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Gonadotropin-releasing hormone (GnRH) is an evolutionarily conserved neuropeptide with
10 amino acid residues, of which several structural variants exist. A molecular form known
as GnRH2 ([His5 Trp7 Tyr8]GnRH, also known as chicken GnRH II) is widely distributed in
vertebrates except for rodents, and has recently been implicated in the regulation of feeding
behavior in goldfish. However, the influence of GnRH2 on feeding behavior in other fish has
not yet been studied. In the present study, therefore, we investigated the role of GnRH2
in the regulation of feeding behavior in a zebrafish model, and examined its involvement
in food intake after intracerebroventricular (ICV) administration. ICV injection of GnRH2
at 0.1 and 1 pmol/g body weight (BW) induced a marked decrease of food consumption
in a dose-dependent manner during 30 min after feeding. Cumulative food intake was
significantly decreased by ICV injection of GnRH2 at 1 pmol/g BW during the 30-min post-
treatment observation period. The anorexigenic action of GnRH2 was completely blocked
by treatment with the GnRH type I receptor antagonist Antide at 25 pmol/g BW. We also
examined the effect of feeding condition on the expression level of the GnRH2 transcript
in the hypothalamus. Levels of GnRH2 mRNA obtained from fish that had been provided
excess food for 7 days were higher than those in fish that had been fed normally. These
results suggest that, in zebrafish, GnRH2 acts as an anorexigenic factor, as is the case in
goldfish.
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INTRODUCTION
Gonadotropin-releasing hormone (GnRH) is an evolutionarily
conserved decaneuropeptide that plays a crucial role in the reg-
ulation of reproduction in vertebrates (Sherwood et al., 1993;
Fernald and White, 1999, Millar et al., 2004). The demonstration
of GnRH structural variants in vertebrates, and even in inver-
tebrates, has now resulted in the identification of 29 molecules
(Guilgur et al., 2006; Kah et al., 2007; Roch et al., 2011). In verte-
brates, these peptides are distributed in a wide range of tissues, and
have diverse functions as hypophysiotropic hormones, paracrine
or autocrine mediators and neuromodulators/neurotransmitters
in the central and peripheral nervous systems and tissues (Gore,
2002; Millar, 2005; Kim et al., 2007; Millar et al., 2007). GnRH
with substitutions at the N-terminal fifth, seventh, and eighth
positions by histidine, tryptophan, and tyrosine residues, respec-
tively, was originally purified and characterized as a second
type of GnRH from chicken brain, and was named chicken
GnRH II (now called GnRH2; Miyamoto et al., 1984). Subse-
quently, it has been found that GnRH2 is present throughout
the vertebrates from cartilaginous fish to humans, but not in
rodents (Conlon et al., 1993; Sherwood et al., 1993; White et al.,
1998; Millar, 2003). GnRH2 has been implicated in the central
regulation of reproductive behavior as well as neuroendocrine
control of the gonads (Maney et al., 1997; Volkoff and Peter,
1999; Schiml and Rissman, 2000; White et al., 2002; Temple
et al., 2003; Lethimonier et al., 2004; Hofmann, 2006). Recently,

it has been reported that in an insectivore, the musk shrew,
GnRH2 also influences feeding behavior, and that intracere-
broventricular (ICV) administration of GnRH2 induces a marked
decrease in food consumption, suggesting that GnRH2 controls
reproduction and energy balance (Temple et al., 2003; Kauff-
man, 2004; Kauffman and Rissman, 2004a,b; Kauffman et al.,
2005b, 2006). However, the involvement of GnRH in the regu-
lation of feeding behavior had not been studied in other animal
models.

Previous studies have indicated that ICV injection of GnRH2
also induces an anorexigenic effect in a goldfish model (Hoskins
et al., 2008; Matsuda et al., 2008; Kang et al., 2011). In addition to
goldfish, the zebrafish has now been widely used as an excellent
animal model to investigate the effects of neuropeptides on feed-
ing behavior (Yokobori et al., 2011, 2012; Matsuda et al., 2012). As
in rodents and goldfish, it has been found that, in zebrafish, neu-
ropeptide Y (NPY) and orexin A stimulate food intake (Yokobori
et al., 2011, 2012; Matsuda et al., 2012). However, the exact role of
GnRH2 is unclear, and there is no information about the effect of
GnRH2 on feeding behavior in this species.

Therefore, the aim of the present study was to investigate the
effect of GnRH2 on food intake in the zebrafish model, and
the effect of ICV injection of Antide, a GnRH type I receptor
antagonist, on the action of ICV-administered GnRH2. We also
examined the effect of feeding condition on the expression level
of the GnRH2 transcript in the hypothalamus.
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MATERIALS AND METHODS
ANIMALS
Adult zebrafish (Danio rerio, 0.5–1.0 g body weight, BW) of
both sexes were obtained commercially, and kept for 2 weeks
under controlled light/dark conditions (12 h light/12 h dark) in
a water-temperature-regulated fish tank (20–24◦C) before use in
experiments, since prevention of gonadal development. The fish
were fed a commercially available granule diet (containing 32%
protein, 4% dietary fat, 3% dietary fiber, 9% mineral, 8% water,
and 44% other components; Hikari MariGold, Kyorin, Kobe,
Japan) every day at noon. For 1 week before the experiments each
fish was kept in a small experimental tank (24 cm in diameter)
with 3.5 l of tap water. All animal experiments were conducted
in accordance with the University of Toyama guidelines and the
Declaration of Helsinki for the care and use of animals. Every
effort was made to minimize the number of animals used and
their suffering.

CHEMICALS
The zebrafish possesses two molecular forms of GnRH: GnRH2
(pGlu-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH2), and GnRH3
(pGlu-His-Trp-Ser-Tyr-Gly-Trp-Leu-Pro-Gly-NH2; Powell et al.,
1996; Steven et al., 2003). Therefore, in order to examine the effect
of ICV injection of GnRH2 on food intake, GnRH2 was purchased
from Bachem AG (Bubendorf, Switzerland) and used. Zebrafish
possesses four kinds of GnRH receptors (GnRH R1–R4), GnRH
R1 and R3 being of the GnRH type I receptor type whereas GnRH
R2 and R4 are GnRH type III receptors (Tello et al., 2008). In the
present study, we used the GnRH type I receptor antagonist,
Antide (acetyl-D-Ala(2-naphthyl)-D-Phe(4-Cl)-D-Ala(3-pyridyl)-
Ser-Lys(Nε-nicotinoyl)-D-Lys(Nε-nicotinoyl)-Leu-Lys(Nε-isopr-
opyl)-Pro-D-Ala-NH2), obtained from Sigma-Aldrich Co. (St.
Louis, MO, USA). Antide was dissolved in 0.1% acetic acid and
diluted with 0.6% NaCl and 0.02% Na2CO3 solution (saline)
before use.

EFFECT OF ICV ADMINISTRATION OF GnRH2 ON FOOD INTAKE
Details of the methods used for evaluating feeding behavior in
zebrafish have been reported elsewhere (Yokobori et al., 2011,
2012). Each fish was normally fed before the experiments began at
noon, and placed in a wet sponge under anesthesia with MS-222
(3-aminobenzoic acid ethyl ester; Sigma-Aldrich). A small part
of the parietal bone was carefully removed using a surgical blade
(No. 19, Futaba, Tokyo, Japan), and then 0.5 μl/g BW of GnRH2
at doses of 0.1 and 1 pmol/g BW was injected into the third ven-
tricle of the brain using a small Hamilton syringe. The gap in the
bone was then filled with a surgical agent (Aron Alpha, Sankyo,
Japan). The accuracy of the injection site was confirmed after the
experiment by examining whether Evans blue dye, injected at the
same time, was present in the ventricle (Figure 1A). Control fish
in each experiment were injected with the same volume of vehi-
cle (less than 0.01% acetic acid diluted with saline) in the same
way as for the experimental group. Each fish that had received
an injection was individually placed in a small experimental tank
(24 cm in diameter) containing 3.5 l of tap water, and supplied
with food equivalent to 3% of its BW. Food intake was measured
by directly observing and recording the number of diet pellets

FIGURE 1 | (A) A photograph showing ICV administered-solution
containing 0.05% Evans Blue into the brain. Scale bar is 1 mm. (B) Effect of
ICV administration of GnRH2 on food intake in the zebrafish. Each column
and bar represents the mean and SEM, respectively, and the numbers in
parentheses in the panels indicate the number of fish in each group.
Significances of differences at each time point were evaluated by one-way
ANOVA with the Bonferroni’s method in comparison with the vehicle-
injected group (**P < 0.01).

eaten by individual fish over 15 and 30 min of commencement of
feeding.

EFFECT OF ICV INJECTION OF ANTIDE ON GnRH2-INDUCED
ANOREXIGENIC ACTION
Because pilot experiments had shown that ICV injection of
cGnRH2 at a dose of 1 pmol/g BW induced a marked decrease
of food intake, Antide at 25 pmol/g BW, a dose previously deter-
mined to be sufficient to suppress the action of GnRH2 in goldfish
(Matsuda et al., 2008), was delivered by ICV injection in addition
to GnRH2 at 1 pmol/g BW. Control fish were injected with the
same volume of vehicle (less than 0.01% acetic acid diluted with
saline) in the same way as for the experimental group. Food intake
was then measured over the first 15 and 30 min of commencement
of feeding, as described above.

EFFECT OF FEEDING CONDITION ON GnRH2 mRNA EXPRESSION
IN THE HYPOTHALAMUS
Every day for 7 days, fish were supplied an excessive amount
of food corresponding to 9% of their BW. Other fish were fed
an amount of food corresponding to 3% of their BW for the
same period. On day 7, the fish were anesthetized with MS-
222 and decapitated. Because the zebrafish brain is very small,
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each brain was dissected out, and the hypothalamus was col-
lected, weighed, and immersed immediately in liquid nitrogen,
before being stored at −80◦C until use. Total RNA was extracted
from each part of the brain with Isogen (a solution containing
phenol and guanidinium isothiocyanate; Nippon Gene, Tokyo,
Japan). For amplification and quantitation of the cDNA fragments
encoding GnRH2 and β-actin, the one-step reverse transcription
polymerase chain reaction (RT-PCR) method (SYBR Green RT-
PCR Reagents Kit, Applied Biosystems, Foster City, CA, USA)
was used. Reactions (including 5 μM primers, 2× SYBR Green
PCR master mix, 6.25 U MultiScribe reverse transcriptase, 10 U
RNase inhibitor, RNA template, and water) were set up in a 96-
well reaction plate and placed in a sequence detection system for
cycling (TP 800, Takara, Tokyo, Japan). Reverse transcription was
carried out at 48◦C for 30 min and the resulting cDNA was sub-
sequently amplified using 40 cycles of 95◦C for 15 s followed by
60◦C for 60 s. The PCR products from each cycle were moni-
tored using SYBR Green I fluorescent dye (Applied Biosystems).
Gene-specific primers for amplification of the GnRH2 cDNA
fragment were based on the nucleotide sequence of zebrafish
GnRH2 (GenBank ID, BC162945.1, NM_181439; Ensembl ID,
ENSDARG00000044754). PCR with the sense primer (5′-CAA
AAT ATT AGA CTG AAG TGA TGG T-3′) and the antisense
primer (5′-GGT CTA TCT CTC TCT TTC CTC CA-3′) yielded
a 86-bp product encoding zebrafish GnRH2 cDNA. Zebrafish β-
actin-specific primers were used as the internal control for PCR
amplification (GenBank accession number, NM_181601; Ensembl
ID, ENSDART00000055194). Using these primers (sense primer,
5′-GTG ATG GAC TCT GGT GAT GGT GT-3′; antisense primer,
5′-TGA AGC TGT AGC CTC TCT CGG TC-3′), a 148-bp product
corresponding to a region in the central part of the β-actin cDNA
sequence was obtained. The expression levels of GnRH2 mRNA
were calculated quantitatively as a ratio relative to the expression
of β-actin mRNA.

DATA ANALYSIS
All the results are expressed as mean ± SEM. Statistical analysis
was performed by one- and two-way ANOVA with Bonferroni’s
method or Student’s t-test. Statistical significance was determined
at the 5% level.

RESULTS
EFFECT OF ICV ADMINISTRATION OF GnRH2 ON FOOD INTAKE
Intracerebroventricular injection of GnRH2 (at 0.1 and 1 pmol/g
BW) inhibited food intake over a 30-min feeding period. A signifi-
cant reduction in cumulative food consumption was observed at a
dose of 1 pmol/g BW at both 15 and 30 min after commencement
of feeding (Figure 1B). The df, F, and P values between treatments
with saline and GnRH2 were: 2, 3.08, and 0.06 at 15 min; 2, 3.51,
and 0.04 at 30 min.

EFFECT OF ICV INJECTION OF ANTIDE ON ANOREXIGENIC
ACTION OF GnRH2
Intracerebroventricular administration of GnRH2 alone at
1 pmol/g BW suppressed food intake over a 30-min feeding period,
and ICV-injected Antide alone at 25 pmol/g BW did not affect food
intake. On the other hand, the same dose of Antide completely
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FIGURE 2 | Effect of ICV administration of Antide on the anorexigenic

action of GnRH2. The results are expressed as a percentage of the control,
i.e., vehicle-injected, fish. Each column and bar represents the mean and
SEM, respectively, and the numbers in parentheses in the panels indicate
the number of fish in each group. Significance of differences among
experimental groups was evaluated by two-way ANOVA with the
Bonferroni’s method in comparison with the vehicle-injected group
(**P < 0.01).

abolished the anorexigenic action of ICV-injected GnRH2 at a
dose of 1 pmol/g BW, and the efficacy of the antagonist was shown
to be significant by two-way ANOVA with Bonferroni’s method
(df, F, and P values, 1, 4.39, and 0.04, respectively; Figure 2).

EFFECT OF FEEDING CONDITION ON GnRH2 mRNA EXPRESSION
IN THE HYPOTHALAMUS
Figure 3 shows the expression levels of GnRH2 mRNA in the
hypothalamus of zebrafish supplied an excessive amount of food
corresponding to 9% of their BW, and normal amount of food
corresponding to 3% of their BW. Expression of GnRH2 mRNA
was estimated quantitatively as a ratio relative to the expression of
β-actin mRNA. In the hypothalamus, excessive feeding for 7 days
induced a significant increase (approximately four times higher)
in the level of GnRH2 mRNA compared with that in fish that had
been fed normally (t and P values, 2.82 and 0.012, respectively;
Figure 3).

DISCUSSION
We have developed methods for administering ICV test sub-
stances and for measuring food consumption in a small fish, the
zebrafish, and our previous studies have demonstrated that, in
this species, NPY and orexin A act as orexigenic neuropeptides
(Yokobori et al., 2011, 2012). In the present study, we investi-
gated the effect of central administration of GnRH2 on food
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FIGURE 3 | Effect of feeding condition on the level of expression of

GnRH2 mRNA in the hypothalamus. The results are expressed as the
mean ± SEM, and the number of fish per group is indicated in parentheses.
Statistical significance was evaluated by Student’s t -test (**P < 0.01).

intake, and demonstrated for the first time that GnRH2 strongly
suppresses food consumption in the zebrafish. In matured female
musk shrew, an insectivore, ICV injection of GnRH2 inhibits food
intake, and feeding status influences the levels of both GnRH2
mRNA expression and immunoassayable GnRH2 in the brain,
which are decreased by food restriction (Kauffman and Rissman,
2004a; Kauffman et al., 2006). The present study indicates the
anorexigenic action of GnRH2 in the zebrafish, as is the case
in female musk shrew and goldfish (Hoskins et al., 2008; Mat-
suda et al., 2008; Kang et al., 2011), indicating that it may be
involved generally in the regulation of feeding behavior in ver-
tebrates. GnRH3 is widely distributed in several regions of the
zebrafish brain, including the olfactory bulb, the area of the ter-
minal nerve, and telencephalon, and GnRH3 is implicated in
pituitary control (Torgersen et al., 2002; Steven et al., 2003; Pale-
vitch et al., 2007). On the other hand, GnRH2-expressing neurons
are localized mainly in the midbrain tegmentum (Palevitch et al.,
2007). However, the exact role of GnRH2 in the zebrafish has
been unclear. Because GnRH2 is implicated in the regulation of
reproductive behavior and energy balance in the female musk
shrew, sparrow, and goldfish (Maney et al., 1997; Temple et al.,
2003; Kauffman, 2004; Kauffman and Rissman, 2004a; Kauffman
et al., 2005a,b; Hofmann, 2006; Hoskins et al., 2008; Matsuda et al.,
2008; Kang et al., 2011), it is likely that, in zebrafish, GnRH2
is involved in both feeding control and reproductive behavior.
GnRH systems have been well studied in teleost fish (Lethimonier
et al., 2004). The zebrafish possesses two GnRHs – GnRH2 and
GnRH3 – which are encoded by two distinct genes (Steven et al.,
2003), and four GnRH receptors, GnRH R1–R4 – which are
members of the G protein-coupled receptor family (Tello et al.,
2008). There are marked differences in structure between these
two groups of GnRHRs. GnRH R1 and R3 are evolutionarily
derived from the common ancestor of the GnRH type I receptor,

and GnRH R2 and R4 belong to the GnRH type III receptor
group (Tello et al., 2008). In the present study, ICV administra-
tion of GnRH2 at 1 pmol/g BW induced a significant decrease
of food intake, and this effect was completely blocked by treat-
ment with Antide. Antide is the GnRH type I receptor antagonist
(Kauffman et al., 2005b; Matsuda et al., 2008). These results sug-
gest that the anorexigenic action of GnRH2 is mediated by the
Antide-sensitive receptor system, perhaps involving GnRH R1
and/or R3. The knowledge about the expression and the dis-
tribution of GnRH receptors in the zebrafish brain should help
us to speculate on the mechanisms underlying GnRH2-induced
anorexigenic effect. However, there has been no information about
distribution of GnRH receptors in the hypothalamus. It is unclear
which receptor type mediates the anorexigenic action of GnRH2
in zebrafish.

In mammals, several neuropeptides including CRH, galanin-
like peptide, LHRH (GnRH1), kisspeptin, α-MSH, NPY, orexin,
and 26RFa are implicated in the regulation of nutrition and repro-
duction, suggesting that feeding and reproductive functions are
closely linked (Catzeflis et al., 1993; Iqubal et al., 2001; Chartrel
et al., 2003; Kauffman et al., 2005a; Crown et al., 2006; Martynska
et al., 2006; Navarro et al., 2006; Maeda et al., 2007). Orexin, which
has crucial role in the sleep–wakefulness cycle and appetite control,
affects GnRH1 release directly or via the NPY-, CRH-, and β-
endorphin-signaling pathways (Li et al., 1999; Tamura et al., 1999;
Irahara et al., 2001; Yang et al., 2005; Iwasa et al., 2007). In goldfish,
ICV administration of orexin A suppresses spawning behavior, and
ICV administration of GnRH2 reduces the level of orexin precur-
sor mRNA in the brain (Hoskins et al., 2008). These data suggest
that, in goldfish, GnRH2 and orexin have opposite roles in appetite
and satiety regulation. Our previous studies have revealed that
mRNA expression levels for NPY and orexin in the hypothalamus
obtained from zebrafish fasted for 7 days are higher than those in
zebrafish that had been fed normally, suggesting NPY and orexin
in the hypothalamus act as orexigenic factors in this species. In
the present study of zebrafish, we focused on the GnRH2 neuronal
system, which has been implicated in the regulation of food intake
in the goldfish (Matsuda et al., 2008), and demonstrated for the
first time that the expression of GnRH2 mRNA in the hypothala-
mus is affected by feeding status. The results support the idea that
GnRH2 in the hypothalamus acts as an anorexigenic neuropep-
tide in this species. Further investigations to clarify the regulatory
mechanism of food intake by GnRH2 and other neuropeptides
and factors are warranted.

In conclusion, the present study has demonstrated for the first
time that ICV administration of GnRH2 suppresses food intake
in the zebrafish. These results suggest that GnRH2 induces behav-
ioral changes, and in particular acts as an anorexigenic factor in
this species. The present findings also indicate that evolutionary
pressure has acted to preserve the function of GnRH2 as a feeding
regulator across the vertebrates.
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