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Kisspeptin was originally found as a peptide product of Kiss7 gene and is now supposed
to be an essential central regulator of reproduction in mammals. However, there is now
a growing body of evidence to suggest that kiss2, the paralogous gene for kiss7, evolved
in parallel during vertebrate lineage, and the kiss2 product also activates the GPR54
(kisspeptin receptor) signaling pathways. Therefore, it is now widely accepted that both
kiss1 and kiss2 are the kisspeptin genes. Interestingly, either kiss7 or kiss2 or both have
been lost during evolution in many vertebrate species, and the functional significance of
kiss1 or kiss2 for the central regulation of reproduction is suggested to vary according to
the species. Here, we argue that the steroid sensitivity of the kiss7 or kiss2 neurons has
been well conserved during evolution among tetrapods and teleosts, and thus it may be the
key to understanding the functional homologies of certain populations of kisspeptin (kiss1
or kiss2) neurons among different species of vertebrates. In the present review, we will
first introduce recent advances in the study of steroid sensitive kiss7 and kiss2 systems
in vertebrates and effects of peptide administrations in vivo. By comparing the similarities
and differences between kiss1 and kiss2 of neuronal localization and sensitivity to gonadal
steroids in various tetrapods and teleosts, we discuss the evolution of kisspeptin neuronal
systems after gene duplication of ancestral kisspeptin genes to give rise to kiss7 and kiss2.
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INTRODUCTION

Recent studies have shown that kisspeptin plays an essential role
in reproductive functions in mammals. Kisspeptin attracts par-
ticular attention, since previous reports have shown that the lack
of kisspeptin receptors gene, GPR54, in both mice and humans,
or of the ligand gene (KissI) in mice results in reproductive dys-
functions. More interestingly, the kisspeptin neurons have been
shown to express estrogen receptor alpha (ERa), while the GnRH
neurons express kisspeptin receptors, and kisspeptin depolarizes
GnRH1 neurons in mice. These results suggest that they are not
only involved in the sex steroid feedback but also are possible can-
didate for the “missing link” in the gonadotropin feedback control
(Tena-Sempere, 2005; Smith, 2008).

On the other hand, fewer studies exist on the non-mammalian
kisspeptin, and somewhat contradictory results among different
species appear to confuse general conclusions about the func-
tions of kisspeptin, especially in teleosts. This may be because
of the fact that not a few studies in teleost kisspeptin have used
pharmacological methods such as intracerebroventricular (ICV)
or peripheral administration of kisspeptins. We should consider
that the physiological functions of each kisspeptin neuron pop-
ulation may not be assessed only by such analyses, because the
pharmacological administration may activate unexpected signal-
ing pathways apart from the actual kisspeptin neuron networks.
Therefore, the detailed information on the anatomy of the axonal
projections and on the physiology and distribution of receptors are
necessary before the administration studies. On the other hand,

the kisspeptin neurons in certain brain nuclei show steroid sen-
sitivity in all the animal species thus far examined across teleosts
and tetrapods. Therefore, we may be able to correlate the func-
tional properties of the different populations of kisspeptin neurons
in various species by using the sex steroid sensitivity as more
physiological criteria.

On the other hand, it has been generally accepted in evolution-
ary biology that genes duplicated from a single gene in the ancestral
vertebrate undergo sub-functionalization, neo-functionalization,
or non-functionalization (Ohno, 1970). Recent literature on the
kisspeptin of non-mammalian species suggests that the kissI and
kiss2 systems may have undergone such evolutionary processes. To
understand the parallel evolution of these genes in the kisspeptin
neuronal systems, we here propose that the steroid sensitivity
helps to identify the functionally equivalent neuronal populations
among different species, because the steroid sensitivity appears
to be the evolutionarily well conserved feature of certain popu-
lations of the kisspeptin neurons. As will be argued below, the
non-mammalian kisspeptin systems show a wealth of diversity
of gene expression (kissI and/or kiss2) pattern in the brain and
dynamic changes in expression according to the sex steroid milieu.
Therefore, in spite of some kind of confusion in the kisspeptin
studies of non-mammalian species, the biological study of kissI
and kiss2, and of neurons that express these genes will provide
us interesting insights into the general features of the kisspeptin
systems in vertebrates. In addition to be an interesting model to
understand the general evolutionary mechanisms of paralogous
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genes, the study of kisspeptin systems in non-mammalian verte-
brates may lead us to find novel functions of kisspeptins, which
may have been overlooked in previous studies using limited groups
of mammalian species, which have globally lost Kiss2.

In the present review, we will introduce recent findings about
kiss] and kiss2 in vertebrates, mainly mammals and teleosts,
and discuss their functions from various aspects, including cel-
lular localizations, steroid sensitivity, and receptor distributions.
Although there are a small number of studies that have been
performed in non-mammalian tetrapods and vertebrates that
emerged prior to the divergence of tetrapod from teleosts, we pro-
pose some general hypotheses about the evolution of kissI and kiss2
in the vertebrate lineage by comparing the two distinct groups,
teleosts and tetrapods (see Table 1 for nomenclature of kisspeptin
genes and peptides)!.

KISS1 AND KISS2

KISS1 AND KISS2 ARE THE SISTER GENES: WHOLE GENOME
DUPLICATION IN THE ANCESTRAL VERTEBRATE

In 2008, kissI gene was isolated in non-mammalian species (Kanda
et al., 2008; van Aerle et al., 2008). Then in 2009, kiss2 was cloned
from teleosts (Kitahashi et al., 2009) and amphibians (Lee et al.,
2009) as the gene responsible for the peptide that showed a sim-
ilar amino acid sequence to Kissl. Because some ligand-receptor
interaction studies showed that both Kiss2 and Kissl activate
the kisspeptin receptor signaling pathways in Xenopus tropicalis,
zebrafish (Lee et al., 2009), bullfrog (Moon et al., 2009), and gold-
fish (Li et al.,, 2009), Kiss2 has been recognized as one of the
“kisspeptin” peptides.

Felip et al. (2009) performed a sophisticated synteny analysis
of kissI and kiss2 genes in vertebrate species. In their report, it was
strongly suggested that kissI and kiss2 are duplicated together with
some surrounding genes such as goltla/b, plekha5/6, pik3c2b/cg,
and etnkl1/2. They also discovered that only one co-ortholog for
each pair was found in a chordate (Ciona), suggesting that these
genes including kiss1/kiss2 resulted from a gene duplication event
that occurred at least “after” the divergence of urochordates and
vertebrates.

Concerning the duplication of genes in general, it is strongly
suggested that the common ancestors of the present vertebrates
underwent whole genome duplication (WGD) twice (2R hypoth-
esis; Ohno, 1970) that is evidenced by results of recent genome

'According to the Zebrafish Information Network, ZFIN; http:/zfin.org/zf
info/nomen.html, we will italicize gene names, such as kissI and kiss2,and Romanize
protein and peptide name, such as Kiss1 and Kiss2 (for details, see Table 1). We will
call the receptor for kisspeptins as “GPR54” in the present review. This is because a
recent study has reported on the promiscuous nature of ligands and receptors for
RF amide families, including kisspeptin (Lyubimov et al., 2010), and the terms, kissr
or Kissr, may lead to misunderstandings about the ligand receptor relationships.

Table 1 | Terminology of gene and protein names for kisspeptin.

Primates Non-primate Non-mammalian
mammals vertebrates
gene/mRNA KISS1 Kiss1 kiss1
Protein KISS1 Kiss1 Kiss1

sequencing in vertebrate and urochordate species (Putnam et al.,
2008). In addition, the ancestors of teleosts are suggested to
have undergone one additional WGD [third-round (3R)-WGD;
reviewed in Sato and Nishida, 2010]. Here, because amphibians
and lampreys have both kissI and kiss2, these homologs are con-
sidered to have duplicated in the ancestral vertebrate before the
emergence of lamprey, as suggested by Felip et al. (2009). During
evolution, some species such as the puffer fish, stickleback (Felip
et al., 2009; Kitahashi et al., 2009; Li et al., 2009; Shahjahan et al.,
2010; Yang et al., 2010), and some perciform fish (Felip et al., 2009;
Mechaly et al., 2011) seem to have lost the kissI gene. On the other
hand, in tetrapods, most mammals have lost Kiss2 during evo-
lution. Because the platypus possesses both KissI and Kiss2, the
loss of Kiss2 must have occurred at least after the divergence of
monotreme and other mammals. On the other hand, because the
opossum is reported to lack Kiss2 in its genome database (Felip
et al., 2009), we may predict that the loss of Kiss2 in the mam-
malian lineage occurred before the divergence of marsupials and
placentarians (Figure 1).

Recent studies that are based on the genome sequence data
suggested that most of the duplicated genes are subsequently lost
rapidly after duplication (Brunet et al., 2006; Sato et al., 2009).
Thus, for the teleost specific 3R-WGD, it is suggested that both
kiss1 and kiss2 duplicated once again to give rise to four genes,
and two of them were likely lost immediately in the early teleost
lineage.

Taken together, this conservative organization of loci that con-
tain kiss1/kiss2 observed widely in vertebrates strongly suggest that
kiss1 and kiss2 genes were duplicated at the locus level, and as Um
etal. (2010) suggested, this duplication probably occurred in two
rounds of WGD (1R-WGD and 2R-WGD; reviewed in Sato and
Nishida, 2010) event (Figure 1).

KISS1 AND KISS2 ACTIVATE KISSPEPTIN RECEPTOR, GPR54
After the identification of Kiss1 and Kiss2, several ligand—receptor
interaction studies have shown that both Kiss1 and Kiss2 activate
the kisspeptin receptor signaling pathways in goldfish (Li et al.,
2009), zebrafish, Xenopus (Lee et al., 2009), orange spotted grouper
(Shietal., 2010), and bullfrog (Moon et al., 2009), suggesting that
Kissl and Kiss2 bind to the same kisspeptin receptor in verte-
brates. Although the activation of the PKC or the cAMP pathway
by Kiss1 and Kiss2 is slightly different in each species, it is gener-
ally accepted that both Kiss1 and Kiss2 are ligands for GPR54 in
vertebrates. Thus, both Kissl and Kiss2, the peptide products of
sister genes, can function as kisspeptins.

The kisspeptin receptor in mammals has been referred to either
as GPR54 (Seminara et al., 2003) or Kisslr (Gottsch et al., 2009).
In many species studied so far, it has often been shown that more
than one ligand and more than one receptor for kisspeptin bind to
one another promiscuously (Lee et al., 2009; Li et al., 2009). Since
recent studies also show the promiscuity of kisspeptin and other
RF amide peptides (Lyubimov et al., 2010), it may be also possi-
ble that certain peptides other than Kissl and Kiss2 activate the
kisspeptin receptor signaling pathways. Thus, although we once
proposed a systematic nomenclature for kisspeptin receptor (Aka-
zome et al., 2010), we refer to the kisspeptin receptors as GPR54-1
and 2 as proposed in Lee et al. (2009) in the present review.

Frontiers in Endocrinology | Genomic Endocrinology

February 2012 | Volume 3 | Article 28 | 2


http://zfin.org/zf
http://www.frontiersin.org/Endocrinology
http://www.frontiersin.org/Genomic_Endocrinology
http://www.frontiersin.org/Genomic_Endocrinology/archive

Kanda and Oka

Evolution of kisspeptin neurons

Xenopus tropicalis

kiss1a,b  kiss2

Ligand Receptor
Polypterus (not examined) (not examined)
Zebrafish kiss1 kiss2  gpr54-1 gpr54-2
o)
3R , . o)
Medaka kiss1 kiss2  gpr54-1 gprod-2 9
@
duplication of . ) . to- T
kiss1/kiss2 Perciform fishes kiss1/lost' kiss2 ~ gpr54-1/lost ' gpr54-2
gpr54-1/gpr54-2
— Human KISS1 lost GPR54-1 lost
2R
Mouse,Rat ;
1] Sheep Kiss1 lost Gprb4-1 lost S
Platypus Kiss1 Kiss2  Gpr54-1 Gpr54-2 g r_c,lg;
Chicken lost lost 2 3
N B
Anole Lizard lost kiss2 lost gpr54-2 =
(7]
=0

gpr54-1a,b  gpro4-2

Lungfish (not examined) (not examined)

Elephant shark  kiss1 kiss2 (not examined) Chondrichthyes
Lamprey kiss1 kiss2 (not examined) Agnatha
Amphioxus (not examined) close relative? Urochordata

FIGURE 1 | Summary of the subtypes of ligand and receptor genes for
kisspeptin systems in the genome along the vertebrate lineage. kiss7 and
kiss2 are supposed to be duplicated before the emergence of lamprey, and
probably due to the whole genome duplication of the ancestral vertebrate. It
is supposed that kiss2 and gpr54-2 were lost in marsupial and placental
mammials after the divergence from the monotreme during mammalian

+, Some perciform fish species have lost kiss7 and/or gpr54-1.

*, loss of kiss1

*, loss of kiss2

evolution. It should be noted that some teleost species have lost gprb4-1, but
no teleosts have lost gpr54-2, suggesting the significance of gpr54-2 in
teleosts, which is opposite to the case in the mammalian lineage. It is also
consistent with the higher level of expression of gpr54-2 compared to that of
gpr54-1in teleost brains. The loss of kiss7 (blue) or kiss2 (red) is indicated by
asterisks.

KISSPEPTIN ADMINISTRATION STUDY OF KISSPEPTIN FUNCTIONS

In mammals, many studies have shown that peripheral or ICV
injection of kisspeptin evokes LH secretion in rodents (Gottsch
et al., 2004; Irwig et al., 2004; Matsui et al., 2004; Navarro et al.,
2004, 2005a,b), sheep (Messager et al., 2005), monkey (Shahab
et al., 2005; Plant et al., 2006; Seminara et al., 2006), and human
(Dhillo et al., 2005). Moreover, it has been reported that the
kisspeptin stimulates GnRH neurons both directly and indirectly
via interneurons (Han et al., 2005; Dumalska et al., 2008; Liu
et al., 2008; Pielecka-Fortuna et al., 2008; Zhang et al., 2008;
Pielecka-Fortuna and Moenter, 2010). However, the number of
studies in animals that possess both Kissl and Kiss2 is lim-
ited. In such animals, there is no evidence for direct kisspeptin
GnRH regulation on GnRH release, and the results of peripheral
administration of Kissl and Kiss2 decapeptides are not consis-
tent with one another. Administration of the core decapeptide
of Kiss2, but not of Kissl, significantly increased LHB and FSHp
subunit mRNA expression in the zebrafish pituitary (Kitahashi
et al., 2009). Kiss2 also induced LH and FSH secretion in sea

bass with higher potency than Kissl decapeptide (Felip et al,,
2009). In contrast, intraperitoneal administration of Kiss2 pep-
tide in goldfish did not increase serum LH levels, although the
administration of Kissl peptide did (Li et al., 2009). Thus, there
appears to be a difference amongst species in the relative potencies
of Kiss1 and Kiss2 for facilitating LH and FSH secretion and in the
time of LH/FSH rise after administration of kisspeptins. There-
fore, the induction of LH/FSH secretion by kisspeptins (Kiss1 or
Kiss2) in non-mammalian vertebrates needs more experimental
evidence to be accepted as a general notion. Moreover, because
peripheral administration does not reflect the actual axonal pro-
jection and the receptor distribution of kisspeptin neurons in the
brain, cellular-level studies, such as electrophysiology, are neces-
sary to determine the action sites of kisspeptins and the possible
interactions between kisspeptin and GnRH neurons. Therefore,
electrophysiological examination of effects of either Kiss1 or Kiss2
on GnRH neurons in species that possess both genes is important
for the understanding of such peptidergic systems that arose from
the gene duplication.
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INVOLVEMENT OF KISSPEPTIN NEURONS IN THE STEROID
FEEDBACK SYSTEM

In the rodent anteroventral periventricular nucleus (AVPV) and
sheep preoptic area (POA), kiss] mRNA expression in Kiss1 neu-
rons are upregulated, whereas those in the arcuate nucleus (ARC)
are downregulated, by gonadal steroids (Irwig et al., 2004;Smith
et al., 2005a,b, 2007, 2008; Revel et al., 2006; Adachi et al., 2007;
Ansel et al,, 2010). Although there is a discrepancy that ewe ARC
Kissl show higher expression in the breeding season in spite of
the negative regulation of gonadal steroids (Estrada et al., 2006;
Smith, 2009), it is generally accepted that AVPV/POA Kiss1 neu-
rons are positively regulated, and ARC Kiss1 neurons are negatively
regulated by the gonadal steroids. These properties are widely
recognized in mammalian species.

In mice, it has been shown that GnRH neurons do not express
ERa (reviewed in Herbison and Pape, 2001), which are essential for
normal reproductive functions (Couse et al., 2003; Dorling et al.,
2003; Wintermantel et al., 2006). Thus, Herbison concludes that
estrogen acts indirectly on GnRH neurons to bring about their
activation (Herbison, 2008). This missing link in mice was found
to be explained by steroid sensitive kisspeptin neurons, because
kisspeptin directly depolarizes GnRH neurons in mice (Han et al.,
2005; Dumalska et al., 2008; Liu et al., 2008; Pielecka-Fortuna et al.,
2008; Zhang et al., 2008; Pielecka-Fortuna and Moenter, 2010),
which is expected to facilitate firing activities and then GnRH
release. Thus, the role of kisspeptin neurons in steroid feedback is
one of the most interesting topics in the study of kisspeptin neuron
systems.

In non-mammalian vertebrates, the localization of kiss1/kiss2
neurons is reported in medaka (Kanda et al., 2008; Mitani et al.,
2010), zebrafish (Kitahashi et al., 2009), Xenopus (Lee et al,
2009), seabream (Shimizu et al., 2012), and puffer fish (Kanda
et al., 2010). Among them, medaka and goldfish are the only
species whose steroid sensitivity has been examined experimen-
tally. Therefore, recent data shown by us in medaka will be
described below. In addition, we will also describe results in the
goldfish, which gives us insights into the evolutionary aspects of
kiss1/kiss2 genes.

GONADAL STEROIDS UPREGULATE K/SS7 EXPRESSION IN MEDAKA
NVT NEURONS

In situ hybridization studies have shown the localization of kissI
and kiss2 neurons in the medaka brain (Kanda et al., 2008; Kita-
hashi et al., 2009; Mitani et al., 2010). The kissI neurons are local-
ized in the hypothalamic nuclei, nucleus ventralis tuberis (NVT)
and nucleus posterioris periventricularis (NPPv), as well as in an
extrahypothalamic nucleus, habenula. On the other hand, the kiss2
neurons are localized in nucleus recessus lateralis (NRL). Among
these kissI and kiss2 neurons, only the kiss] neurons in NVT
show prominent steroid sensitivity in their kisspeptin gene expres-
sion. Ovariectomy (OVX) dramatically reduced kissI expression
in NVT neurons, which were recovered by subsequent estrogen
replacement. Because our unpublished data showed that 11 keto-
testosterone, a non-aromatizable androgen, did not recover this
decrease at all, the steroid feedback activity seems to be mediated
by estrogen receptor. It was also shown that NVT kissI neurons
are the only kisspeptin neuron population that shows expressional

variations according to the breeding states. Moreover, double
insitu hybridization analysis has shown that kissI neurons in NVT
express ERa. In addition to ERa,, NVT kissI neurons in medaka
express ERB as well (Mitani et al., 2010), which is similar to kissI
neurons in mice (Smith et al., 2005a).

Interestingly, in addition to steroid sensitivity, NVT kissI neu-
rons also show sexual dimorphism in number (Kanda et al., 2008).
In contrast to the sexual dimorphism found in rodents, in which
females have more AVPV KissI neurons than males (Clarkson and
Herbison, 2006; Smith et al., 2006; Adachi et al., 2007; Kauffman
etal., 2007), male medaka show significantly more NVT kissI neu-
rons than females. Comparative analyses in much more vertebrate
species should be necessary for understanding the organization
of sexual dimorphism and the functional significance of male- or
female-predominant expressions.

POA KISS2 NEURONS IN GOLDFISH SHOW STEROID SENSITIVITY LIKE
POA KISST NEURONS IN MAMMALS
In zebrafish, localization of kissI and kiss2 neurons was analyzed by
in situ hybridization (Kitahashietal.,2009; Servilietal.,2011). The
kiss1 neurons in the zebrafish brain are distributed in the habe-
nula and periventricular hypothalamus, while the kiss2 neurons
are distributed in the posterior tuberal nucleus, the periventricular
hypothalamic nucleus, and parvocellular preoptic nucleus (Kita-
hashietal.,2009; Servilietal.,2011). In the juvenile zebrafish, it was
demonstrated that estradiol administration increases the mRNA
expression of kissI, kiss2, and gpr54-2 in the brain (Servili et al.,
2011). Among them, Servili et al. focused on kiss2 neurons in the
dorsal hypothalamus (Hd), caudal hypothalamus (Hc), and ante-
rior tuberal nucleus (ATN), and demonstrated that all of them
showed higher kiss2 expression after estradiol administration in
juvenile fish. Because it may not be physiological to administrate
estrogen to juveniles, it may be rather difficult to interpret these
results. In spite of this, it is intriguing to investigate the homolo-
gous relationships of these neurons to the medaka steroid sensitive
kiss1 neurons in NVT and steroid insensitive kiss2 neurons in NRL.
However, as the hypothalamic structures vary even among teleosts,
and no clear experimental evidence for the nucleus-specific steroid
sensitivity in adults has been shown in any fish except medaka, fur-
ther examination of the effects of gonadal steroids on the teleost
kisspeptin neurons using ovariectomy should be necessary.
Therefore, we recently performed kissI and kiss2 in situ
hybridization in the goldfish, because the goldfish is rather easily
amenable to ovariectomy, and it belongs to the same Cyprini-
formes as the zebrafish. We found a prominent expression of kiss2
in POA, unlike results in zebrafish, and found that the POA kiss2
neurons show clear steroid sensitivity (Kanda et al., 2012). In the
adult goldfish in the breeding condition, the kissI neurons are
localized in the habenula, whereas the kiss2 neurons are located in
nucleus lateralis tuberis (NLT), NRL, and POA. Among these neu-
rons, the POA kiss2 neurons decreased in number after OVX, and
the reduction was recovered by estrogen implant. It strongly sug-
gests that POA kiss2 neurons are upregulated by ovarian estrogen,
which is similar to the AVPV/POA kiss] neurons in mammals.
The discussion on the homology and the evolutionary hypoth-
esis derived there from will be described in detail later in this
review.
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PUFFER FISH, WHICH POSSESS ONLY KISS2, SHOW KISS2 EXPRESSION
IN POA AND HYPOTHALAMUS

From the genome database analysis, puffer fish are supposed to
possess only kiss2 expressing neurons, because they have lost kissI
at the genome level. Shahjahan et al. (2010) took advantage of
the seasonally breeding grass puffer and showed changes in the
expression levels of kiss2/gpr54-2 genes together with the gonado-
somatic index (GSI) during the spawning period. Here, because of
the absence of kissI neurons, the kiss2 neurons in certain brain
area are supposed to subserve the kisspeptin functions in this
species.

Recently, we analyzed the localization of kiss2 neurons in juve-
nile green puffer fish by in situ hybridization and found that they
are expressed in the hypothalamic nucleus NRL and the POA
(Kanda et al., 2010), which is similar to the results in the zebrafish
(Kitahashi etal., 2009; Servili et al., 2011). Unfortunately, it is tech-
nically difficult to raise green puffer to breeding conditions, and
future studies using puffer fish that are capable of breeding to full
maturity in aquarium tanks will be interesting.

In addition to this observation, it was recently shown that
kiss2 expression is increased during the pre-spawning season (late
spermatogenesis stage in male, and early vitellogenesis stage in
female) in club mackerel (Selvaraj et al., 2010). Further expres-
sion analyses in some teleost species may lead us to find some
general expressional variations of kisspeptin genes in the seasonal
breeders.

SPECIES DIFFERENCE IN THE FUNCTIONS OF THE SISTER GENES, KISS1
AND KiISS2

There are many species differences in the functions of kissI
and kiss2 neurons in vertebrates. The most extreme example
lies between kissI-lacking puffer fish and KISS2-lacking human.
Even within the teleost species that express both kissI and
kiss2, there are obvious species differences. For example, in
medaka, only the NVT kissI neurons show steroid sensitivity,
whereas there is no such kissI neuron in the hypothalamus of
zebrafish, and, instead, many kiss2 neurons are localized in the
hypothalamus.

Medaka kiss2 neurons are localized in NRL, where kiss2 neu-
rons are also localized in zebrafish. Although Servili et al. (2011)
proposed a possibility of functional similarity between the steroid
sensitive medaka NVT kissI neurons and some of the zebrafish
kiss2 neurons in the ventral hypothalamus, the zebrafish kiss2 neu-
rons appear to contain neurons equivalent to the medaka kiss2
neurons and some other populations of neurons. It should be
interesting to search for experimental evidence for such homolo-
gies. In situ hybridization and immunohistochemistry using some
other fish species may give us clues to further understanding
of the functional homology and evolution of these sister gene-
expressing neuron systems. Experimental analysis on the effects
of gonadal steroids by gonadectomy in various non-mammalian
species should be very helpful to discuss true functional or mor-
phological homologies, because the steroid sensitivity well char-
acterizes the property of each nucleus, but such studies have been
performed only in a small number of species such as medaka and
goldfish.

EVOLUTION OF KISS7 AND KISS2 NEURONS IN EACH
NUCLEUS — A WORKING HYPOTHESIS

As described above, kissI and kiss2 in the present vertebrate
species are suggested to be the sister genes, which originate from
the gene duplication event in the ancestral vertebrate. Further-
more, it is highly possible that they were duplicated during
the genome-wide duplication events. Because these sister genes
possess family genes in their loci, they are considered to have
duplicated at least at the locus level, regardless of whether the
WGD event made these sister genes or not. Thus, just after the
duplication, kissI and kiss2 must have had completely the same
sequence in their open reading frame as well as the regulatory
sequence, and they must have been co-expressed in the same
location at first. During evolution, one or even both of them
was silenced in some species, and their location of expression
and function diverged. Moreover, as seen between medaka and
zebrafish/goldfish, the general functions or relative functional
importance of kissI and kiss2 for the central regulation of repro-
duction are different among species; their functions are considered
to have diverged among species during evolution (Kanda et al,,
2012).

Interestingly, the inversion of the importance of kissI and kiss2
for the central regulation of reproduction occur rather commonly
among different species (see the previous section). On the other
hand, this phenomenon never occurred during the evolution of
the hypophysiotropic GnRH system; the Cyprinids and Salmonids
have lost gnrh1, but this lack seems to have been functionally com-
pensated by the remaining genes (Okubo and Nagahama, 2008).
We suppose that the functional conservativeness of the GnRH sys-
tems may be due to the fact that loss of the gnrh function, especially
the hypophysiotropic one, would lead to severe reproductive dys-
functions (Cattanach et al., 1977) or to a failure of normal sexual
maturation (Wu et al., 2006).

We have been routinely performing in situ hybridization of
kiss1 and kiss2 genes (Kanda et al., 2008; Mitani et al., 2010)
and find it more difficult to detect them compared to gnrh2
or gnrh3 (Gopinath et al., 2004; Okubo et al., 2006; Palevitch
et al., 2007), which empirically suggests the lower level of expres-
sion of kissl/kiss2, especially during the developmental stages.
Moreover, the reported lack of gpr54 expression in the hypophys-
iotropic GnRH1 neurons in some teleosts (Grone et al., 2010;
and our unpublished observation) suggests that the physiologi-
cal functions and their mechanisms are somewhat more diverged
in the vertebrate kissl/kiss2 systems, compared to the rather
conservative GnRH systems. Thus, unlike the GnRH systems,
in which the inversion of physiological functions between the
hypothalamic hypophysiotropic (GnRH1) and extrahypothala-
mic neuromodulatory GnRH systems (GnRH2/GnRH3) has never
been reported, the kissI and kiss2 systems are the ones having
rather promiscuous ligand—receptor relationships and are sup-
posed to be more adaptive during evolution; they appear to
have avoided extreme selection pressure. Thus, the understand-
ing of the evolution of kiss] and kiss2 neuron systems may
lead to a model for the study of general evolutionary mecha-
nism of peptidergic neurons in the absence of strong selection
pressure.
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EVOLUTION OF STEROID SENSITIVE KISSPEPTIN NEURONS IN
POA/AVPV

The distribution of kissI and kiss2 neurons in representative ani-
mal species and in the presumptive common ancestral animals
are shown in Figure 2. It has been already suggested that POA
Kissl neurons in sheep, AVPV Kissl neurons in rodents, and
PeN Kissl neurons in pig are homologous in mammals (Smith,
2009; Tomikawa et al., 2010). These forebrain kisspeptin neurons
in mammals, which show steroid sensitivity, are Kiss1 neurons,
although they have not been examined in monotreme, which
have both KissI and Kiss2 genes. On the other hand, the gold-
fish steroid sensitive POA kisspeptin neurons express kiss2 mRNA
(Kanda et al., 2012). This may sound a little bit strange at first
sight. However, the results in Xenopus laevis may give us a hint
for the evolutionary mechanism. The Xenopus POA kisspeptin
neurons express kiss2 mRNA (Lee et al., 2009). Thus, all the verte-
brate forebrain populations of kisspeptin neurons studied so far,
except for mammals, are Kiss2 neurons. We therefore hypothe-
size that both ancestral teleosts and ancestral tetrapods expressed
kiss2 in POA. We further hypothesize that in mammals Kiss! is
expressed in the neurons that are homologous to Xenopus POA
kiss2 neurons; this conversion of Kiss2 to KissI may have occurred
because of the loss of Kiss2 after the divergence of the ancestor
of the present mammals from the monotreme. Thus, we assume
that, during mammalian evolution, the loss of Kiss2 gene triggered
the expression of KissI in mammalian POA. An alternative pos-
sibility is that KissI neurons emerged in the POA before they lost
Kiss2.

However, the overlapped functions tend to be lost rapidly dur-
ing evolution in general. We suppose that the loss of Kiss2 triggered
the expression of KissI in the same neurons because of the simi-
lar regulatory sequence between KissI and Kiss2. In other words,
the loss of Kiss2 might have canceled the expressional inhibition of
Kiss1in POA kisspeptin neurons. Such a phenomenon is called the
“genetic robustness” and has been only examined in the duplicated
genes of C. elegans and yeast (Gu et al., 2003; Conant and Wagner,
2004), or has been observed in human genetic disease (Hsiao and
Vitkup, 2008). In these studies, it was shown that the duplicated
genes, which have a similar copy as the sister genes, tend to cause
genetic disease less frequently compared to the singleton genes.
Thus, it is supposed that closely related genes, such as sister genes,
often compensate for the gene loss, and we suppose that Kiss2 gene
loss and emergence of KissI neurons in mammalian lineage coin-
cided with each other. To our knowledge, there has been no report
on the occurrence of such “genetic robustness” in the highly com-
plicated neuronal systems of vertebrates. Although it is difficult to
use monotreme for experimental use, it is intriguing to study the
localization of monotreme Kiss1 and Kiss2 neurons. Thus, the evo-
lutionary studies of kiss! and kiss2 genes should serve as a good
model system for the study of evolution of sub-functionalized
sister genes in the central nervous system in general.

STEROID SENSITIVE AND INSENSITIVE HYPOTHALAMIC KISSPEPTIN
NEURONS

In mammals, the hypothalamic Kiss1 neurons in ARC are steroid
sensitive as described above. Because OVX increases the Kissl

Hb Hb
POA Q
NLT NVT
goldfish medaka

N

presumptive ancestral teleosts

\

POA
NLT/NVT

®
®
POANE

FIGURE 2 | Schematic illustrations for the distribution of kiss7 and
kiss2 neurons in vertebrate brains, including some hypotheses. Open
circles indicate kiss1, and filled triangles indicate kiss2 neurons.
Circles/triangles in red are kiss1/kiss2 neurons that are steroid sensitive.
Because kiss1 and kiss2 are duplicated sister genes, they are considered
to have been co-expressed in the same neurons in the common ancestor

presumptive common ancestor of teleosts and tetrapods

POA

African clawed frog
* steroid sensitivity not examined

AVPV/POA ARC
mouse/sheep

*loss of kiss2

presumptive ancestral tetrapods

POA

O Kiss1 neurons
4 Kiss2 neurons
(red: steroid sensitive)

of teleosts and tetrapods. Considering the fact that both amphibians and
teleosts express kiss2 in POA, the ancestral teleosts and ancestral
tetrapods are supposed to have expressed kiss2. Because Kiss2 was lost
in the mammalian lineage, we hypothesize that Kiss7 began to be
expressed where Kiss2 used to be expressed, to compensate for the loss
of Kiss2 during mammalian evolution.
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expression, and estrogen or testosterone nullifies this increase
in ARC, the ARC Kiss1 neurons are considered to be negatively
regulated by ovarian steroids.

In species other than mammals, the only report about the
gonadal steroid regulation on the hypothalamic kisspeptin neu-
rons is on medaka Kiss1 neurons (Kanda et al., 2008; Mitani et al.,
2010). Here, unlike the mammalian ARC Kissl neurons, their
expression is enhanced, instead of inhibited, by ovarian steroids.
Thus, one may argue against the homology of these nuclei in
teleosts and mammals. We should note, however, that positive
or negative regulation can be rather easily inverted by the compo-
sition of co-expressed transcription factors, such as Spl and Sp3
(Li et al., 2007). Thus, the difference in positive/negative regula-
tion itself should not disprove the homology. Moreover, NVT also
contains some other types of neurons involved in the homeosta-
tic regulation like the mammalian ARC, supporting the evidence
for the possible homology of these nuclei. However, because the
teleosts lack the median eminence, the characteristic projection
of ARC Kiss1 neurons to the median eminence, which is usually
observed in mammals, cannot be observed. Instead, the medaka
NVT Kiss1 neurons are shown to project to the POA. Experimen-
tal analysis of steroid sensitivity and the axonal projections of the
hypothalamic Kiss1 neurons in other animals are necessary for the
understanding of the evolutionary origin and possible homology
of the hypothalamic Kissl neurons in other animals are neces-
sary for the understanding of the evolutionary origin and possible
homology of the hypothalamic Kiss1 neurons.

In medaka, gene expression of the NRL kiss2 neurons was
shown to be independent of breeding conditions), and these kiss2
neurons were not shown to express ERa (Mitani et al., 2010). Thus,
the neurons that are homologous to the steroid insensitive teleost
hypothalamic (NRL) kiss2 neurons may be absent in mammals.
Further comparative studies among various species of teleosts and
amphibians may solve the problem of whether steroid insensitive
hypothalamic kiss2 neurons are specific to the teleosts or just lost
in mammals.

TELEOST-SPECIFIC EXPRESSION OF KISS7 IN HABENULA

The kisspeptin neurons in the habenula have been reported only
in teleosts (Kitahashi et al., 2009; Mitani et al., 2010; Servili et al.,
2011), and they express kiss! in all those species. The projection
of habenular neurons have been well studied by classical neu-
roanatomical experiments as well as by using recent molecular
genetic techniques (Aizawa et al., 2005; Gamse et al., 2005). Con-
sistent with results of these studies of habenular projections, the
habenular Kissl neurons in zebrafish (Servili et al., 2011) and
medaka (Kanda et al., unpublished data) appears to project to
the interpeduncular nucleus (IPN) via fasciculus retroflexus. As
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