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Brown adipose tissue (BAT) has been recognized for more than 20 years to play a key role
in cold-induced non-shivering thermogenesis (CIT, NST), and body weight homeostasis in
animals. BAT is a flexible tissue that can be recruited by stimuli (including small molecules
in animals), and atrophies in the absence of a stimulus. In fact, the contribution of BAT (and
UCP1) to resting metabolic rate and healthy body weight homeostasis in animals (rodents)
is now well established. Many investigations have shown that resistance to obesity and
associated disorders in various rodent models is due to increased BAT mass and the num-
ber of brown adipocytes or UCP1 expression in various depots. The recent discovery of
active BAT in adult humans has rekindled the notion that BAT is a therapeutic target for
combating obesity-related metabolic disorders. In this review, we highlight investigations
performed in rodents that support the contention that activation of BAT formation and/or
function in obese individuals is therapeutically powerful. We also propose that enhance-
ment of brown adipocyte functions in white adipose tissue (WAT) will also regulate energy
balance as well as reduce insulin resistance in obesity-associated inflammation in WAT.
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BAT MASS/ACTIVITY CAN BE ENHANCED WITH DRUGS,
INDUCING LONG-TERM BODY WEIGHT LOSS AND
IMPROVEMENT OF DIABETES IN ANIMALS
The efficacy of increasing brown adipose tissue (BAT) recruitment
(BAT mass and expression of UCP1) as a therapeutic approach for
obesity and type 2 diabetes has been demonstrated by many groups
(Holloway et al., 1992; Himms-Hagen et al., 1994; Kopecky et al.,
1995, 1996a; Nagase et al., 1996; Collins et al., 1997; Ghorbani
and Himms-Hagen, 1997; Arch, 2002; Kim et al., 2006). Agents
that increase BAT recruitment and UCP1 levels (for instance
β3-AR agonists) can effectively treat obesity and insulin resis-
tance/diabetes in all rodent models of obesity (Arch, 2002). Inter-
estingly, in lean animals (which have normal amounts of BAT),
enhancement of BAT recruitment or activity (e.g., by drugs or cold
exposure) does not affect body weight, and the induced increase
in metabolic rate is compensated by an increase in food intake.
However, in obese animals enhancement of energy expenditure
by BAT recruitment seems to be the most effective (long-term)
therapy for decreasing body weight and improving the meta-
bolic status (as compared to treatment with diet drugs). Indeed,
increasing or restoring normal levels of BAT mass/UCP1 levels
in obese rodents prevents the adaptive drop in metabolic rate
invariably observed upon weight loss due to a decrease in food
intake (Dulloo and Girardier, 1990; Leibel et al., 1995; Crescenzo
et al., 2003; Heilbronn and Ravussin, 2003; Dulloo, 2005, 2007;
Major et al., 2007). It seems that increasing BAT mass/UCP1 levels
resets the “adipostat” to a lower level (Cannon and Nedergaard,
2009). Weight/fat loss can be maintained long-term only if the
adipostat is readjusted to a lower level. The mechanisms partici-
pating in this adipostat are not known in detail but BAT (increasing

BAT recruitment/activity) seems to play an important role in this
system (Cannon and Nedergaard, 2009). Gastric bypass (Roux-
en-Y) surgery has been shown to have dramatic effects on body
weight and blood glucose homeostasis/glucose metabolism. The
molecular mechanisms responsible for this efficacy are not yet
fully understood but recent data suggest that BAT recruitment
plays a key role (Stylopoulos et al., 2009), again supporting an
adipostat-lowering effect of BAT.

Recently, Almind et al. (2007) showed that the capacity to
induce BAT/UCP1 expression around muscles confers resistance
to obesity in mice. Similarly, Nagase et al. (1996) showed that
treatment of obese yellow KK mice with the β3-AR agonist CL
316243 decreased the body weight and fat of the mice, and induced
expression of UCP1 in skeletal muscle [as well as in BAT and white
adipose tissue (WAT)]. Even though the authors contend that the
β3-AR agonist induced UCP1 in myofibers, we can speculate that
in fact the UCP1 mRNA detected in the muscle mass indeed orig-
inated from induced brown adipocytes around the muscle fibers,
and that the “UCP” signal identified with an UCP1 antibody in
the myofibers was in fact increased levels of UCP3 (Boss et al.,
1997). These results support, in a more physiological setting, ear-
lier results showing that overexpression of UCP1 in WAT of mice
can prevent the development of obesity in genetic as well as dietary
models of the disease (Kopecky et al., 1995, 1996a,b). In contrast,
lack of BAT or UCP1 (at or close to thermoneutrality) induces
obesity and diabetes in mice (Lowell et al., 1993; Hamann et al.,
1996; Feldmann et al., 2009). Initially, it was hoped that β3-AR
agonists would also enhance energy expenditure in humans but
these drugs proved to be ineffective probably due to less than
optimal bioavailability and/or pharmacokinetic properties of the
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compounds (Arch, 2002, 2008). Another likely explanation is that,
unlike in rodents, in humans the β3-AR is expressed at much lower
levels than the β1-AR and β2-AR in adipose tissues (WAT and
BAT; Deng et al., 1996; Arch, 2008). Induction of brown adipocyte
formation with drugs in humans, in order to enhance or restore
healthy levels of BAT recruitment, is a feasible strategy to enhance
energy expenditure but “druggable” molecular targets other than
the β3-AR and PPARγ have yet to be identified (Harper et al., 2004;
Ravussin and Kozak, 2004).

RECRUITMENT OF BROWN ADIPOCYTES FROM
PROGENITORS
Various studies have shown that primary preadipocytes isolated
from white and brown adipose depots differentiate in vitro into
the corresponding white and brown adipocytes (Kopecky et al.,
1990; Rehnmark et al., 1990; Ailhaud et al., 1992). Multilocular
fat cells, expressing UCP1 and rich in mitochondria, were initially
observed in a WAT depot by Young et al. (1984). The emergence of
these so-called ectopic brown adipocytes in WAT could be induced
by cold acclimation in rats (Cousin et al., 1992, 1996) and mice
(Loncar, 1991a,b; Guerra et al., 1998). This phenomenon is gen-
erally referred to as recruitment. The new cells were found to be
sympathetically innervated (Giordano et al., 1996) and remained
in WAT as long as a sympathetic stimulation persisted (Loncar,
1991b). Subsequent reports have shown that administration of
selective β3-AR agonists like CL 316243 in mice could also induce
the emergence of brown adipocytes in WAT depots (Nagase et al.,
1996; Collins et al., 1997; Ghorbani and Himms-Hagen, 1997;
Guerra et al., 1998; Granneman et al., 2005) and that this phenom-
enon was strongly dependent on the mouse genetic background
(Collins et al., 1997; Guerra et al., 1998; Kozak and Koza, 1999).
Interestingly, it was discovered that transgenic overexpression of
the human β1-AR in WAT of mice also induced the appearance of
abundant brown adipocytes in this tissue (Soloveva et al., 1997).
These results suggested that the β3-AR might not be the only β-
subtype controlling the emergence of brown adipocytes in WAT.
These results were recently confirmed using human multipotent
adipose-derived stem cells (hMADS; Mattsson et al., 2011). How-
ever, administration of β1-AR agonists would not be appropriate
for the treatment of obesity due to the well-known effects of these
agents on the heart.

The origin and the true nature of the multilocular cells rich in
mitochondria and expressing UCP1 that appeared in WAT upon
cold acclimation or β3-AR stimulation has yet to be determined.
The presence of brown adipocyte progenitors in WAT has been
hypothesized by studies showing that 10–15% of the precursor
cells isolated from mouse WAT differentiate into brown adipocytes
in culture (Klaus et al., 1995) and that brown adipocyte progenitors
are present in human WAT depots (Digby et al., 1998). Another
hypothesis suggests that a few unilocular white adipocytes are
indeed “masked” brown adipocytes that can recover a brown phe-
notype in response to a SNS stimulation such as that induced by
cold exposure. Himms-Hagen et al. (2000), studying the effect of
CL 316243 in rats, suggested that the multilocular cells expressing
UCP1 that appeared in the WAT were different from the classi-
cal brown adipocytes and postulated that they might derive, at
least in part, from pre-existing unilocular adipocytes. Orci et al.

(2004) showed that hyperleptinemia in rats induces the trans-
formation of white adipocytes into so-called post-adipocytes (or
fat-oxidizing machines), which have the phenotype of brown
adipocytes. Other effectors that enhance brown adipocyte recruit-
ment in white depots include synthetic PPARγ ligands such as
thiazolidinediones (Wilson-Fritch et al., 2004; Xue et al., 2005; Ver-
nochet et al., 2009; Petrovic et al., 2010). Overall, it seems very likely
that, at least in some WAT depots, brown adipocytes can emerge
from differentiation of brown adipocyte precursors/preadipocytes
or transdifferentiation of existing white adipocytes (Jimenez et al.,
2003; Zingaretti et al., 2009). The precise origins of brown cells in
WAT will likely be determined within the very near future since
recent studies have started to identify the progenitors of brown
as well as white adipocytes. In the case of brown cells, tracing the
lineages arising from progenitors expressing the myogenic tran-
scription factor, myf5 have clearly shown that brown adipocytes
within the interscapular BAT depot of mice share an origin with
skeletal myocytes that arise from the dermomyotome (Seale et al.,
2008). In these investigations, the brown cells recruited to WAT
in response to the cold were myf5 negative, thus unlikely to share
a myogenic origin. Two independent studies employing different
procedures have identified white progenitors within the microvas-
culature of adipose tissue and not of other tissues (Rodeheffer
et al., 2008; Tang et al., 2008). These progenitors express mark-
ers of mural cells (pericytes) that arise from the sclerotome and
give rise to several other cell types of the vasculature. It is con-
ceivable; therefore, that recruitment of WAT brown adipocytes is
due to a selective activation of these mural cells to progress along
a brown lineage in response to effectors that are activated by the
recruitment-associated stimulus. Possible effectors include BMP7,
which has been shown to induce the conversion of mesenchymal
stem cells to brown adipocytes in culture and is required for BAT
formation in mice (Tseng et al., 2008).

HUMAN ADULTS HAVE FUNCTIONAL, ACTIVATABLE BAT
Understanding the importance of BAT in energy balance has
entered a new and exciting era of investigation now that the
existence and functionality of this tissue in adult humans has con-
vincingly been demonstrated (Heaton, 1972; Rothwell and Stock,
1979; Hany et al., 2002; Cohade et al., 2003; Bar-Shalom et al.,
2004; Cannon and Nedergaard, 2004). Early studies by Rothwell
and Stock (1979) using infrared thermography resulted in data
strongly suggesting that adult humans possess functional BAT
that is activated by ephedrine. The authors suggested that if this
tissue contributes to diet-induced thermogenesis as it does in ani-
mals it could play an important role in energy balance and body
weight homeostasis. It is unfortunate that it took almost 30 years,
and many studies using more recent techniques, for the research
community to accept that adult humans have physiologically sig-
nificant amounts of BAT, and that defective recruitment or activity
of this tissue may contribute to weight gain and insulin resistance.

The new data show that adult humans have appreciable
amounts of BAT, that the metabolic activity or rather, glucose
uptake activity is activated by cold, and that the amount of BAT in
individuals is inversely correlated (independently) to body weight
and age (Celi, 2009; Cypess et al., 2009; Farmer, 2009; Saito et al.,
2009; Yoneshiro et al., 2011). A role for BAT in regulating human
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body weight homeostasis is strongly suggested by the numerous
reports that found the amount of BAT (detected by PET) in indi-
viduals is inversely correlated to body weight, independent of age,
and other factors.

The capacity of BAT to be recruited in humans, as in animals,
is convincingly supported by the following data: (a) The exis-
tence of a reservoir of brown adipocyte/BAT progenitor cells in
human muscle (CD34+) and WAT depots (hMADS; Crisan et al.,
2008; Elabd et al., 2009); (b) Cold stimulates BAT activity and
energy expenditure (thermogenesis) in humans (Huttunen et al.,
1981; Cohade et al., 2003; Garcia et al., 2004, 2006; Christensen
et al., 2006; Nedergaard et al., 2007; Saito et al., 2009; Van Marken
Lichtenbelt et al., 2009); (c) Pheochromocytoma, a catecholamine-
secreting tumor of the adrenal gland, has long been shown to
cause increases in BAT mass and metabolic rate as well as leanness
(Ricquier et al., 1982; Lean et al., 1986; Cannon and Nedergaard,
2004; Fukuchi et al., 2004; Ramacciotti et al., 2006). When the
pheochromocytoma tumor is eliminated the high metabolic rate
(BAT) subsides (Ramacciotti et al., 2006).

The recent discovery of brown adipocyte stem/progenitor cells
(Crisan et al., 2008; Elabd et al., 2009) in skeletal muscle and sub-
cutaneous WAT of adult humans, further supports a physiological
role for BAT in humans. The fact that these progenitor cells have
been found in older adults as well as in fetal tissues strongly sug-
gests that enhancing BAT recruitment, in order to restore BAT
mass to a healthy level, is feasible in humans of any age.

BROWN ADIPOCYTE PROGENITORS IN HUMANS
A major hurdle in identifying (and validating) novel drug targets
for brown adipocyte recruitment is the lack of large quantities
of relevant and unmodified (non-immortalized) human brown

adipocytes in culture to allow for screening of small molecules as
well as other applications. Stroma-vascular cell preparations from
human BAT (or other tissues like skeletal muscle or WAT) contain
only very limited quantities of cells (if any at all) that can differen-
tiate into brown adipocytes. The recently identified human brown
adipocyte stem/progenitor cells, CD34+ in skeletal muscle (Crisan
et al., 2008), and hMADs in subcutaneous WAT (Elabd et al., 2009),
could provide the means to search for novel molecular targets as
well as validate existing candidate targets for the development of
therapeutics to increase brown adipocyte/BAT recruitment and
UCP1 levels in vivo. Both CD34+ and hMADs progenitors have
self-renewal capability, and can thus be expanded. They differenti-
ate, in response to specific agents, into functional brown adipocytes
that express high levels of UCP1, are rich in mitochondria, and
undergo highly uncoupled cell respiration (Crisan et al., 2008;
Elabd et al., 2009). The muscle-derived CD34+ cells differentiate
exclusively into brown adipocytes, and do not appear to pro-
duce white adipocytes (i.e., not expressing UCP1; Crisan et al.,
2008). The WAT-derived hMADs, in contrast, differentiate initially
into white adipocytes, and only gain a brown phenotype (UCP1
expression) following an extended exposure to PPARγ activators
(rosiglitazone; Elabd et al., 2009). These cell types are thus quite
distinct, and each have the potential of generating relevant cell
models for studying human brown adipocyte biology as well as
screening for anti-obesity therapeutics. Such screens could iden-
tify agents that induce the differentiation of the cells into brown
adipocytes. Validation that the agents have in fact induced brown
adipocyte formation will require analysis of several functional
features of BAT. These would include quantitative PCR and west-
ern blot analysis of brown-selective/specific genes such as UCP1,
CIDEA, and PGC-1α as well as measurement of cell respiration

FIGURE 1 |The discovery of brown adipocyte stem/progenitor

cells in humans of all ages provides an essential tool for drug

discovery. The cells could also be expanded and induced to
differentiate in culture, and transplanted back to the patient.

Increasing the amount of brown adipose tissue (through recruitment
or transplantation) is expected to improve glucose metabolism
(diabetes), lower body fat (obesity), and ameliorate dyslipidemia and
cardiovascular disease risks.
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(i.e., O2 consumption) to determine the degree of uncoupling
of oxidative phosphorylation. Advantages of phenotypic cellular
screens (Swinney and Anthony, 2011) are: (a) there is no need to
know upfront the identity of a molecular target or how to affect a
particular target (activate, inhibit, or modulate); (b) unsuspected,
novel targets, or pathways can be identified based on efficacy in
the relevant cellular environment; (c) agents toxic to human cells
are eliminated early in the screening process. After a phenotypic
screen we know that the active agents reach their molecular tar-
get(s), whether it is at the cell surface or inside the cell, and they
modify their molecular target(s) in the appropriate way to reach
efficacy, whether it is through activation, inhibition, or modula-
tion. Very recently, Schulz et al. (2011) identified brown adipocyte
progenitors in skeletal muscle, interscapular BAT, and some white
adipose depots of mice. It is too early to know whether these
cells represent the mouse equivalents of the human CD34+ and
hMADs.

USE OF BROWN ADIPOCYTE PROGENITORS FOR
TRANSPLANTATION
The existence of brown adipocyte stem/progenitor cells that are
readily accessible through biopsy of human tissues such as skele-
tal muscle and subcutaneous WAT encourages the development
of transplantation procedures to treat obese, diabetic patients.
Harvested cells from tissue biopsies of insulin resistant individ-
uals could be expanded and induced to differentiate into brown
adipocytes prior to their implantation as an autologous trans-
plantation to enhance energy expenditure and improve glucose
metabolism in obese, insulin resistant patients. In fact, BAT (tis-
sue rather than cells) implants in mice have recently been shown to
robustly improve the metabolic condition of obese, insulin resis-
tant mice (Stanford et al., 2011), and more surprisingly, to restore

normoglycemia and glucose tolerance in streptozotocin-induced
diabetic mice (Piston and Gunawardana, 2011). In addition to act-
ing as a glucose and energy sink, brown adipocytes are likely to also
secrete factors (locally and/or in the circulation) that may have
beneficial effects on glucose metabolism/insulin sensitivity and
overall energy balance. It is indeed probably through this mecha-
nism that BAT affects the “adipostat.” Recent studies suggest that
the secretome of BAT is quite different from that of WAT since BAT
expresses significantly lower levels of resistin and other adipokines
associated with insulin resistance (Kajimura et al., 2008; Vernochet
et al., 2009). Additionally, these adipokines are suppressed during
the conversion of white adipocytes to brown-like cells in WAT dur-
ing exposure of mice to synthetic PPARγ ligands (Vernochet et al.,
2009).

SUMMARY
From the recent data showing active BAT in adult humans, as
well as from animal data, it seems that the most promising strat-
egy for developing therapeutics for obesity and type 2 diabetes is
to increase BAT mass, or in fact, restore a healthy level of BAT
mass in patients (Figure 1). This new approach should allow the
development of effective drugs for obesity, diabetes, and the meta-
bolic syndrome that, unlike diet drugs, are devoid of central side
effects.
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