, as observed
in Ewing’s sarcoma cells that have developed resistance to specific
IGF-IR inhibitors, both antibodies and tyrosine kinase inhibitors
(Garofalo et al., 2011); (c) development/worsening of hyperinsu-
linemia, caused by reduced IGF-I feedback at the pituitary level
and consequent increase in plasma GH (Pollak, 2008b).

On the basis of these considerations it is likely that IR-based
mechanisms may ultimately play a key role in cancer resistance to
various treatments (Figure 3), an additional reason to consider IR
as a suitable target in cancer.

INDICATIONS AND STRATEGIES FOR TARGETING IR IN
CANCER PATIENTS
INCREASING IR SENSITIVITY, IR BLOCKADE, OR BOTH?
The specific indications for targeting the IR pathway in cancer
treatment are still unclear but this issue is likely to be under inten-
sive scrutiny in the near future. Given the relevance of insulin

FIGURE 3 | Proposed model of development of stepwise resistance to

medical therapies and IR-A addiction in breast cancer. Following
anti-estrogen therapy, cancers initially ER+ (Estrogen Receptor positive and
estrogen-dependent/sensitive) may become ER− (Estrogen Receptor
negative and estrogen-independent/resistant) and sensitive to
anti-EGFR/HER2 blockade. Later on, tumor cells may acquire resistance to
these agents and become sensitive to anti-IGF-IR therapies. Eventually,
clones may develop resistance to selective IGF-IR blockade by upregulating
both IR-A and IGF-II. Co-targeting IR and IGF-IR may prevent such evolution.
In any case we need to develop efficacious strategies to target the
IR-A/IGF-II loop in cancer.

resistance not only in increasing cancer risk but also in worsen
cancer prognosis (Duggan et al., 2011; Irwin et al., 2011), one may
question whether insulin resistance should be always addressed
in cancer patients. Insulin resistance in these patients may pre-
cede the diagnosis of cancer because of genetic factors, T2DM
or obesity, or may be induced by various anti-cancer treatments,
including anti-IGF-IR targeted therapies, anti-androgen therapy
(Aggarwal et al., 2011), or by conditions such as chronic inflam-
mation and malnutrition frequently associated with cancer (Van
Cutsem and Arends, 2005; Gonda et al., 2009). In these cases the
use of insulin sensitizers would have a strong rationale. Metformin
has been recently found to improve pathologic complete response
rates in diabetic patients with breast cancer receiving neoadjuvant
chemotherapy (Jiralerspong et al., 2009) as well as progression-free
survival for chemotherapy treated diabetic patients with advanced
non-small cell lung cancer (Tan et al., 2011). Whether these effects
are to be ascribed to the hyperinsulinemia lowering effect of met-
formin or to direct effects of metformin on cancer cells is still
unclear. Moreover, metformin is able to control hyperglycemia
associated with the use of anti-IGF-IR antibodies (Atzori et al.,
2011). Again, whether metformin is sufficient to counteract the
adverse effects of anti-IGF-IR drugs induced insulin resistance
remains to be established. No such studies are available with other
insulin sensitizers such as thiazolidinediones despite the promis-
ing preclinical anti-cancer activity of these compounds (Sertznig
et al., 2007).
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Taken together, available data strongly suggest that hyperinsu-
linemia should be diagnosed in all cancer patients and appropri-
ately managed. Our arsenal of cancer-effective insulin sensitizers
seems currently limited to metformin. However, there is hope that
other insulin sensitizers, such as novel PPARγ agonists or Sirt-
1 agonists (Herranz et al., 2010) could be soon developed for
clinical use.

Insulin sensitizing therapy, however, while reducing the direct
effect of circulating insulin on cancer cells is unlikely to normalize
plasma insulin levels and cannot influence the effects of autocrine
IGF-II binding on IR-A in cancer cells. Therefore, another question
is when IR blockade should be considered and whether there is any
place for the use of metformin or other insulin sensitizers together
with IR blockade. There is no definite answer to these questions yet.
However, it is reasonable to think that malignancies carrying an
overactivated IGF-II/IR-A loop are best candidates for IR blocking
therapies. As previously mentioned, not only IR-A is commonly
overexpressed in cancer together with the IGF-IR, but it is also
predominant in certain cancers (Belfiore et al., 2009a). Whenever
both IGF-I and IGF-II are present in the tumor microenviron-
ment, it seems reasonable to assume that IGF-IR is saturated by the
high-affinity ligand IGF-I whereas IR-A is the principal receptor
of IGF-II.

As we previously mentioned, it has become increasingly clear
that, among other unknown factors, IR-A overexpression is likely
to be a major factor in determining in vivo resistance to anti-
IGF-IR therapies. Therefore, more recent studies have taken in
serious consideration the concept that co-targeting IR together
with IGF-IR, should be a more effective approach to prevent
adaptive resistance to anti-IGF-IR therapies. The measurement
of IR:IGF-IR ratio and HRs (Pandini et al., 2007), and IGF-
II expression in tumor cells should be extremely helpful in
identifying malignancies suitable to anti-IR/IGF-IR therapies.
However, IR overexpression by itself may not be a guarantee
for full IR functionality (Belfiore et al., 1996). Some studies
have been proposed that phosphorylated IR/IGF-IR or IRS-1
are possible biomarkers of sensitivity to IR/IGF-IR blockade
(Byron et al., 2006; Law et al., 2008). Finally, an IGF gene
expression signature has been shown to correlate with response
to a dual anti-IR/IGF-IR inhibitor, BMS-754807 (Litzenburger
et al., 2011). Furthermore, using the IR/IGF-IR inhibitor OSI-
906 (see also next paragraph) it has been found that cancer
cell lines exhibiting an epithelial phenotype were more sensi-
tive than tumor cells that have undergone EMT (Mulvihill et al.,
2009).

Radiolabeled anti-IGF-IR antibodies have also been used to
visualize in vivo IGF-IR expression using both Single-Photon
Emission Computed Tomography and Positron Emission Tomog-
raphy in preclinical models (Heskamp et al., 2011). In the future,
similar techniques, possibly employing anti-IR antibodies, may
help patient selection for IR/IGF-IR targeted therapy.

Finally, regarding the question whether metformin could be of
any benefit if administered together with IR/IGF-IR inhibitors,
there are simply no data yet, although there is a rationale
for including metformin in the management of hyperglycemia
and hyperinsulinemia that are frequent adverse effects of these
drugs.

CURRENTLY AVAILABLE DRUGS CO-TARGETING IR AND IGF-IR
Only very few of currently available drugs, generally developed for
inhibiting IGF-IR, actually share the ability of inhibiting also IR.

Monoclonal antibodies
Anti-IGF-IR antibodies may be selective for homodimeric IGF-
IR, but often also block HRs to a various extent (Soos and
Siddle, 1989). Double blockade of IGF-IR and HRs may results
advantageous over selective IGF-IR blockade. In cancers with low
IR:IGF-IR ratio this approach may significantly affect IR activ-
ity, as in these cancer cells most IR moieties are engaged in HRs
and could, therefore, be blocked. Unfortunately, among the sev-
eral anti-IGF-IR antibodies currently on trial, only dalotuzumab
(formerly h7C10) has been characterized for its binding activity
to HRs (Pandini et al., 2007). In fact, it has been observed that
anti-IGF-IR antibodies binding to HRs may also cause some IR
degradation (Sachdev et al., 2006). IR degradation was also seen by
administering a combination of two anti-IGF-IR antibodies with
diverse binding epitopes and ligand-blocking properties (compet-
itive and allosteric), which also caused a more potent blockade
of IGF-I and IGF-II compared with either antibody alone (Dong
et al., 2010). However, this approach results insufficient in cancer
with high IR:IGF-IR ratio, where most IRs occur as homodimers.
In such cells, IR blockade was shown to inhibit cancer cell prolif-
eration in response to exogenous and/or autocrine IGF-II (Sciacca
et al., 1999; Vella et al., 2002) and to be more useful than IGF-IR
blockade (Pandini et al., 2007).

A viable strategy for co-targeting IR-A and IGF-IR effects in
cells with high IR:IGF-IR ratio could be to combine anti-IGF-IR
antibodies showing high affinity to HRs with anti-IGF-II blocking
antibodies. Antibodies recognizing both IGF-II and IGF-I have
already been developed (Miyamoto et al., 2005; Feng et al., 2006)
and have shown promising results on in vivo growth of IGF-I- or
IGF-II-driven tumors (Gao et al., 2011). However, studies showing
results of such combination therapy are not available.

Tyrosine kinase inhibitors
Small molecules with tyrosine kinase inhibitory activity for IGF-IR
are also being actively investigated for their possible use in can-
cer patients. Owing to the high homology between the IGF-IR
and the IR ATP-binding site of the kinase domain, these mole-
cules, however, may also inhibit the IR to a variable degree (Buck
and Mulvihill, 2011). Although this feature was initially unwanted
because it contributes to deterioration of glucose metabolism, it
was later recognized that co-targeting IGF-IR and IR may actu-
ally be advantageous in order to prevent IR-A driven adaptive
resistance.

Some of these TK inhibitors may also affect various other TKs
to some extent, with the result to be characterized by increased effi-
cacy in some models, but also increased toxicity. Small molecule
TK inhibitors can be given orally and also differ from anti-IGF-IR
antibodies for having a faster kinetics that allow more flexibility
when administered in combination with standard chemotherapy
(Buck and Mulvihill, 2011).

Two of these molecules, Picropodophyllin (PPP) and Nordihy-
droguaiaretic acid (NDGA), described as IGF-IR inhibitors with
antitumoral activity, actually do not appear to inhibit the IR.
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Their mode of action is rather complex and not well understood.
Intriguingly, they do not cause hyperglycemia or insulin resistance.

PPP is a non-toxic cyclolignan, described as a selective IGF-
IR inhibitor with an in vivo IC50 for IGF-IR inhibition of 40 nM
(Girnita et al., 2004). The drug is a non-ATP-competitive IGF-IR
inhibitor and targets amino acids outside of the activation loop,
a region homologous between the two receptors. PPP induces
also IGF-IR downregulation. This compound, therefore, is unable
to co-target the IR. Accordingly, mice treated with PPP did not
develop hyperglycemia, although showing inhibition of IGF-IR
overexpressing tumors (Girnita et al., 2004). PPP is currently being
tested as a single agent treatment in an open-label Phase I/II trial
in patients with solid tumors that progress in spite of several lines
of treatment. No changes in variables involved in glucose metab-
olism, such as blood glucose and insulin, have been reported in
treated patients, confirming that the IR pathway is not inhibited
(Economou et al., 2008).

NDGA, is a plant derived phenolic compound that has been
shown to be an IGF-IR and HER2 inhibitor (Youngren et al., 2005)
and to be able to revert breast cancer resistance to trastuzumab
(Rowe et al., 2008). In addition, it also inhibits TGF-β effects at
multiple levels (Li et al., 2009) and may function as a global tran-
scription inhibitor (Rowe et al., 2008). NDGA does not inhibit the
IR. Actually, it can even ameliorate insulin resistance by activating
the AMPK (Lee et al., 2011).

While these two inhibitors share the interesting feature to
inhibit the IGF-IR without inducing insulin resistance, they have
the limitation to leave intact the IGF-II/IR-A loop, which is the
principal mechanism of IGF system activation in certain malig-
nancies. Further work is needed to better clarify their mode of
action and their effects on glucose metabolism.

In contrast, two other inhibitors, BMS-754807 and OSI-906,
are indeed able to co-target the IR and IGF-IR.

BMS-754807, a pyrrolotriazine designed to be an ATP-
competitive antagonist of IGF-IR. It was found, however, to inhibit
both IGF-1R and IR activity with very similar activity (IC50 was
1.8 and 1.7 nM, respectively; Carboni et al., 2009). The activity of
downstream molecules, such as Akt and, to a lesser extent, ERK was
also inhibited. However, this compound has also shown signifi-
cant inhibiting activity toward other important TK receptors (Met,
RON, TrkA, TrkB) and also toward Aurora A and B. In cell culture,
however, inhibiting activity of BMS-754807 against IGF-IR was 9-
to 29-folds higher than against Met and 25- to 64-folds higher than
against TrkA. In proliferation assays of cell lines expressing high
levels of IGF-IR, BMS-754807 resulted more efficacious than anti-
IGF-IR antibody mAb391 and induced a distinct cell phenotype
when compared to the anti-Aurora inhibitor VX-680 (Carboni
et al., 2009). Cellular IC50, however, varied widely between 5 and
365 nM. In the animal model, BMS-754807, as a single agent, has
shown antitumor activity in a variety of epithelial and mesenchy-
mal cell xenografts. Major side effects were hyperglycemia and
hyperinsulinemia.

BMS-754807 is currently being evaluated in Phase I/II clin-
ical trials as a single agent (NCT00898716 and NCT00569036)
and in combination therapies with cetuximab (NCT00908024),
trastuzumab (NCT00788333), letrozole (NCT01225172), pacli-
taxel, and carboplatin (NCT00793897) in patients with various

advanced or metastatic malignancies. Preliminary results of Phase
I study appear encouraging showing a good rate of stable dis-
ease when BMS-754807 is used as a single agent (Evans et al.,
2010). BMS-754807 was well tolerated and fatigue and hyper-
glycemia were the most frequent related adverse events. Hyper-
glycemia was manageable and did not lead to discontinuation of
the therapy.

In an in vitro model, BMS-754807 was able to attenuate the
hyperactivity of the IR pathway in murine fibroblasts that are null
for the IGF-IR (Dinchuk et al., 2010). However, it is too early
to have a clear picture on how the IR inhibiting activity of this
compound relates to its in vivo antitumor activity.

While BMS-754807 has significant inhibitory effects on other
kinases, OSI-906 is probably the most specific co-inhibitor of IR
and IGF-IR. It was also developed in the context of drug discovery
work aimed at identifying small molecule inhibitors against the
IGF-IR. However, it was optimized against both IR and IGF-IR
crystal structures and has shown the ability to inhibit ligand-
stimulated IGF-IR phosphorylation with an IC50 of 19–35 nM. It
also inhibits IGF-IR dependent ERK, AKT, and p70S6K activation
with similar efficacy (Mulvihill et al., 2009). Interestingly, IC50
for IR was 39 nM, whereas IC50 for a variety of threonine/serine
kinases was in the range of 1–10 μM. These unique characteris-
tics qualify OSI-906 as a selective dual inhibitor for IGF-IR and
IR. In in vitro experiments, 1 μM OSI-906 fully inhibited both
IGF-IR and IR phosphorylation. However, when evaluated in a
panel of cancer cell lines, EC50 for proliferation inhibition fell
into a wider range (21–810 nM; Mulvihill et al., 2009). Tumor
repression in preclinical models was correlated to the degree and
duration of IGF-IR phosphorylation inhibition. The relation-
ship between IR phosphorylation and tumor inhibition is less
studied.

OSI-906 is now being evaluated in Phase I escalation studies as a
single agent according to various administration schedules (inter-
mittent or continuous; NCT00514306, NCT00514007). Overall,
these studies have found encouraging disease control rates (Car-
den et al., 2010; Evans et al., 2010). Given the relatively short
half-life of OSI-906 there is hope that intermittent administration
may allow partial recovery from glucose metabolism deterioration
while maintaining a good antitumor activity.

The drug is being evaluated as a single agent in patients
with advanced hepatocellular carcinoma (Phase II study,
NCT01101906), in patients with adrenocortical carcinoma (Phase
III study, NCT00924989) and in patients with relapsed small cell
lung cancer (Phase II study, NCT01387386). These malignancies
are generally characterized by the overactivation of the IR/IGF-IR
axis and, in particular, of the IGF-II/IR-A loop. Other ongoing
Phase I/II studies aim to evaluate OSI-906 in combination with
a variety of anti-cancer agents, including paclitaxel, irinotecan,
erlotinib, hormone therapy.

Hyperglycemia has a major role as a dose-limiting toxicity fac-
tor (Macaulay et al., 2010). However, it is reversible after cessation
of treatment and does not preclude clinical efficacy (Carden et al.,
2010; Evans et al., 2010).

These studies will hopefully provide proof-of-concept evi-
dences that dual inhibition of IGF-IR and IR may prevent
resistance to selective anti-IGF-IR agents.
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MONITORING THE EFFICACY AND ADVERSE EFFECTS OF IR BLOCKADE
A variety of pharmacodynamic markers, i.e., markers reflecting the
actual ability of the therapy to hit the intended target, have been
developed to monitor the efficacy of anti-IGF-IR drugs and are
being also adopted for dual inhibitors of IR and IGF-IR (Gedrich
et al., 2009). For instance, IR and IGF-IR autophosphorylation in
peripheral blood mononuclear cells (PBMCs) has been used to
monitor the efficacy of OSI-906. Similarly, monitoring of IGF-IR
phosphorylation in PBMCs or in circulating tumor cells, has been
described for anti-IGF-IR antibodies (de Bono et al., 2007; Tolcher
et al., 2009). Fluorodeoxyglucose-positron emission tomography
scans have been also used to assess the metabolic activity of tumor
cells (Tolcher et al., 2009).

Hyperglycemia and elevations of circulating insulin represent
the most frequent adverse effects of these therapies and have been
also used as a measure of peripheral blockade of IR and IGF-IR.
While insulin resistance is an obvious consequence of IR blockade
by dual IR/IGF-IR inhibitors, it is also partially due to inhibition of
IGF-I negative feedback at the level of pituitary with consequent
plasma GH elevation (Pollak, 2008a). Plasma GH, therefore, may
also provide a measure of IGF-IR inhibition at the pituitary level
and correlates with insulin resistance, increased plasma IGF-I and
IGF-BP3 (Gedrich et al., 2009).

Data on toxic effects of IR inhibition appear still very limited.
In studies with OSI-906, most common adverse effects, other than
hyperglycemia, were nausea, vomiting, lethargy, and fatigue (Car-
den et al., 2010; Evans et al., 2010). Although these effects were gen-
erally mild and did not prevent reaching a biologically efficacious
dose, more data are needed to ensure that long-term treatment
does not impair the function of organs sensitive to the non-
metabolic effects of insulin, such as the central nervous system.

FUTURE DEVELOPMENTS
Anti-cancer therapies specifically targeting the IR or IR-specific
substrates are lacking. In fact, the efforts of drug companies
have been so far focused in increasing, and not diminishing,
insulin secretion and action in order to cure diabetes. Therefore,
the implementation of IR blocking therapies appears particularly
worrisome given the crucial role of IR in glucose metabolism.

Future strategies may consider targeting selectively the IR-A
isoform, in order to minimize the impact on glucose metabo-
lism. However, blocking antibodies specifically recognizing the
IR-A have not been described and their feasibility is uncertain.
Given that IGF-II binding affinity for IR-A is much greater than
for IR-B, it is conceivable to design an inverse agonist of IGF-II,
able to interfere with the IGF-II/IR-A loop and possibly also with
the IGF-II/IGF-IR loop. IGF-II may be also blocked by monoclonal
antibodies, as mentioned above.

Another possibility is to devise IR isoform-specific insulin
analogs and/or analogs with full metabolic activity but with block-
ing activity for the mitogenic branch of IR. The design of these
analogs could be made possible by the recent advances in this
technology and better understanding of IR structure (Jensen et al.,
2007; Jiracek et al., 2010). Such analogs may be used in place of
native insulin or of currently used insulin analogs for the ther-
apy of diabetic patients in order to avoid the adverse effects of
hyperinsulinemia on cancer cells.

Other possible approaches may target IR overexpression and/or
abnormal IR gene splicing in cancer cells, although the mech-
anisms involved are incompletely characterized. Mutations of
antioncogenes, such as p53 may have a role in IR overexpression
(Webster et al., 1996). Other important factors may involve the
common overexpression of HMGA1 proteins in cancer (Reeves
et al., 2001). HMGA1 are non-histone nuclear proteins that func-
tion as architectural transcription factors and have been implicated
in several aspects of malignant cells. Recently, an important role
in the regulation of both IR and IGF-IR in normal and cancer cells
has been recognized (Foti et al., 2003; Aiello et al., 2010). Targeting
the transcriptional complex involving HMGA1 and driving aber-
rant IR transcription in cancer cells could also be an avenue worth
to be explored.

RNA splicing factors involved in aberrant IR-A generation in
cancer cells could also be a target. However, the regulation of such
splicing factors in cancer is still poorly characterized (Paul et al.,
2006; Belfiore et al., 2009a).

The IR-A substrates specifically activated by IGF-II have been
sought in the attempt to identify novel molecular targets with an
important role in malignancies with an overactivated IGF-II/IR-
A (Morcavallo et al., 2011). Data obtained strongly support the
concept that IGF-II, upon binding to IR-A, activates a unique sig-
naling pattern that partially differs from that of insulin and have
led to the identification of novel IR-A substrates specifically or pre-
dominantly activated by IGF-II and not by insulin. These studies
suggest the possibility to block the mitogenic branch of IR signal-
ing without affecting its metabolic function. Interestingly, among
substrates selectively stimulated by IGF-II are discoidin domain
receptors, involved in cell migration and tumor metastasis, and
ephrin receptor B4, involved in bidirectional signaling upon cell–
cell contact (Morcavallo et al., 2011). More work is needed to assess
whether these substrates may prove to be suitable molecular targets
in cancer therapy. Finally, IR-A trafficking appears significantly dif-
ferent when binding IGF-II, rather than insulin (our unpublished
data). These differences may be exploited to selectively target IR-A
activation and signaling after IGF-II.

CONCLUDING REMARKS
Most recent studies have supported the concept that co-targeting
the IR together with IGF-IR in cancer would be a more useful ther-
apeutic option than targeting the IGF-IR alone. Preclinical data
and early clinical trials have provided evidences that IR/IGF-IR co-
targeting may potentiate various chemotherapeutic regimens and
prevent adaptive resistance to selective anti-IGF-IR drugs. Unfor-
tunately, IR inhibition also blocks the glycometabolic cascade and
generally results in glucose metabolism deterioration and T2DM
worsening, effects also shared by selective IGF-IR inhibitors.
T2DM is generally responsive to insulin sensitizers, which have
the additional beneficial effect of lowering hyperinsulinemia, thus
reducing the mitogenic effect of insulin.

However, only very few drugs acting as insulin sensitizers or
IR inhibitors are currently available for clinical treatments and we
expect that more options will be accessible in the near future. We
are just starting to learn how and when using these two classes of
drugs either alone or in combination in cancer patients. Ideally, we
would need to target the mitogenic cascade of IR leaving relatively
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intact the metabolic cascade, a task that is obviously extremely
challenging. A variety of different approaches are under scrutiny
and hopefully will end up providing clinically viable treatments.

The use of biomarkers for appropriate patients selection and
efficacy monitoring also awaits future developments.
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