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As an essential hormone regulating gonads in vertebrates, the biosynthesis and secretion
of follicle-stimulating hormone (FSH) is controlled by a variety of endocrine and paracrine
factors in both mammalian and non-mammalian vertebrates. Activin was initially discovered
in the ovary for its specific stimulation of FSH secretion by the pituitary cells. Our earlier
studies in fish have shown that activin stimulates FSHβ but suppresses LHβ expression in
both the goldfish and zebrafish. Further experiments showed that the regulation of FSHβ in
fish occurred at the promoter level involving Smads, in particular Smad3. To further under-
stand the mechanisms by which activin/Smad regulates FSHβ transcription, the present
study was undertaken to analyze the promoter of goldfish FSHβ gene (fshb) with the aim
to identify potential cis-regulatory elements responsible for activin/Smad stimulation. Both
serial deletion and site-directed mutagenesis were used, and the promoter activity was
tested in the LβT-2 cells, a murine gonadotroph cell line. The reporter constructs of gold-
fish FSHβ promoter-SEAP (secreted alkaline phosphatase) were co-transfected with an
expression plasmid for Smads (2 or 3) followed by measurement of SEAP activity in the
medium.Two putative Smad responsive elements were identified in the promoter at distal
and proximal regions, respectively. The distal site contained a consensus Smad binding
element (AGAC, −1675/−1672) whereas the proximal site (GACCTTGA, −212/−205) was
identical to an SF-1 binding site reported in humans, which was preceded by a sequence
(AACACTGA) highly conserved between fish and mammals.The proximal site also seemed
to be involved in mediating stimulation of FSHβ expression by gonadotropin-releasing hor-
mone and its potential interaction with activin. In conclusion, we have identified two
potential cis-regulatory elements in the promoter of goldfish FSHβ that are responsible
for activin-induced expression of the gene. Since activin stimulation of FSHβ expression is
functionally conserved in fish and mammals, our findings contribute to the understanding
of the fundamental mechanisms of this regulation across vertebrates.
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INTRODUCTION
Follicle-stimulating hormone (FSH) is an essential regulator
of gonadal development and function in vertebrates including
teleosts. Like other pituitary glycoprotein hormones, FSH is a
heterodimeric protein consisting of a hormone-specific β subunit
(Fshb, fshb) and a common α subunit (Cga, cga) shared with other
pituitary glycoprotein hormones (Pierce and Parsons, 1981). The
biosynthesis of FSH in the pituitary is primarily determined by the
expression of its β subunit (Shupnik, 1996), which is subject to reg-
ulation by a variety of neuroendocrine, endocrine, and paracrine
factors including gonadotropin-releasing hormone (GnRH) from
the hypothalamus (Ferris and Shupnik, 2006), sex steroids from
the gonads (Glidewell-Kenney et al., 2008), and local factors in
the pituitary, particularly activin and its binding protein follistatin
(Kawakami et al., 2002; Bilezikjian et al., 2004). There are lines of
evidence that the effects of GnRH and steroids on FSH biosyn-
thesis may involve interactions with the activin signaling in the
pituitary (Melamed, 2010).

Activin is also a dimeric protein (βAβA, βBβB, and βAβB),
belonging to the transforming growth factor β (TGF-β) superfam-
ily both structurally and functionally. Activin was first identified
in mammalian ovaries as a potent stimulator of pituitary FSH
secretion (Ling et al., 1986a; Vale et al., 1986), antagonizing the
effect of inhibin. Subsequent studies have provided evidence that
activin is also produced locally in the pituitary together with its
neutralizing binding protein follistatin in both mammals and fish
(Meunier et al., 1988; Roberts et al., 1989; Lau and Ge, 2005; Lin
and Ge, 2009) and the pituitary-derived activin plays an important
role in controlling FSH biosynthesis and secretion in a paracrine
manner (Bilezikjian et al., 2004; Gregory and Kaiser, 2004). In the
rat, both in vitro and in vivo studies have demonstrated potent
stimulatory effects of activin on FSHβ expression and FSH secre-
tion in the pituitary (Carroll et al., 1989; Woodruff et al., 1993; Lee
and Rivier, 1997). In teleosts, activin also stimulates fshb mRNA
expression in the goldfish (Yam et al., 1999), tilapia (Yaron et al.,
2001), zebrafish (Lin and Ge, 2009), and European eel (Aroua
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et al., 2011). These data strongly suggest that as a crucial function
of activin in reproduction, its stimulation of FSH biosynthesis is
well-conserved across vertebrates, indicating the importance of
such regulation in vertebrate reproduction.

The regulation of FSHβ mRNA expression by GnRH has been
well documented and the effect appears to depend on the fre-
quency of GnRH pulses, with high frequency suppressing its
expression and low frequency favoring the expression (Dalkin
et al., 1989; Jayes et al., 1997). Interestingly, it has been reported
that the regulation of FSH biosynthesis by GnRH involves the
activin–follistatin system produced locally in the pituitary. GnRH
stimulates FSHβ mRNA expression in a rat pituitary perfusion
system and its stimulatory effect is blocked by follistatin (Besecke
et al., 1996). Similar result has also been reported in the murine
gonadotroph cell line LβT-2 cells (Pernasetti et al., 2001). These
findings suggest that the GnRH-regulated FSHβ expression is, at
least partially, activin-mediated.

Like other TGF-β superfamily members, activin transduces its
signals by interacting with its type I and type II serine/threonine
kinase receptors followed by activation of intracellular signaling
proteins, the Smads. Activin first binds to its type II receptors,
which then recruits a type I receptor to form a type I–type II recep-
tor complex (Mathews, 1994). The activin-receptor complex in
turn phosphorylates receptor-regulated Smads (R-Smad), Smad2,
or Smad3. The R-Smads then form heteromeric complexes with a
common partner Smad4 (Co-Smad), which translocate into the
nucleus where they function as transcriptional factors to con-
trol the expression of target genes. In addition to these signal
transducing Smads, an inhibitory Smad (I-Smad), Smad7, plays
an antagonistic role by blocking the activation of these R-Smads
(Massague et al., 2005; Ross and Hill, 2008).

Smads exert their transcriptional regulatory activities by inter-
acting with specific DNA elements together with other specific
transcription factors (Shi and Massague,2003). Smad3 and Smad4,
but not Smad2, have the ability to bind to the specific DNA
sequence (AGAC or GTCT) called Smad binding element (SBE;
Dennler et al., 1998; Shi et al., 1998; Zawel et al., 1998; Chai et al.,
2003). Smads also interact with various transcription factors to
elicit specific gene expression in different cell types, including acti-
vating protein-1 (AP-1) transcriptional complex (Jun/Fos; Wang
et al., 2008).

Studies using the LβT-2 cells showed that activin stimulated
endogenous FSHβ expression in this gonadotroph cell line (Gra-
ham et al., 1999) and the stimulation was mediated via both Smad2
and Smad3 (Bernard, 2004). In addition, activin also increased
transcriptional activity of mouse, rat, and ovine FSHβ promoters
in the LβT-2 cells and the effect was also mediated via Smads
(Dupont et al., 2003; Suszko et al., 2003; Lamba et al., 2006).
Further experiments showed that it was Smad3 that primarily
mediated activin stimulated rat FSHβ promoter activity in the
LβT-2 cells (Gregory et al., 2005; Suszko et al., 2005). Promoter
analysis revealed an inverted palindrome sequence (GTCTAGAC;
−266/−259) in the proximal region (−284/−252) of rat FSHβ

promoter (Suszko et al., 2003; Gregory et al., 2005), and the
same sequence was also confirmed to bind Smad2/3/4 complex
in the promoter of mouse FSHβ gene (−266/−259; Lamba et al.,
2006).

Compared to mammalian models, our knowledge on
gonadotropin regulation especially FSH expression and secretion
in other vertebrates is rather limited. There have been several stud-
ies on FSHβ gene and its promoter region in teleosts, providing
some clues to the potential mechanisms underlying its regulation
at the molecular level (Chong et al., 2004). The genomic struc-
ture of FSHβ was first characterized in the goldfish whose genome
contains two copies of the gene (gfGTHIβ-1, fshb1 and gfGTHIβ-
2, fshb2). Sequence analysis of their promoter regions revealed
multiple putative regulatory elements such as steroid responsive
elements (estrogen responsive element, ERE; androgen respon-
sive element, ARE), GnRH responsive element (GnRH-RE), and
gonadotropin specific element/SF-1 binding element (GSE/SF-1;
Sohn et al., 1998). However, none of these potential cis-regulatory
elements has been functionally tested. Results from our previous
study in the goldfish showed that activin stimulated FSHβ (fshb)
promoter activity through the Smad signaling pathway, especially
Smad3 (Lau and Ge, 2005); however, the underlying mechanisms
for Smad signaling remains largely unknown in this species. This
study was undertaken to identify and localize the element(s)
responsible for Smad-mediated goldfish fshb transcription. Two
potential activin or Smad responsive elements (SRE) were localized
at the distal and proximal regions of the promoter, respectively.
Our evidence also suggested the existence of additional SRE in the
promoter region.

MATERIALS AND METHODS
CHEMICALS, ENZYMES, AND HORMONES
All chemicals were purchased from Sigma (St. Louis, MO, USA) or
Amersham Biosciences (Piscataway, NJ, USA), and enzymes from
Promega (Madison, WI, USA) unless otherwise stated. Recom-
binant goldfish activin B was generated in our laboratory by an
established Chinese hamster ovary (CHO) cell line and partially
purified from the medium according to Schmelzer et al. (1990).
One unit (U) of activin B is defined as the amount per milliliter
to induce a half-maximal differentiation of F5-5 cells in the ery-
throid differentiation factor assay (ED50; Eto et al., 1987; Schmelzer
et al., 1990), which is equivalent to about 7–8 ng/ml recombi-
nant human activin A in the same assay. Recombinant human
activin A was provided by Dr. A. F. Parlow through the National
Hormone and Pituitary Program (National Institute of Diabetes
and Digestive and Kidney Diseases, Torrance, CA, USA). Salmon
GnRH (sGnRH) was purchased from Sigma. All PCR primers
were synthesized by Integrated DNA Technologies, Inc. (Coralville,
IA, USA).

CONSTRUCTION OF Smad EXPRESSION PLASMIDS AND SEAP
REPORTER PLASMIDS
The expression constructs of Smad2, Smad3, and Smad7 for over-
expression have been described in our previous study (Lau and Ge,
2005). The reporter plasmid pSEAP/gfFSHβ(−1744) containing
goldfish fshb promoter and the reporter gene SEAP (secreted alka-
line phosphatase) was constructed by inserting the fshb promoter
region (1744 bp fragment) into the promoter-less reporter plasmid
pSEAP2-Enhancer (Clontech, Palo Alto, CA, USA) at the EcoRI
and XhoI sites as described previously (Lau and Ge, 2005). As men-
tioned above, goldfish has two FSHβ genes (fshb1 and fshb2) in the
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genome (Sohn et al., 1998). In the present study we chose to focus
on the promoter of fshb1 because this form is better characterized
and its expression seemed to vary more obviously during sexual
maturation (Yoshiura et al., 1997; Sohn et al., 1998). The reporter
plasmids containing different lengths of fshb promoter were gen-
erated by PCR using pSEAP/gfFSHβ(−1744) as the template. All
sense primers and antisense primers were designed with XhoI and
EcoRI restriction sites added, respectively. PCR-based site-directed
mutagenesis was performed to introduce base changes at potential
cis-regulatory elements in the promoter fragments by using muta-
genic primers. The promoter fragments of different lengths were
amplified by PCR on the Thermal Cycler 9600 (Eppendorf, Ham-
burg, Germany) in 1× Pfu buffer, 0.2 mM dNTPs, 0.2 μM each
primer, and 3 U Pfu DNA polymerase in a final volume of 50 μl.
All amplified products were digested with XhoI and EcoRI restric-
tion enzymes followed by subcloning into the pSEAP2-Enhancer
reporter plasmid at the respective restriction sites.

CELL CULTURE AND TRANSIENT TRANSFECTION
The mouse gonadotroph cell line, LβT-2 cells, was generously
provided by Dr. Pamela Mellon (Department of Reproductive
Medicine, University of California, San Diego). The cells were cul-
tured in DMEM medium (Gibco BRL, Gaithersburg, MD, USA)
with 10% fetal bovine serum (Hyclone, Logan, UT, USA) at 37˚C
with 5% CO2. For transient transfection, cells were sub-cultured
24 h before transfection in a 24-well plate and co-transfected
with the pSEAP/gfFSHβ reporter plasmids of different promoter
lengths, the Smad expression plasmids (Smad2 and Smad3), and
the internal control plasmid pSV-β-galactosidase (Promega) using
Lipofectamine 2000 transfection reagent (Invitrogen, Carlsbad,
CA, USA). pBK-CMV vector (Stratagene, La Jolla, CA, USA) was
used to balance the amount of DNA when necessary.

SEAP REPORTER GENE ASSAY
The SEAP activity in the medium of transfected cells was assayed
with the Chemiluminescent SEAP Reporter Gene Assay Kit
(Roche, Mannheim, Germany) according to the protocol from the
manufacturer. Briefly, 100 μl medium was collected from each well
and centrifuged to pellet cell debris. Fifty microliters supernatant
was then diluted with 150 μl Dilution Buffer in a microtube. After
incubation at 65˚C for 30 min, the samples were centrifuged for
30 s at room temperature at 14,000 × g before transferring to ice
bath. Fifty microliters diluted sample was then transferred to the
well of the LumiNunc 96 MicroWell plate (Nalge Nunc Interna-
tional, Rochester, NY, USA) followed by addition of 50 μl Inactiva-
tion Buffer. After a 5-min incubation period at room temperature,
50 μl Substrate Reagent (47.5 μl Substrate Buffer + 2.5 μl Alka-
line Phosphatase Substrate) was added. The mixture was incu-
bated for 10 min at room temperature with gentle rocking. The
light emission was visualized, quantified, and analyzed with the
Lumi-Imager F1 (Roche).

β-GALACTOSIDASE REPORTER GENE ASSAY
To control transfection efficiency and normalize SEAP assay data,
all transfections were performed with pSV-β-galactosidase expres-
sion vector (Promega, 500 ng/well) included as the internal con-
trol. The activity of pSV-β-galactosidase was assayed with the

β-Galactosidase Enzyme Assay System (Promega). Briefly, after
medium collection for SEAP assay, the cells were washed twice
with ice-cold phosphate-buffered saline (PBS, pH 7.4), and lysed
with 100 μl 1× Reporter Lysis Buffer. The lysates were transferred
to microtubes, vortexed, and centrifuged at 14,000 × g for 2 min at
4˚C. Fifty microliters supernatant of each sample was then trans-
ferred to 96-well plate containing 50 μl 2×Assay Buffer (Promega)
in each well. After incubation at 37˚C for 2 h, 150 μl sodium car-
bonate (1 M) was added to stop the reaction. The absorbance of
the samples was read at 420 nm in the Spectra MAX 250 microplate
reader (Molecular Devices, Sunnyvale, CA, USA).

DATA ANALYSIS
All the experiments were performed at least twice, and all treat-
ments were carried out in triplicate in each experiment. For SEAP
assay, the SEAP activity was normalized to the β-galactosidase
activity of each sample, and then expressed as the fold change com-
pared to the control. All values are expressed as the mean ± SEM.
The data were square-root transformed for normality and vari-
ance homogeneity tests. The transformed data were analyzed by
one-way ANOVA followed by Newman–Keuls test using GraphPad
Prism for Macintosh (GraphPad Software, San Diego, CA, USA).
P < 0.05 was considered statistically significant.

RESULTS
PROMOTER ANALYSIS FOR POTENTIAL Smad REGULATORY
ELEMENT(S) IN GOLDFISH fshb GENE
We previously showed that goldfish fshb promoter strongly
responded to activin in the LβT-2 cells (Ge et al., 2003), and
co-transfection with Smad expression vectors, especially Smad3,
dramatically enhanced the expression level of the reporter, sug-
gesting the presence of Smad regulatory elements in the pro-
moter (Lau and Ge, 2005). To localize the potential regula-
tory elements, we performed this experiment by examining the
activity of goldfish fshb promoter with decreasing size in the
LβT-2 cells (a gonadotroph cell line) in the presence of gold-
fish Smad2 or Smad3. The construct pSEAP/gfFSHβ(−1744) and
the promoter-less pSEAP2-Enhancer vector acted as the posi-
tive and negative control, respectively. As shown in Figure 1,
pSEAP/gfFSHβ(−1744) exhibited the strongest response to gold-
fish Smad2 and 3. The basal and Smad-stimulated expression
of SEAP reporter declined gradually as the length of the pro-
moter decreased. Consistent with the result reported previously
(Lau and Ge, 2005), the effect of Smad3 was much higher than
that of Smad2 for all sizes of the promoter tested. Although the
basal and Smad2/3-induced promoter activity exhibited a gen-
eral trend of decline with the decreasing size of the promoter,
significant drops were noticed at certain locations, including
−1744/−1563,−1000/−900,−700/−600,−500/−400 and in par-
ticular −300/−200 bp upstream of the potential transcription
start site which is designated +1. The predicted transcription
start site was defined by 5′-RACE and is located downstream
of a TATAA box at −30 (Sohn et al., 1998). The most obvious
decrease in activity occurred when the regions −1744/−1563,
−700/−600, and −300/−200 were deleted. There is no signifi-
cant difference between pSEAP/gfFSHβ(−200) and promoter-less
pSEAP2-Enhancer vector control (Figure 1).
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FIGURE 1 | Localization of potential Smad regulatory elements in the

goldfish fshb promoter. The reporter constructs of different lengths
[pSEAP/gfFSHβ(−200) − (−1744), 300 ng/well] were co-transfected into the
LβT-2 cells with the expression plasmids pBK-CMV/Smads (Smad2 or Smad3)
or pBK-CMV control (CMV, 300 ng/well) together with 500 ng
pSV-β-galactosidase as the internal control. The medium and cells from each

well were sampled 48 h after transfection for assaying SEAP and
β-galactosidase activities, respectively. The SEAP activity was first normalized
by that of β-galactosidase and then expressed as the percentage of the CMV
control in the pSEAP2 vector group. Each value represents the mean ± SEM
of three replicates (*, **, and *** indicate P < 0.05, 0.01, and 0.001,
respectively).

To further define the Smad responsive element(s) in the regions
−700/−600 and −300/−200, finer deletions were generated
within these regions with 20-bp difference and tested. In these
experiments, only Smad3 was used to activate the promoter
because of its high potency. The results showed that gradual dele-
tion from −700 to −640 caused no significant change of SEAP
activity (−900 was used as the reference); however, the SEAP activ-
ity abruptly dropped when the fragment −640/−620 was deleted,
suggesting a response element between −620 and −640. Further
deletion from −620 to −580 caused no further change of the
reporter activity (Figure 2A). For the region −300/−200, 20-
bp deletions from −300 to −220 did not affect Smad3-induced
promoter activity. However, further deletion from −220 down to
−200 nearly abolished the promoter activity (Figure 2B).

Despite its lack of response to Smad3, the proximal region
of −200 appeared to be essential for the functionality of the
upstream regions. As shown in Figure 3, deletion of the prox-
imal regions completely abolished the activity of the promoter
(Figure 3), suggesting that the proximal sequence between −244
and +19 may have essential element(s) for basal transcription
activity. Sequence analysis revealed a putative TATA homology
element at −30, possibly for initiation of transcription. Therefore,
the proximal region of −200/+19 was included in all constructs
for characterization or confirmation of putative regulatory regions
or elements identified by the deletion experiment described above.
Using similar approach, we also analyzed the regions −1000/−900

and −500/−400; however, no distinct sites could be identified over
these regions (data not shown).

CHARACTERIZATION OF Smad RESPONSE ELEMENT(S) IN THE DISTAL
REGION OF fshb PROMOTER
Sequence analysis of the distal region of the goldfish fshb pro-
moter (−1744/−1563) revealed two putative SBEs (AGAC) at
−1715/−1712 (site I) and −1675/−1672 bp (site II), respec-
tively (Figure 4A). Interestingly, the two putative SBEs are either
near (site I) or overlapping with (site II) an AP-1-like site
(site I: AGAC C TGAGTAA and site II: AGAGTC AGAC ). To
test whether these sites are important for the Smad-mediated
fshb expression, we amplified the distal region −1720/−1666
(54 bp) by PCR and placed it upstream of the minimal promoter
(−200/+19) in the pSEAP-Enhancer vector, which was then co-
transfected with Smad3 into the LβT-2 cells (Figure 4A). The
construct pSEAP/gfFSHβ(−1744) and the promoter-less pSEAP2-
Enhacer vector were used as the positive and negative control,
respectively. The result showed that despite a lower activity than
pSEAP/gfFSHβ(−1744), the short 54-bp fragment −1720/−1666
showed a strong response to Smad3, in agreement with the exis-
tence of two SBEs (site I and II) in this region. The involvement
of these regulatory sites in Smad3-induced promoter activity was
confirmed by the evidence that site-directed mutagenesis of these
sites resulted in a complete loss of promoter activity. To further
demonstrate the role of individual SBE sites, we also mutated each
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FIGURE 2 | Localization of potential Smad regulatory elements in

the −900/−580 region (A) and −300/−200 region (B). The cells in
each well were co-transfected with pSEAP/gfFSHβ promoter
constructs (300 ng), pBK-CMV/Smad3 (300 ng), and

pSV-β-galactosidase (500 ng). The activities of SEAP and
β-galactosidase were assayed and analyzed as described in Figure 1.
Each value represents the mean ± SEM of three replicates (* and ***
indicate P < 0.05 and 0.001, respectively).

FIGURE 3 | Evidence for an essential element in the proximal

region (−244) for fshb promoter activity. The cells in each well
were co-transfected with pSEAP/gfFSHβ promoter constructs

(300 ng), pBK-CMV/Smad2 or 3 (300 ng), and pSV-β-galactosidase
(500 ng). Each value represents the mean ± SEM of three
replicates.

site separately. Interestingly, the removal of SBE and AP-1 motif
at site I had no effect on promoter activity whereas the loss of
SBE and AP-1 motif at site II completely abolished the promoter
activity (Figure 4A), suggesting a role for site II as the functional
Smad responsive element in the distal region of fshb promoter.

As shown in Figure 4A, the SBE at −1675/−1672 (site II; italic)
overlaps with an AP-1-like site (boxed; AGAGTC AGAC ). To fur-
ther demonstrate which site is essential for the Smad responsive-
ness, we prepared two additional mutant constructs with the AP-1
motif and SBE site knocked out separately. The result showed that

mutation of the SBE site at −1675/−1672 significantly reduced the
Smad3-induced promoter activity. In contrast, instead of reducing
transcriptional activity, mutation of the AP-1 site at −1681/−1675
led to an even higher reporter level (Figure 4B).

CHARACTERIZATION OF Smad RESPONSE ELEMENT(S) IN THE
PROXIMAL REGION OF fshb PROMOTER
The promoter analysis by serial deletion mutation strongly sug-
gested the existence of a strong Smad responsive element in the
proximal region of goldfish fshb promoter between −220 and
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FIGURE 4 | Identification of potential Smad binding element (SBE) in

the distal region of fshb promoter (−1720/−1666). (A) Roles of
potential SBE/AP-1 sequences at site I and II in the promoter region from
−1720 to −1666. The sequence of the region is shown on the top with site
I and II each containing an AP-1-like element (underlined) and a SBE
(overlined). Mutagenesis of the AP-1-like element and SBE at site I (MW,
representing mutation, and wild type for site I and II, respectively) showed
no effect on the promoter activity whereas change of sequences at site II
site (WM) completely eliminated the promoter activity in the presence of

Smad3. (B) Test for roles of AP-1-like element and SBE at site II in
promoter activity. Mutation at AP-1-like sequence [WM(AP-1)] had no effect
whereas change of SBE sequence [WM(SBE)] completely abolished the
promoter activity in the presence of Smad3. The boxed sequences are
mutated elements. The cells in each well were transfected with
pSEAP/gfFSHβ promoter constructs (300 ng), pBK-CMV/Smad3 (300 ng),
and pSV-β-galactosidase (500 ng). Each value represents the mean ± SEM
of three replicates. Different letters in the graph indicate statistical
significance at P < 0.05.

−200 (AGAACACTGACCTTGAAAAC; Figures 1 and 2B). To
further characterize the putative site in this region, we mutated
each nucleotide of this region by serial 2-bp mutagenesis (M1
to M10). As shown in Figure 5A, mutation of GACCTT in
mutants M5–7 abolished the promoter activity to the level of
pSEAP/gfFSHβ(−200) while M8 significantly reduced the activ-
ity. No effect was observed with M1–4 and M9–10 as compared to
pSEAP/gfFSHβ (−220; Figure 5A). Sequence analysis revealed that
the nucleotides mutated in M5–8 at −212/−205 (GACCTTGA)
happened to be identical to a steroidogenic factor 1 (SF-1) site
reported in the human StAR gene (Sugawara et al., 1997). The
same motif is also present in the proximal region of salmon FSHβ

gene (−251/−244; Wang et al., 2009). Interestingly, this site in

mammals is the location of a highly conserved AP-1 binding site
(TGATTCA; Strahl et al., 1997). Despite the difference between
the goldfish (SF-1) and mammals (AP-1), this site is preceded and
overlapped by a sequence (AACACTGA) that is extremely con-
served in FSHβ gene across vertebrates from fish to mammals
(Figure 5B).

INTERACTIVE EFFECT OF THE DISTAL AND PROXIMAL Smad RESPONSE
ELEMENTS
After identification of the distal and proximal SRE (the consensus
SBE site at −1675/−1672 and the SF-1 site at −212/−205), we were
interested in the relative strength of these two sites and in particular
their interactive effect in driving SEAP reporter expression in the
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FIGURE 5 | Identification of putative Smad responsive element in the

proximal region (−220/−200) of goldfish fshb promoter. (A) Each
nucleotide of this region was mutated by serial 2-bp mutagenesis (M1 to M10)
and their promoter activity was examined and compared with that of the wild
type (WT) in the presence of Smad3. The cells in each well were transfected
with pSEAP/gfFSHβ promoter constructs (300 ng), pBK-CMV/Smad3 (300 ng),
and pSV-β-galactosidase (500 ng). Each value represents the mean ± SEM of

three replicates. Different letters in graph indicate statistical significance at
P < 0.05. (B) Comparison of the proximal sequence of goldfish fshb promoter
with those of mammals (Strahl et al., 1997). The putative Smad responsive
element or SF-1 site (GACCTTGA; underlined) is preceded by and overlaps
with a sequence (AACACTGA; bold) fully conserved in the goldfish and
mammals. The AP-1 site (TGATTCA) highly conserved in mammals and a TAA
motif fully conserved in the goldfish and mammals are boxed.

presence of Smad3. As described above, both elements could elicit
significant response of SEAP expression compared to the minimal
pSEAP/gfFSHβ(−200) promoter. When combined together, the
two response elements appeared to have an additive to synergis-
tic effect although the level was lower than that of the full-length
promoter pSEAP/gfFSHβ(−1744; Figure 6).

ACTIVATION OF GOLDFISH fshb PROMOTER BY ACTIVIN AND GnRH
All the experiments described above involved co-expression of
goldfish Smad3, which is the major R-Smad responsible for
activin signaling. To demonstrate if the distal and proximal
response elements identified also respond to activin, we tested
the effects of both human activin A and goldfish activin B. As
expected, both activin A (10 ng/ml) and B (4.5 U/ml) significantly
stimulated the transcription activity of pSEAP/gfFSHβ(−1744).
Activin A and B also elicited significant responses of the two
Smad response elements in pSEAP/gfFSHβ(−1720/−1666) and
pSEAP/gfFSHβ(−220). Interestingly, GnRH (100 nM) alone also
had similar stimulatory effect on the transcription of goldfish fshb
gene promoter in the LβT-2 cells. All constructs showed positive
response to GnRH treatment and the response levels were gener-
ally comparable to those to activins. When applied in combination,
GnRH and activin caused even higher responses for all constructs
(Figure 7). We also tested the proximal region mutants described
in Figure 5 for their response to GnRH. The result showed that all
the mutants responded to GnRH in exactly the same way as they

did to Smad3. The mutation of the sequence GACCTT (M5–7)
completely abolished the effects of Smad3 and GnRH (Figure 8).

EVIDENCE FOR THE INVOLVEMENT OF ACTIVIN SYSTEM IN GnRH
SIGNALING IN LβT-2 CELLS
The experiments described above strongly implicated activin sys-
tem in GnRH signaling. To provide further evidence for this
mechanism,we carried out another experiment in which the LβT-2
cells were co-transfected with pSEAP/gfFSHβ(−220) and gold-
fish Smad2, Smad3, Smad7 (an inhibitory Smad), or ActRIIA(−)
(dominant negative activin type II A receptor) followed by GnRH
treatment. As shown in Figure 9, GnRH (100 nM) and TPA
(100 nM, a potent PKC activator) significantly increased the
promoter activity whereas GF109203x (1 μM, a PKC inhibitor)
slightly reduced the Smad-induced expression level. The effects of
GnRH and TPA were dramatically increased in the presence of
Smads, particularly Smad3; however, their effects were abolished
by overexpression of Smad7 or ActRIIA(−) in the cells (Figure 9).

DISCUSSION
Activin is a growth and differentiation factor expressed in almost
all tissues (Meunier et al., 1988), where it has diverse biological
functions (Mather et al., 1997). In the pituitary, activin is a key
modulator of FSHβ expression and FSH secretion (Ling et al.,
1986a,b; Vale et al., 1986; Weiss et al., 1992, 1995). In the goldfish,
our previous results have demonstrated that activin stimulates
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FIGURE 6 | Effects and interactive effects of the proximal and distal

Smad responsive elements in fshb promoter activity. The two elements
both exhibited promoter activity and their combination produced an even
higher synergistic response. The cells in each well were transfected with

pSEAP/gfFSHβ promoter constructs (300 ng), pBK-CMV/Smad3 (300 ng), and
pSV-β-galactosidase (500 ng). Each value represents the mean ± SEM of three
replicates. Different letters in the graph indicate statistical significance at
P < 0.05.

FIGURE 7 | Activin A, activin B, and GnRH effects on goldfish fshb

promoter activity in the LβT-2 cells. The cells were transfected with
pSEAP/gfFSHβ promoter constructs (300 ng), pBK-CMV/Smad3 (300 ng), and
pSV-β-galactosidase (500 ng). After 24-h incubation, the cells were washed

and treated with human activin A (10 ng/ml) or goldfish activin B (4.5 U/ml) in
the presence or absence of GnRH (100 nM) for 24 h. Each value represents
the mean ± SEM of three replicates. Different letters in the graph indicate
statistical significance at P < 0.05 in each group.

FSHβ (fshb) expression (Yam et al., 1999; Yuen and Ge, 2004) and
its stimulatory effect is exerted at the promoter level (Ge et al.,

2003). Similar effect has recently been reported in the zebrafish
(Lin and Ge, 2009) and the European eel (Aroua et al., 2011). We
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FIGURE 8 | Effect of GnRH on the promoter activity of the mutants

described in Figure 5 in the presence of Smad3. The cells were
transfected with pSEAP/gfFSHβ promoter constructs (300 ng),
pBK-CMV/Smad3 (300 ng), and pSV-β-galactosidase (500 ng).
pSEAP/gfFSHβ(−220) and (−200) were included as the positive and
negative controls, respectively. Each value represents the mean ± SEM of
three replicates. Different letters in the graph indicate statistical
significance at P < 0.05 (not shown for Smad3 alone).

have also demonstrated that the effect of activin on goldfish fshb is
likely mediated by the Smad signaling pathway, particularly Smad3
(Lau and Ge, 2005). The present study was undertaken to iden-
tify the SRE on goldfish fshb promoter using serial deletion and
site-directed mutagenesis approaches.

The Smad-induced SEAP activity declined gradually as the
length of the promoter was decreased. However, several significant
drops in SEAP activity were observed when regions −1744/−1563,
−640/−620, and −220/−200 were deleted, suggesting that these
regions may contain potential cis-regulatory elements responsible
for Smad-induced reporter gene expression. We then focused our
analysis on −1744/−1563 and −220/−200 regions because the
deletion of these segments produced the most noticeable decline
in the promoter activity.

Smad proteins are critical intracellular mediators of activin sig-
naling (Shi and Massague, 2003). The N-terminal MH1 domains
of Smad3 and Smad4 are able to bind to specific DNA sequence
(AGAC or GTCT) termed SBE to regulate their target gene tran-
scription (Dennler et al., 1998; Shi et al., 1998; Zawel et al., 1998;
Chai et al., 2003). One or more SBE sequences have been iden-
tified in several activin (Jonk et al., 1998; Nagarajan et al., 1999;

FIGURE 9 | Effects of Smad proteins and the dominant negative activin

receptor ActRIIA(−) on the GnRH/TPA-stimulated promoter activity of

the proximal region. The cells were transfected with pSEAP/gfFSHβ

(−220; 300 ng), pBK-CMV/Smads (2, 3, or 7) or pBK-CMV/ActRIIA(−)
(300 ng), and pSV-β-galactosidase (500 ng). After 24-h incubation, the cells
were washed and treated with GnRH (100 nM), PKC activator TPA (100 nM),
or PKC inhibitor GF109203x (1 μM). Each value represents the mean ± SEM
of three replicates. Different letters in the graph indicate statistical
significance at P < 0.05 in each group.

Suszko et al., 2003) and TGF-β-responsive promoters (Dennler
et al., 1998; Vindevoghel et al., 1998; Hua et al., 1999; von Gers-
dorff et al., 2000). Sequence analysis of the −1744/−1563 region
of goldfish fshb promoter revealed two putative SBEs (AGAC) at
−1715/−1712 and −1675/−1672 bp. However, our mutagenesis
experiment provided evidence that it was the SBE at −1675/−1672
that was responsible for Smad responsiveness of the −1744/−1563
region whereas the SBE site at −1715/−1712 played no role in
mediating Smad-induced promoter activity. The functional SBE
site and its adjacent sequence (GTCAGAC; −1678/−1672) was
nearly identical to that identified in the proximal region of FSHβ

in the mouse and rat (GTCTAGAC; Suszko et al., 2003; Gregory
et al., 2005; Lamba et al., 2006). Interestingly, the mutation of the
AP-1-like site next to the SBE at −1681/−1675 caused a higher
response of the promoter region, suggesting a potential interac-
tion of Smads with AP-1 in regulating fshb promoter activity at
this region. This will be an interesting issue to investigate in future
studies.

Different from the distal −1744/−1563 region, no consensus
SBE element could be found in the proximal −220/−200 region
despite its significant response to Smad. This region is interesting
in that a previous study has identified a cluster of putative cis-
regulatory elements from −154 to −218, including half ARE/ERE
and GnRH-RE (Sohn et al., 1998). Furthermore, sequence analysis
revealed a putative SF-1 binding site (GACCTTGA) in this region
at position −212/−205 (Le Drean et al., 1996; Sohn et al., 1998).
Our mutagenesis experiment provided strong evidence for the
importance of this site in Smad responsiveness as any sequence
change at this site significantly reduced or abolished the Smad-
induced transcription activity whereas the bases outside this site
had no contribution to the Smad responsiveness. As Smad proteins
can also serve as co-activators to interact with other DNA-binding
transcription factors to control gene transcription in addition to
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binding to SBE directly (Chen et al., 1996, 1997; Yeo et al., 1999;
Attisano and Wrana, 2000; Wurthner et al., 2001) and SF-1 site
is critical for the regulation of FSHβ expression (Ingraham et al.,
1994; Brown and Mcneilly, 1997), it is conceivable that Smad pro-
teins may exert their transcriptional effects by associating with
SF-1 which binds to this cis-regulatory element.

One interesting finding of the present study was that the SF-1
site (−212/−205) in the proximal region of goldfish FSHβ pro-
moter is absent in the promoter of mammalian FSHβ; instead,
the same location is occupied by a highly conserved AP-1 site
(TGATTCA) in mammals (Strahl et al., 1997). Both SF-1 site
in the goldfish and AP-1 site in mammals are preceded by the
same sequence AACACTGA, which is fully conserved in fish and
mammals. Interestingly, a recent study on human FSHβ showed
that activin and GnRH synergistically stimulated FSHβ expres-
sion and their signaling pathways were shown to converge at the
conserved high affinity AP-1 site (TGATTCA; −117/−111; Wang
et al., 2008). In the present study, we showed that although the
AP-1 sequence is replaced by a SF-1 element in the goldfish FSHβ

promoter, the same site responded strongly to both Smad3 and
GnRH, which agrees with the report in mammals (Wang et al.,
2008). The action of GnRH was activin and Smad-dependent as
both Smad7 and ActRIIA(−) (dominant negative activin type II
A receptor) could abolish the effects of GnRH. The exact mecha-
nism underlying such interaction remains unknown, and it would
be an interesting issue to investigate in future studies, especially
the role of AP-1 and SF-1. A recent study in the Chinook salmon
showed that overexpression of SF-1 in the COS cells could signifi-
cantly increase the promoter activity of its FSHβ gene (Wang et al.,
2009). As TPA mimicked the effect of GnRH and its action could
also be abolished by co-expression of Smad7 and ActRIIA(−), it
is likely that the activin/Smad pathway is involved downstream
of PKC activation by GnRH. One possibility is that GnRH may
up-regulate the components of the activin/Smad signal transduc-
tion pathway, such as activin subunits, receptors, and/or Smads,
which in turn leads to activation of the promoter. This is supported
by immunocytochemical studies demonstrating nuclear translo-
cation of cytoplasmic Smad3 in the αT3-1 cells in response to
activin and GnRH agonist treatment (Norwitz et al., 2002). Sec-
ondly, GnRH may enhance the signaling of SF-1 whose activity
of stimulating fshb expression involves cooperation with Smad
proteins activated by activin. A blockade of the activin/Smad path-
way by Smad7 or ActRIIA(−) would weaken its activity. This is

supported by the report in the rat that GnRH stimulated SF-1
gene expression in the pituitary (Haisenleder et al., 1996). A recent
study on endogenous FSHβ expression in the LβT-1 suggested that
the interaction of activin and GnRH involved the activity of p38
MAPK, which stimulated c-Fos expression and augmented Smad3
phosphorylation (Coss et al., 2007).

Other evidence in mammals also supports the interdependence
of GnRH and activin signaling in stimulating FSHβ gene expres-
sion. GnRH stimulation of ovine FSHβ promoter was inhibited
by follistatin in the LβT-2 cells (Pernasetti et al., 2001), suggest-
ing the involvement of extracellular activin ligand in the action of
GnRH. On the other hand, activin increased GnRH signaling by
stimulating the synthesis of GnRH receptors (Fernandez-Vazquez
et al., 1996), which would sensitize gonadotropes to GnRH. Co-
treatment of the LβT-2 cells with activin and GnRH caused a
synergistic increase in rat FSHβ promoter activity and the interac-
tion might involve a palindromic Smad binding site (GTCTAGAC)
at −266/−259 (Gregory et al., 2005), suggesting the involvement
of multiple cis-elements in activin–GnRH interaction.

In conclusion, several potential cis-regulatory elements respon-
sible for activin/Smad-induced fshb expression have been identi-
fied in the goldfish fshb promoter, which represents one of the
first studies in lower vertebrates. A consensus Smad binding site is
located in the distal region of the promoter, which offered a strong
response of the promoter to activin/Smad signaling. In the proxi-
mal region, it turned out to be a SF-1 site that was responsible for
Smad-induced promoter activity, implicating the involvement of
SF-1 in the regulation. As activin stimulation of FSH biosynthe-
sis is a well-conserved regulatory mechanism across vertebrates,
the present study provides valuable information about the diverse
mechanisms by which FSH biosynthesis is controlled and the
evolution of such mechanisms in vertebrate history.
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