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Bone relies on multiple extracellular signaling systems to maintain homeostasis of its
normal structure and functions. The amino acid glutamate is a fundamental extracellular
messenger molecule in many tissues, and is used in bone for both neural and non-neural
signaling. This review focuses on the non-neural interactions, and examines the evolution-
arily ancient glutamate signaling system in the context of its application to normal bone
functioning and discusses recent findings on the role of glutamate signaling as they pertain
to maintaining healthy bone structure. The underlying mechanisms of glutamate signaling
and the many roles glutamate plays in modulating bone physiology are featured, including
those involved in osteoclast and osteoblast differentiation and mature cell functions. More-
over, the relevance of glutamate signaling systems in diseases that affect bone, such as
cancer and rheumatoid arthritis, is discussed, and will highlight how the glutamate system
may be exploited as a viable therapeutic target. We will identify novel areas of research
where knowledge of glutamate communication mechanisms may aid in our understanding
of the complex nature of bone homeostasis. By uncovering the contributions of glutamate
in maintaining healthy bone, the reader will discover how this complex molecular signaling
system may advance our capacity to treat bone pathologies.
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Glutamate (in the form of l-glutamate) is a non-essential amino
acid that is the most common excitatory neurotransmitter in the
central nervous system (CNS; Bleich et al., 2003). Glutamate sig-
naling is phylogenetically ancient and common in both plants and
animals (Chiu et al., 1999), likely evolving from an important role
in the regulation of carbon and nitrogen metabolism (Davenport,
2002). Synthesized intracellularly in mammalian cells, glutamate is
primarily formed from glutamine using the enzyme glutaminase,
to produce an ammonium ion useful for excess nitrogen disposal
(Young and Ajami, 2001). Transamination of α-ketoglutarate, an
intermediate of the citric acid cycle, also generates glutamate
(Waddell and Miller, 1991). Glutamate is widely used as an inter-
cellular communication molecule (see reviews by Watkins and
Jane, 2006; Krnjevic, 2010), and although characterized more fully
in the CNS, all of the essential components for glutamate signaling
have been identified in non-neural systems (Skerry and Genever,
2001; Nedergaard et al., 2002; Hinoi et al., 2004a). Moreover, a
fully functional glutamate signaling system is present in bone
(Spencer et al., 2007). Although numerous systemic, local, and
neural factors are involved in regulating bone remodeling (Beren-
son et al., 2006; Elefteriou, 2008; Martin and Seeman, 2008), there
is growing recognition of the importance of glutamate signaling
in bone homeostasis (Nedergaard et al., 2002; Hinoi et al., 2004b;
Spencer et al., 2004). Following an overview of the structural com-
ponents of glutamate signaling systems, this review will evaluate
how these structures are involved in maintaining bone homeosta-
sis with a particular emphasis on their potential involvement in
a variety of bone diseases. Indeed, several disease states may be
potentiated by a disruption of normal glutamatergic signaling. A
better understanding of glutamate intercellular communication in

healthy and diseased bone will aid in determining whether these
signaling components may represent viable therapeutic targets in
bone disease.

GLUTAMATE SIGNALING STRUCTURES
In neurons, glutamate signaling involves several distinct steps – sig-
nal release via vesicular transporters, reception by specific recep-
tors, and termination of the signal using uptake transporters. Each
of these steps must work in concert to function effectively, and
imbalances can lead to failure of the system (Olney, 1969). Figure 1
summarizes, on a generic cell, the different classes of glutamate
transporters and receptors that can be involved in glutamate
signaling.

There are two main categories of glutamate transporters – the
predominantly vesicular glutamate export transporters which are
sodium-independent, and the non-vesicular plasma membrane
glutamate import transporters which are sodium-dependent.
There are four types of vesicular export transporters – namely
VGLUT-1 to VGLUT-3 (Hayashi et al., 2003; Tremolizzo et al.,
2006; Liguz-Lecznar and Skangiel-Kramska, 2007) and sialin, a
recently characterized vesicular glutamate/aspartate transporter
(Miyaji et al., 2010). Although non-vesicular, the system x−c gluta-
mate/cystine antiporter is a membrane-bound glutamate exporter,
and exchanges intracellular glutamate for extracellular cystine
(Bannai, 1986). This amino acid exchange accumulates cystine
to synthesize the antioxidant glutathione (Kim et al., 2001). For
glutamate import, the excitatory amino acid transporters (EAATs)
are critically important for the termination of glutamate – a good
review of their properties has been prepared by Tzingounis and
Wadiche (2007). There are five known non-vesicular reuptake
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FIGURE 1 | A summary of known glutamate receptor and transporter
structures. For simplification, these structures are depicted on a generic
model cell, although no cell is known to express all of these components
simultaneously. Glutamate receptors are divided into either ionotropic or
metabotropic types. Ionotropic receptors can incorporate different
combinations of functional subunits, conferring varying response properties,
and allowing for co-agonist activation. The metabotropic receptors, subdivided
into three groups, are G-protein coupled membrane receptors that do not

form ion channels although they can modulate other glutamate signaling
components. Glutamate transporters are divided into those that are
sodium-dependent and those that do not require a sodium gradient for their
activity. The plasma membrane transporters (EAAT1 to EAAT5) can form ion
channels and most often import glutamate. The sodium-independent
transporters primarily export glutamate and these include the vesicular
transporters (VGLUT-1 to VGLUT-3 and sialin) and the non-vesicular system x−c
glutamate/cystine antiporter.

transporters, named EAAT1 to EAAT5 (Shigeri et al., 2004). The
neuronal EAAT1 transporter is also called the glutamate-aspartate
transporter (GLAST-1; Huggett et al., 2002) due to its ability to
transport both amino acids, while the human EAAT2 transporter
known as glutamate transporter-1 (GLT-1) is often expressed in
glial cells and pre-synaptic neurons (Mason et al., 1997). Although
both GLAST-1 and GLT-1 primarily function as importers of glu-
tamate, they are also capable of glutamate export under strong
potassium gradients (Marcaggi et al., 2005).

One of the advantages of using glutamate for signaling is
the incredible diversity of responses that can result from this
molecule. Response flexibility is accomplished by an array of
glutamate receptor types that can generate different responses
depending on how they are expressed. Glutamate receptors are
divided into two major groups on the basis of their mode of
action – ionotropic glutamate receptors (iGluRs), which form ion-
gated cation channels when activated, and metabotropic glutamate
receptors (mGluRs), which are coupled to intracellular G-proteins
and regulate the production of intracellular second messengers.
An excellent review by Dingledine et al. (1999) provides a com-
prehensive overview of glutamate receptors and their functions,
primarily within the CNS. Briefly, there are three main groups
of iGluRs named according to their synthetic agonist specificity:

n-methyl-d-aspartate (NMDA) receptors, α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptors, and kainate
(KA) receptors. Although not widely known, a fourth family of
iGluRs termed the delta receptors exists, with two subtypes identi-
fied (GluRδ1 and GluRδ2), although they may only be secondarily
involved in glutamate signaling (Kakegawa et al., 2011; Tanahashi
et al., 2012). The iGluRs are comprised of tetramers of different
subunits in various combinations that form ion channels with
distinct properties. There are eight different mGluRs (mGluR1
to mGluR8) that are divided into three groups based on sequence
homology and their signal transduction pathways (Niswender and
Conn, 2010). Providing both excitatory and inhibitory responses,
the mGluRs often modulate other systems via their second mes-
senger activation and complex interactions with other proteins
(Enz, 2007).

GLUTAMATE SIGNALING IN HEALTHY BONE
Considerable evidence exists to suggest that glutamate signaling
in normal bone is involved in a variety of processes, including
cell differentiation effects and mature cell functions. Glutamate
concentrations within the bone environment are modulated by
a variety of cell types, through glutamate-specific transporters
which are expressed by the bone-resorbing osteoclasts (Oc; Hinoi
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et al.,2007),bone-building osteoblasts (Ob; Takarada-Iemata et al.,
2011; Uno et al., 2011), osteocytes (Huggett et al., 2002), and chon-
drocytes (Wang et al., 2006). In fact, virtually all cell types in
normal bone have the ability to secrete glutamate to some extent
through multiple mechanisms. The amount of glutamate available
for release may be controlled through enzymatic processes. For
example, glucocorticoids and Wnt signaling may inversely reg-
ulate glutamine synthetase activity in osteoblasts (Olkku et al.,
2004; Olkku and Mahonen, 2008), which catalyzes the conversion
of glutamate to glutamine.

A variety of glutamate receptors and subunit combinations
are expressed within the bone environment, enabling a very high
degree of control over the cellular responses to glutamate signals.
The most well-characterized glutamate receptors in normal bone
are the NMDA-type receptors, with confirmed expression in Oc,
Ob, osteocytes, and bone marrow mononuclear cells (Chenu et al.,
1998; Patton et al., 1998; Genever et al., 1999; Itzstein et al., 2001).
Inhibition of these receptors prevents early differentiation of both
Ob (Hinoi et al., 2003; Lin et al., 2008) and Oc (Peet et al., 1999;
Merle et al., 2003; Lin et al., 2008) into their functionally active
cell types. However, an inhibitor of system x−c , which reduces glu-
tamate release without acting on the receptors, was also able to
inhibit Oc differentiation (Suematsu et al., 2007). This implies
that glutamate released by other cells within the bone may signal
for the generation of new Oc or Ob via NMDA receptors. More-
over, glutamate has been shown to suppress Ob cell proliferation at
the very earliest stages of differentiation from their mesenchymal
stem cell progenitors, which express multiple types of glutamate
receptors and transporters themselves (Iemata et al., 2007). Other
receptor types are also expressed by normal bone cells, including
metabotropic (Gu and Publicover, 2000; Hinoi et al., 2001; Szczes-
niak et al., 2005; Kalariti et al., 2007) and non-NMDA ionotropic
receptors such as KA and AMPA receptors (Chenu et al., 1998;
Hinoi et al., 2002; Taylor, 2002; Szczesniak et al., 2005). Table 1
summarizes the glutamate receptors and transporters expressed
by normal bone cells. Deletion of osteoblastic NMDA receptor
expression as well as targeted administration of iGluR antagonists
were reported to impede skeletal development in mouse models
(Skerry, 2008). Indeed, the AMPA receptors may also participate
in Ob differentiation, as stimulation of this receptor increases
mineral deposition and osteocalcin expression (Lin et al., 2008).

Glutamatergic signaling components are also involved in the
adult functions of bone cells. In particular, Oc transport bone
degradation products from the bone surface in vesicular structures
and remove them from the apical end of the cell in a process called
transcytosis (Yamaki et al., 2005). This essential transportation
function interacts directly withVGLUT-1, which adds glutamate to
the transcytotic vesicles containing the bone degradation products
and upon release by the Oc, glutamate acts in an autocrine man-
ner to suppress further bone resorption, likely through mGluR8
(Morimoto et al., 2006). However, regulation of bone resorption is
also impaired by inhibitors of ionotropic receptors (Chenu et al.,
1998; Peet et al., 1999; Itzstein et al., 2000), further demonstrating
the complexity of this regulatory system.

To prevent continued signaling between bone cells, extracellular
glutamate concentrations are reduced by plasma membrane trans-
porters. The most studied transporter in this regard is GLAST-1,

and it is constitutively expressed by Ob and osteocytes (Mason
et al., 1997; Huggett et al., 2002; Mason and Huggett, 2002; Kalar-
iti et al., 2007; Spencer et al., 2007), but not by Oc. However, Ob
and osteocytes are not the only cells capable of sequestering free
glutamate, as GLT-1 is also expressed by Oc, chondrocytes, and
mononuclear bone marrow cells (Mason et al., 1997; Hinoi et al.,
2005b, 2007; Spencer et al., 2007). Moreover, EAAT3 and EAAT4
are also expressed by Ob (Takarada et al., 2004) and Oc (Hinoi
et al., 2007), respectively.

GLUTAMATE SIGNALING IN DISEASED BONE
Owing to their participation in normal bone cell functioning, dis-
ruption of the glutamatergic signaling mechanisms may lead to
various disease pathologies. For example, use of a specific group
II/III mGluR antagonist stimulates in vitro bone resorption by
Oc compared to untreated controls (Morimoto et al., 2006). This
effect is thought to result from inhibition of mGluR8, which
in turn may prevent glutamate from participating in the nega-
tive feedback cascade produced by transcytosis, thereby resulting
in continued Oc resorption. As mentioned, intracellular gluta-
mate is added to the transcytotic vesicles by VGLUT-1 as part
of this Oc activity feedback mechanism, and correspondingly,
VGLUT-1 knockout mice develop osteoporosis due to increased
bone resorption (Morimoto et al., 2006). Moreover, differential
expression of NMDA receptor subunits in chondrocytes may pro-
mote osteoarthritis (Ramage et al., 2008), and glutamate signaling
via NMDA receptors on osteoarthritic chondrocytes can mediate
inflammatory responses (Piepoli et al., 2009).

Notably, bone homeostasis may be indirectly disrupted by
glutamatergic signaling in non-bone cells as well. For example,
NMDA receptors present within the parathyroid glands or kidneys
may contribute to altered secretion of parathyroid hormone (Parisi
et al., 2009, 2010), which can lead to both bone resorption and
bone formation. Moreover, glutamate potently stimulates secre-
tion of the hormone leptin from white adipocytes (Cammisotto
et al., 2005), which, in turn, can inhibit bone formation by signal-
ing through the sympathetic nervous system (Ducy et al., 2000;
Takeda et al., 2002). Additionally, glutamate itself may affect neu-
ronal control of bone mass, as monosodium glutamate-sensitive
neurons can stimulate bone formation (Elefteriou et al., 2003).

CANCER
Cancers are perhaps the most significant disease to result in disrup-
tion of glutamatergic signaling. Indeed, glutamate is an established
contributor to the pathophysiology of gliomas (see de Groot and
Sontheimer, 2011 for a recent review). However, glutamatergic sig-
naling components are also present in multiple cancers (Stepulak
et al., 2009; Sharma et al., 2010), signifying the fundamental impor-
tance of glutamate in many biologic systems. Glutamate itself
may also directly participate in cancer initiation, as melanocytes
from transgenic mice induced to express mGluR5 subsequently
developed into melanomas (Choi et al., 2011).

With respect to bone, numerous cancers that metastasize to
bone were demonstrated to express several glutamate receptors
and transporters, and these included breast, prostate, and lung
cancers (Rzeski et al., 2001; Narang et al., 2003; Doxsee et al.,
2007; Sharma et al., 2010). Limited information is available on
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Table 1 | A summary of glutamate signaling components expressed by normal bone cells.

Osteoclast Osteoblast Osteocyte Marrow cells Chondrocyte

GLUTAMATE RECEPTORS

Ionotropic NMDA + + + + +

KA + +

AMPA + + ± ± +

GluRδ

Metabotropic I mGluR1 +

mGluR5 + + +

II mGluR2 ± +

mGluR3 + +

III mGluR4 + ± +

mGluR6 + ±

mGluR7 + ± +

mGluR8 + +

GLUTAMATETRANSPORTERS

Na+ dependent EAAT1 (GLAST-1) − + + +

EAAT2 (GLT-1) + + + +

EAAT3 (EAAC1) − + +

EAAT4 + ±

EAAT5 − −

Na+ independent VGLUT-1 + +

VGLUT-2 − −

VGLUT-3 − −

System x−c + + +

Sialin

This table summarizes published reports of protein and/or RNA expression of glutamate receptors and transporters and demonstrates how they are differentially

expressed in primary or cultured bone cells. Most cell types in the bone (potentially all) express the structures to release, receive, and terminate glutamate signals

through multiple mechanisms (+, expressed; −, not expressed; ±, inconclusive; blank, unknown/not evaluated).

the participation of glutamate signaling in primary bone cancers,
although human osteosarcoma cell lines express several glutamate
receptors (Genever and Skerry, 2001; Itzstein et al., 2001; Kalar-
iti et al., 2004, 2007) and GLAST-1 (Kalariti et al., 2004, 2007).
NMDA receptor subunits were also identified in Oc-like giant
cells from giant cell tumor of bone (Itzstein et al., 2001). Glu-
tamate is likely important for proper tumor cell functioning, as
inhibition of glutamate receptors can limit cell growth in many
cancer cell lines (Rzeski et al., 2001). Conversely, pharmacologic
prevention of glutamate release in osteosarcoma cells results in an
inhibition of differentiation and increased apoptosis (Genever and
Skerry, 2001). Therefore glutamate signaling in general may rep-
resent an important target for bone metastasis and primary tumor
treatments, particularly since bone is uniquely sensitive to altered
extracellular glutamate (Seidlitz et al., 2010a).

As an excitatory amino acid, glutamate may also contribute
to nociception resulting from bone cancers. Indeed, in a mouse
model, sarcoma cells injected into the medullary cavity of the dis-
tal femur stimulated behavioral changes indicative of bone cancer
pain and increased the expression of mGluR3 and mGluR5 in the
spinal cord (Ren et al., 2012). Stimulation of mGluR3 or inhibi-
tion of mGluR5 in the CNS reduced bone cancer pain, suggesting
differential expression of these receptors in the spinal cord may
amplify nociceptive signaling (Ren et al., 2012). Moreover, a similar
model demonstrated increased expression of the NMDA receptor
subunit NR2B in the spinal cord,and inhibition of NMDA receptor

activity decreased pain symptoms (Gu et al., 2010). However, glu-
tamate from non-neural sources may also stimulate nociceptors in
bone, and cancer cells release significant amounts of glutamate via
the system x−c glutamate/cystine antiporter (Seidlitz et al., 2009;
Sharma et al., 2010). This transporter is an especially attractive
therapeutic target in cancer as inhibiting its functions can increase
sensitivity of the cancer cell to oxidative stress. An excellent review
by Lo et al. (2008) discusses system x−c inhibition and its potential
to limit tumor growth and sensitize cancers to other treatments
largely through pharmacologic inhibition of cystine intake, which
leads to inadequate glutathione production and an increased sensi-
tivity to oxidative stress. Excess glutamate may further disrupt the
bone by interfering with the normally balanced Oc and Ob inter-
cellular signaling, as a moderate increase in extracellular glutamate
was able to increase mineralized bone formation in cultured Ob
(Seidlitz et al., 2010b). In this respect, therapeutic inhibition of
system x−c in the cancer cells may relieve bone pain symptoms by
reducing their glutamate secretion while simultaneously prevent-
ing tumor growth, reducing bone disruption, and sensitizing the
tumor to radiation or chemotherapeutic agents.

RHEUMATOID ARTHRITIS
Glutamate signaling is also relevant in rheumatoid arthritis (RA).
For example, glutamate concentrations in synovial fluid were
reported to increase more than 50-fold in patients with RA
compared to controls, from 6.25 to 326 µM (McNearney et al.,
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2000) and both glutamate receptors and transporters are expressed
by synovial fibroblasts (Hinoi et al., 2005a; Flood et al., 2007). RA,
a chronic disorder characterized by synovial inflammation, can
result in degradation of cartilage and bone by the invading pan-
nus. As with cancer, excess glutamate within the synovial fluid
may correspond with increased nociception (Sluka et al., 1994;
Lawand et al., 1997). Glutamate signaling is also thought to con-
tribute to the inflammatory response, as a KA receptor antagonist
decreases expression of interleukin-6 in primary synovial fibrob-
lasts (Flood et al., 2007), and exogenous glutamate was found
to stimulate tumor necrosis factor-α expression in primary syn-
ovial cell cultures established from RA patients (McNearney et al.,
2004). NMDA receptor antagonists also increase expression of
pro-matrix metalloproteinase 2 in RA synovial fibroblasts (Flood
et al., 2007). Moreover, blood glutamate concentration is associ-
ated with increased bone resorption in RA patients (Hajati et al.,
2009, 2010). Not surprisingly, therefore, modulation of glutamate
signaling may alleviate RA symptoms. It is intriguing to note that
a common treatment for RA is sulfasalazine, and this drug is par-
ticularly effective at inhibiting the system x−c glutamate/cystine
antiporter (Doxsee et al., 2007). Indeed, the importance of glu-
tamate in arthritis is further highlighted using rodent arthritis
models, as inhibition of NMDA with memantine delayed the onset
of collagen-induced arthritis and reduced bone resorption in mice
(Lindblad et al., 2012). The use of non-NMDA ionotropic receptor
antagonists (Sluka et al., 1994), or a combination of NMDA and
non-NMDA ionotropic receptor antagonists (Lam and Ng, 2010)
also reduced swelling and alleviated pain symptoms in rat early
arthritis models.

CONCLUSION
Healthy bone is maintained in an exquisitely balanced state by
numerous intercellular communication systems. Evidence that
glutamate signaling is a significant participant in bone homeostasis

continues to accumulate, and disruptions in glutamatergic mech-
anisms may contribute to a variety of bone diseases. However,
owing to their apparent fundamental importance in numerous
organ systems, future in vivo studies will require targeted manip-
ulation of glutamatergic signaling to evaluate such consequences
on bone homeostasis. Bone may be especially susceptible to gluta-
mate interference as bone cells express the necessary receptors
and transporters to transmit and receive glutamate signals for
their normal functions. Glutamate transport appears critical for
feedback control between Oc and Ob and disruption of this
process may be relevant in osteoporosis. In osteoarthritis, glu-
tamate receptor expression is altered compared to normal bone
cells, and extracellular glutamate concentrations are significantly
increased in affected joints in RA and could impact inflamma-
tory responses. In arthritis, glutamate-sensitive nociceptors may
be stimulated by this locally elevated signal, and may contribute to
arthritis pain. Cancers growing in bone significantly disrupts bone
metabolism and causes severe pain. As cancer cells are known to
secrete glutamate, this errant extracellular signal may deregulate
the tightly coupled glutamatergic bone remodeling process and
may directly stimulate nociceptors. Pharmacologic modulation of
the transporter secreting glutamate from cancer cells is offered
as a potential strategy to reduce both metabolic disruption and
pain in bone cancer, and in a wider context, suggests that the
glutamatergic communication system holds significant potential
as a therapeutic target in a number of bone-related disorders.
As glutamate signaling is such a fundamental biological process,
identifying how it functions in normal bone is vital to advanc-
ing our capacity to develop glutamate-based treatments for bone
diseases.
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