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Dopamine (DA) is a major neurotransmitter important for neuroendocrine control and recent
studies have described genomic signaling pathways activated and inhibited by DA agonists
and antagonists in the goldfish brain. Here we perform a meta-type analysis using microar-
ray datasets from experiments conducted with female goldfish to characterize the gene
expression responses that underlie dopaminergic signaling. Sexually mature, pre-spawning
[gonadosomatic index (GSI)=4.5±1.3%] or sexually regressing (GSI=3±0.4%) female
goldfish (15–40 g) injected intraperitoneally with either SKF 38393, LY 171555, SCH 23390,
sulpiride, or a combination of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and α-methyl-p-
tyrosine. Microarray meta-type analysis identified 268 genes in the telencephalon and hypo-
thalamus as having reciprocal (i.e., opposite between agonism and antagonism/depletion)
fold change responses, suggesting that these transcripts are likely targets for DA-mediated
regulation. Noteworthy genes included ependymin, vimentin, and aromatase, genes that
support the significance of DA in neuronal plasticity and tissue remodeling. Sub-network
enrichment analysis (SNEA) was used to identify common gene regulators and binding
proteins associated with the differentially expressed genes mediated by DA. SNEA analy-
sis identified gene expression targets that were related to three major categories that
included cell signaling (STAT3, SP1, SMAD, Jun/Fos), immune response (IL-6, IL-1β, TNFs,
cytokine, NF-κB), and cell proliferation and growth (IGF1, TGFβ1). These gene networks
are also known to be associated with neurodegenerative disorders such as Parkinsons’
disease, well-known to be associated with loss of dopaminergic neurons. This study iden-
tifies genes and networks that underlie DA signaling in the vertebrate CNS and provides
targets that may be key neuroendocrine regulators. The results provide a foundation for
future work on dopaminergic regulation of gene expression in fish model systems.
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INTRODUCTION
Dopamine (DA) is a neurotransmitter important in disorders such
as schizophrenia (Seeman and Kapur, 2000) and Parkinson’s dis-
ease (Baik et al., 1995), but is also the major neurotransmitter
controlling teleost reproduction (reviewed in Dufour et al., 2005;
Dufour et al., 2010). In this regard, DA inhibits the release of
luteinizing hormone (LH) in fish through multiple mechanisms:
(a) DA inhibits gonadotropin-releasing hormone (GnRH) release
from GnRH neurons through the D1 receptor (Yu and Peter, 1992);
(b) DA directly inhibits LH release from gonadotrophs in the ante-
rior pituitary through the D2 receptor (Peter et al., 1986; Omelja-
niuk et al., 1987); (c) DA decreases the expression of GnRH recep-
tor mRNA in the pituitary (Kumakura et al., 2003; Levavi-Sivan
et al., 2004); and (d) DA inhibits the synthesis of GABA (Hibbert
et al., 2004, 2005), an important stimulator of LH release (Mar-
tyniuk et al., 2007). Furthermore, it is well understood that DA,
acting through the D1, stimulates growth hormone in fish (Wong
et al., 1992). Our recent studies using goldfish have investigated
the effects of DA agonists on the hypothalamic transcriptome and
proteome (Popesku et al., 2010) or of DA antagonists on gene

expression in the neuroendocrine brain (Popesku et al., 2011a).
Additionally, we have previously described the effects of a combi-
nation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP;
a selective DA neurotoxin) and α-methyl-p-tyrosine (αMPT; a
tyrosine hydroxylase inhibitor) on the goldfish hypothalamic tran-
scriptome (Popesku et al., 2008). Using microarray datasets from
two of these experiments, and an additional novel microarray data
presented here, we further elucidate the mechanistic effects of DA
on gene expression in the neuroendocrine brain by performing a
meta-type analysis of these datasets.

In transcriptomics, there are a number of bioinformatics
approaches to globally assess gene expression data and to organize
expression data into a larger biological context. These methods
include Gene Ontology (GO) characterization, functional enrich-
ment, and pathway analysis. Many of these approaches have been
successfully performed using genomic data in neuroendocrine
regions of teleost fishes to better describe cellular events that are
mediated by neurotransmitters, hormones, or exogenous neuroac-
tive agents (Marlatt et al., 2008; Popesku et al., 2008; Zhang et al.,
2009a; Martyniuk et al., 2010). New bioinformatics tools are now
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available to construct gene networks using gene expression pro-
filing and have been used successfully in teleost fish (e.g., reverse
engineering of adverse pathways for ecotoxicology (Perkins et al.,
2011). Sub-network enrichment analysis (SNEA; Ariadne’s Path-
way Studio v7.0 Sivachenko et al., 2007) offers a unique approach
to protein interaction networks that are described in the litera-
ture as well as a curated mammalian database. Specifically, SNEA
builds sub-networks by mapping experimental data onto known
bio-molecular interactions. The interactions include promoter-
binding, protein modification, and common targets of expression.
This algorithm has been used to identify gene sub-networks in
breast cancer cell lines (Chuang et al., 2007) and is a useful tool for
identifying interaction or signaling networks that involve differ-
entially expressed genes. As such, this method can provide insight
in gene regulatory pathways.

In this study, we identify genes and sub-networks that are likely
regulated by DA based on their reciprocal response to DA ago-
nism or antagonism/depletion. These data have implications for
our understanding of DA action in fish neuroendocrine systems.

MATERIALS AND METHODS
This is a meta-type analysis of published experiments involving
treatments of goldfish with DA agonists (Popesku et al., 2010),
antagonists (Popesku et al., 2011a), and after pharmacological
depletion of DA (Popesku et al., 2008). The abbreviated Mate-
rials and Methods pertaining to the experiments are included here
for completeness. It should be noted that, while published, the
previous DA depletion studies offered only a cursory analysis of
the microarray data in the context of neurotransmitter effects on
gene expression and did not specifically address global dopaminer-
gic control of transcriptional responses. Furthermore, we present
novel transcriptomic data for specific DA antagonism for which
the physiological response to these antagonists has been published
(Popesku et al., 2011a), but for which microarray analysis was
not performed at that time. We used this novel dataset to com-
pare these DA antagonism responses to agonist and DA depletion
responses to improve identification of DA-regulated transcripts in
the hypothalamus.

EXPERIMENTAL ANIMALS AND CONDITIONS
All procedures used were approved by the University of Ottawa
Protocol Review Committee and followed standard Canadian
Council on Animal Care guidelines on the use of animals in
research.

Common adult female goldfish were purchased from a com-
mercial supplier (Aleong’s International Inc., Mississauga, ON,
Canada) and maintained at 18˚C under a natural simulated pho-
toperiod on standard flaked goldfish food. Fish were allowed to
acclimate for a minimum of 1 month prior to any experimental
manipulations. Goldfish were anesthetized using 3-aminobenzoic
acid ethylester (MS222) for all handling, injection, and dissection
procedures.

DOPAMINE AGONIST EXPERIMENT
Sexually mature, pre-spawning [mid-May; gonadosomatic index
(GSI)= 4.5± 1.3%] female goldfish (15–40 g) were injected
intraperitoneally with either SKF 38393 [D1 agonist; SKF;

1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol] or LY
171555 [D2 agonist; LY; (−)-Quinpirole hydrochloride] pur-
chased from Tocris (Ballwin, MO, USA). The experimental design
and doses chosen were based on Otto et al. (1999) who showed
rapid effects on goldfish brain somatostatin mRNAs. LY was dis-
solved in physiological saline (0.6% NaCl) to yield a dose of
2 µg/g body weight of fish. SKF was first dissolved in a minimal
amount of dimethylsulfoxide (DMSO), and subsequently diluted
to 40 µg/g body weight of fish with physiological saline (0.6%
for fish). The final concentration of DMSO was 0.099%; DMSO
up to 0.1% does not affect basal GH or LH levels (Otto et al.,
1999). While 0.1% DMSO may (Mortensen and Arukwe, 2006)
or may not (Nishimura et al., 2008) affect gene expression, all of
our gene expression work is relative to control fish which received
an equivalent amount of DMSO. The fish received two sequential
i.p. injections at 5 µL/g body weight each according to the sched-
ule shown in Table 1. The experiment was conducted this way to
ensure that all fish received an equivalent volume of vehicle.

DOPAMINE ANTAGONIST EXPERIMENT
The DA D1-specific antagonist SCH 23390 and DA D2-specific
antagonist sulpiride were purchased from Tocris (Ballwin, MO,
USA). The antagonists were first dissolved in a minimal amount
of DMSO, and subsequently diluted with 0.6% saline. The final
concentration of DMSO was 0.099%. Sexually regressing (June;
GSI= 3± 0.4%; n= 18 each) female goldfish received a single
injection at 5 µL/g body weight of either SCH 23390 or sulpiride
to give a dose of 40 µg/g or 2 µg/g body weight of fish, respectively,
or saline containing an equivalent amount of DMSO.

DOPAMINE DEPLETION EXPERIMENT
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine and α-methyl-p-
tyrosine (αMPT) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Sexually mature (May; GSI= 4.7± 0.6%) female gold-
fish (n= 5 each) were injected with MPTP (50 µg/g; day 0) and
αMPT (240 µg/g; day 5) or saline (control) in order to severely
deplete catecholamines. Our previous work had established effec-
tive doses of MPTP and αMPT in goldfish (Trudeau et al., 1993;
Hibbert et al., 2004).

TISSUE DISSECTIONS
Fish were sacrificed by spinal transection and hypothalami and
telencephali tissues were rapidly dissected and immediately frozen
on dry ice. Brain tissues were pooled (2–3 hypothalami or telen-
cephali/tube) to increase RNA yield prior to RNA isolation. For the
agonists and antagonists, tissues were harvested 5 h post-injection,
and for the DA depletion experiment, tissues were harvested 20 h
after the αMPT injection. The cerebellae of the fish from the DA

Table 1 | Injection schedule for the administration of dopamine

agonists used in this study.

Treatment i.p. Injection 1 i.p. Injection 2 # Fish injected

Control 0.1% DMSO/saline 0.6% Saline 13

SKF SKF 38393 40 µg/g 0.6% Saline 14

LY 0.1% DMSO/saline LY 171555 2 µg/g 11
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depletion experiment were also harvested for brain catecholamine
levels, but were not used in further analyses.

RNA ISOLATION, QUANTIFICATION, AND QUALITY ASSESSMENT
RNA was isolated with the TRIzol method (Invitrogen, Burling-
ton, ON, Canada) per the manufacturer’s protocol. Samples were
treated with DNase on-column in an RNeasy Mini Plus kit (Qia-
gen, Mississauga, ON, Canada). RNA quantity was evaluated using
the NanoDrop ND-1000 spectrophotometer (Thermo Fisher Sci-
entific). RNA integrity was evaluated using the BioAnalyzer
(Agilent); RIN for each sample was >8.4.

HPLC ANALYSIS OF BRAIN CATECHOLAMINE LEVELS IN THE
DOPAMINE DEPLETION EXPERIMENT
Catecholamine levels in brain tissues were determined on alumina-
extracted samples (100 µL) using HPLC with electrochemical
detection (Woodward, 1982). The HPLC incorporated a Var-
ian ProStar 410 solvent delivery system (Varian Chromatogra-
phy Systems, Walnut Creek, CA, USA) coupled to a Princeton
Applied Research 400 electrochemical detector (EG & G Instru-
ments, Princeton, NJ, USA). Concentrations were calculated rel-
ative to appropriate standards, using 3,4-dihydroxybenzalamine
hydrobromide (DHBA) as an internal standard.

MICROARRAY HYBRIDIZATIONS
For all microarray analyses, cDNA was synthesized from 2 µg
total RNA according to the Genisphere 3DNA Array 900MPX kit
according to the manufacturer’s protocol (Genisphere, Hatfield,
PA, USA). We previously described and validated the production
and use of our goldfish-carp cDNA microarray (Martyniuk et al.,
2006; Marlatt et al., 2008; Mennigen et al., 2008), and a detailed
description of the microarray is available (Williams et al., 2008).
Four microarray hybridizations were performed for each hypo-
thalamic and telencephalic tissue pool for both D1 and D2 agonists
(total of 16 arrays), antagonists (16 arrays), or DA depletion
(MPTP+ αMPT; eight arrays) to screen for the effects of the DA
in the neuroendocrine brain. For each experiment, three separate
pools of RNA from treated fish were hybridized to the microar-
rays, and a fourth hybridization was a replicate dye-reversal of one
of the three RNA pooled samples. Hybridizations were carried
out relative to a common pool of control samples (∼30 control
fish) for each tissue, which decreases technical variation as only
one reference is utilized while maintaining biological variation
of the treatment samples (Churchill, 2002). All cDNA synthesis,
labeling, and hybridizations were performed using the Genisphere
3DNA Array 900MPX kit according to the manufacturer’s proto-
col (Genisphere, Hatfield, PA, USA). Hybridizations and scanning
protocols were described previously (Martyniuk et al., 2006; Mar-
latt et al., 2008; Mennigen et al., 2008). Briefly, microarrays were
scanned at full-speed 10-µm resolution with the ScanArray 5000
XL system (Packard Biosciences/PerkinElmer, Woodbridge, ON,
Canada) using both red and blue lasers. Images were obtained
with ScanArray Express software using automatic calibration sen-
sitivity varying photomultiplier (PMT) gain (PMT starting at 65%
for Cy5 and 70% for Cy3) with fixed laser power at 80% and
the target intensity set for 90%. Microarray images were ana-
lyzed with QuantArray (Packard Biosciences/Perkin Elmer), and

raw signal intensity values were obtained for duplicate spots of
genes. Raw intensity values for all microarray data and microar-
ray platform information have been deposited in the NCBI Gene
Expression Omnibus database and assigned the following Super-
Series accession numbers: GSE15855 (agonists),GSE15763 (antag-
onists), and GSE16044 (MPTP+ αMPT). Generalized Procrustes
Analysis (Xiong et al., 2008) was used for normalization of the
array data and the Significance Analysis of Microarrays (SAM)
method (Woodward, 1982; Tusher et al., 2001) was used to iden-
tify differentially expressed genes. Genes/ESTs were selected based
on identical AURATUS GeneIDs and on the basis of differential
regulation in opposite directions for MPTP or the antagonists
vs. agonists, or in the same direction for MPTP vs. antagonists;
genes that did not fall into one of these categories were not
included in the analysis. All genes/ESTs identified and presented
were statistically significant (q < 5%) in all treatments.

REAL-TIME PCR
Primers used in this study for aromatase B, 18S, and β-actin
have been validated and published (Martyniuk et al., 2006). The
Mx3005 Multiplex Quantitative PCR System (Stratagene, La Jolla,
CA, USA) was used to amplify and detect the transcripts of interest.
Each PCR reaction contained the following final concentrations:
25 ng first strand cDNA template, 1× QPCR buffer, 3 mM MgCl2,
300 nM each F & R primers, 0.25× SYBRGreen (Invitrogen),
200 µM dNTPs, 1.25 U HotStarTaq (Invitrogen), and 100 nM ROX
reference dye, in a 25 µL reaction volume. The thermal cycling
parameters were an initial one cycle Taq activation at 95˚C for
10 min, followed by 40 cycles of 95˚C for 30 s, 59˚C for 45 s, and
72˚C for 30 s. After the reaction was complete, a dissociation curve
was produced starting from 55˚C (+1˚C/30 s) to 95˚C. Dilutions
of cDNA (1:10–1:31,250) from all samples were used to construct a
relative standard curve for each primer set, relating initial template
copy number to fluorescence and amplification cycle. For each
PCR reaction, negative controls were also introduced including a
no-template control (NTC) where RNase-free water was added to
the reaction instead of the template (cDNA) and NoRT control,
where water was added instead of reverse transcriptase during
cDNA synthesis. The SYBR green assay for each target gene was
optimized for primer concentration and annealing temperature
to obtain, for the standard curve, an R2 > 0.99, amplification effi-
ciency between 90 and 110% and a single sequence-specific peak in
the dissociation curve. No amplification was observed in the NoRT
or NTC controls indicating no genomic or reagent contamination.
Data were analyzed with the MxPro v4.01 software package.

SUB-NETWORK ENRICHMENT ANALYSIS OF RECIPROCALLY
DA-REGULATED TRANSCRIPTS
Pathway Studio 7.1 (Ariadne, Rockville, MD, USA) and ResNet 7.0
were used for SNEA for genes that showed reciprocal expression
with MPTP-mediated DA depletion and with the DA agonist SKF
38393. We selected the agonist and DA depletion datasets from
the hypothalamus for this analysis because (1) the experiments
were conducted at the same time of year (May) and (2) these
experiments resulted in the greatest number of reciprocal gene
expression changes. A total of 114 genes were successfully mapped
to human homologs using the GenBank protein ID while 14 genes
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could not be confidently mapped to human homologs; hence the
unmapped proteins were not included in the analysis. SNEA for
expression targets, binding partners, and post-translation modi-
fication targets was performed to determine if there were com-
mon gene targets for MPTP and SKF treatments. SNEA creates
a central “seed” from all relevant entities in the database, to find
common effectors (expression targets, binding partners, and post-
translational targets). The enrichment p-value for gene seeds was
set at p < 0.05 and, for the current study, the criteria of greater
than five members per group were required for inclusion as a
significantly regulated gene network. This was chosen to focus the
analysis and discussion on the most likely gene networks regulated
through DA signaling.

RESULTS
CATECHOLAMINE DEPLETION
To ensure that the MPTP+ αMPT treatment effectively decreased
DA levels in the brain, Hyp, Tel, and cerebellum (Cer) tissues were
analyzed for catecholamine content using HPLC. Following injec-
tions of MPTP (−6 days) and αMPT (−1 day), DA levels were
decreased by 69.6 and 70.9% in the Hyp and Tel, respectively, and
by 88.2% in the Cer relative to saline-injected controls (Figure 1).
Norepinephrine (NE) levels were also reduced in the Hyp (79.4%),
Tel (87.5%), and Cer (90.4%).

MICROARRAY ANALYSIS
Using the microarray datasets from our previous experiments
(Popesku et al., 2008, 2010), and the novel microarray data from
the antagonist experiment, a meta-type analysis of genes likely reg-
ulated by DA was performed. A total of 268 genes/ESTs were identi-
fied in the hypothalamus as being regulated by DA, while only four
were identified in the telencephalon. Of the 268 genes/ESTs iden-
tified in the hypothalamus, only 41% are annotated (Figure A1 in
Appendix). The others currently have no known biological func-
tion (6%), are not similar to any sequences in GenBank (34%), or
are lacking sequence information (19%). The relatively high num-
ber of sequences affected by DA in the hypothalamus, the majority
of which are acting through the D1 receptor (Table 2), highlights

FIGURE 1 | Percent depletion of dopamine (DA) and norepinephrine
(NE) in different brain tissues relative to saline-injected control 6d
post-injection with MPTP and 1d post-injection with αMPT (p < 0.01 in
all cases, relative to control). Tel, Telencephalon; Hyp, Hypothalamus; Cer,
Cerebellum.

the importance of this receptor in this tissue. The annotated
sequences were binned into their corresponding GO Slim terms,
using Blast2GO as described in Popesku et al., 2010; Figure 2).

REAL-TIME RT-PCR VALIDATION OF AromB
Changes in the hypothalamic mRNA levels of Aromatase B identi-
fied by microarray analysis were validated using real-time RT-PCR.
Figure 3 shows a 4.7-fold decrease (p= 0.027) in AromB mRNA
levels 5 h post-injection with SKF 38393. AromB mRNA levels
were increased 1.6-fold following DA depletion, but did not reach
statistical significance (p > 0.05).

SNEA
Sub-network enrichment analysis identified a number gene set tar-
gets for MPTP-mediated DA depletion and SKF 38393 (Table 3).
Expression targets of insulin (INS) were highly affected by DA
deletion and receptor stimulation (Figure 4A). This expression
group included genes such as apoe and apoa4, vim, gapdh, and
myc. Expression targets also affected by DA depletion and SKF
38393 were those related to cell signaling, for example expression
targets of STAT3, SMAD, JUN, and SP1 signaling. A second major
group of expression targets included those related to inflammation
such as cytokines, NF-κB, IL-6, IL-1β, and TNF. Genes involved in
cytokine signaling that are reciprocally affected by dopaminergic
stimulation/inhibition included fn1, cyp19a1, psmd4, vim, and glul
(Figure 4B). The third group involved expression targets related to
cell growth and differentiation such as insulin-like growth factor I
(IGF1) and transforming growth factor-beta (TGFβ1; Figure 4C).
Also noteworthy was that expression targets of HIF1A were also
identified in the SNEA analysis (Table 3). SNEA is also able to
identify binding partner networks and post-translational targets
using differentially expressed genes. Binding partners of vitamin
D, GAPDH, myosin, and tubulin were affected by treatments while
protein modification targets of trypsin and glutathione transferase
were significantly impacted through DA signaling (Table 3).

DISCUSSION
Our approach is an effort to identify a group of genes that are
likely regulated by DA. The principle behind the analysis is that
genes commonly affected in one direction by severe catecholamine
depletion (MPTP+ αMPT) and/or DA antagonists will also be
affected by DA agonists but expression changes will be in the oppo-
site direction. The power and novelty of this analysis lies in the
physiological manipulation and biological validation of recipro-
cal fold-changes between DA agonists and antagonists/depletion
in vivo, rather than the technical validation resulting from differ-
ent techniques performed on the same samples. Additionally, we
validated the expression of brain aromatase in the hypothalamus
(discussed below) using real-time RT-PCR.

Here we present transcripts that are affected by well-
characterized dopaminergic manipulations and allow for specu-
lation on DAergic mechanisms of action in the goldfish neuroen-
docrine brain. Furthermore, our analysis identified gene networks
and provides the foundation for future work on DAergic regula-
tion of neuroendocrine gene expression. Some of the genes/ESTs
identified in this analysis (e.g., calmodulin, apolipoprotein) were
previously discussed (Popesku et al., 2010) and will not be
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Table 2 | Genes/ESTs identified as regulated by dopamine, presented as fold-changes.

Tissue AURATUS

ID

Best blast hit Accession Human homolog DA depletion or receptor

blockage

DA mimic

Accession Gene MPTP +

aMPT

SCH sulpiride SKF LY

Hyp 08j13 14 kDa apolipoprotein CF662566 No homolog −1.5 1.7

Hyp 08b22 17-Beta hydroxysteroid

dehydrogenase type 12B,

3-ketoacyl-CoA reductase

type B

CA968619 NM_016142 HSD17B12 1.4 −1.7

Hyp 16j14 26s Protease regulatory

subunit 4

CA966407 NM_002802 PSMC1 −1.4 1.4

Hyp 08e14 40S Ribosomal protein S27 CA968660 NM_001030 RPS27 −1.5 1.7

Hyp 07f01 Abhydrolase domain

containing 12

CA967283 NM_001042472 ABHD12 −1.6 1.8

Hyp 22n08 Adenylate kinase 3-like 1 CA969490 NM_016282 AK3 1.3 −1.5

Hyp 08k20 Aldehyde dehydrogenase 7

family, member A1

CA968758 NM_001182 ALDH7A1 −1.3 1.3

Hyp 03h23 Aldolase C DY231930 NM_005165 ALDOC 1.4 −1.6

Hyp 05f06 Alpha-2-macroglobulin-1 CF662428 NM_000014 A2M −1.6 1.5 2.1

Hyp 22i24 Alpha-actin CA969403 NM_001100 ACTA1 1.4 −1.5

Hyp 09p02 Angiotensinogen CA964907 NM_000029 AGT −1.5 1.8 1.3

Hyp 09j02 Apolipoprotein a-iv CA966743 NM_000482 APOA4 −1.5 1.7

Hyp 16n14 Apolipoprotein e CF662778 NM_000041 APOE −1.3 2.4

Hyp 04a17 Aromatase b FG392770 NM_000103 CYP19A1 1.3 −1.7

Hyp 14k14 arp2 Actin-related protein 2

homolog

CA964468 NM_005722 ACTR2 −1.3 2.3 1.3

Hyp 12l13 asf1 Anti-silencing function

1 homolog b (cerevisiae)

CA966040 NM_018154 ASF1B −1.3 1.9

Hyp 16l15 atp-Binding sub-family f

member 2

CA966450 NM_007189 ABCF2 −1.3 1.6

Hyp 16o14 BC-10 protein CA966992 NM_006698 BLCAP −1.3 1.9

Hyp 03o22 Beta-actin DY232011 NM_001101 ACTB 1.3 −1.6

Hyp 22l24 Branched chain ketoacid

dehydrogenase kinase

CA969461 NM_005881 BCKDK 1.6 −1.8

Hyp 02a23 Calmodulin 1b FG392553 no homolog 1.2 −1.7

Hyp 14g01 Claudin 23 CA964745 NM_194284 CLDN23 −1.4 1.8

Hyp 14k02 Coiled-coil domain

containing 47

CA964457 NM_020198 CCDC47 −1.3 2.1

Hyp 19a04 Cold shock domain-

containing protein e1

CA964993 NM_001007553 CSDE1 −1.4 1.5 1.3

Hyp 08o15 Complement C3-H2 CA970421 NM_000064 C3 −1.4 1.6

Hyp 08b20 Complement component q

subcomponent-like 4

CA968617 NM_001008223 C1QL4 −1.3 1.3

Hyp 02c23 Creatine kinase b variant 1 DY231608 NM_001823 CKB 1.3 −1.6

Hyp 02n10 Creatine testis isozyme DY231690 NM_001824 CKM 1.2 −1.5

Hyp 21l19 C-type lectin CA969207 no homolog 1.5 −1.7 −1.7

Hyp 19a14 Cubilin (intrinsic

factor-cobalamin receptor)

CA964997 NM_001081 CUBN −1.4 1.4

Hyp 17g09 Cxxc finger 1 (phd domain) CA964951 NM_001101654 CXXC1 1.3 −1.7

Hyp 06d13 Cytochrome P450 2F2-like CA965416 NM_007817 CYP2F2 −1.4 1.6

Hyp 05l01 Cytokine induced

apoptosis inhibitor 1

CA966987 NM_020313 CIAPIN1 −1.4 2.3

(Continued)
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Table 2 | Continued

Tissue AURATUS

ID

Best blast hit Accession Human homolog DA depletion or receptor

blockage

DA mimic

Accession Gene MPTP +

aMPT

SCH sulpiride SKF LY

Hyp 03f23 Deoxyribonuclease I-like 3 DY231911 NM_004944 DNASE1L3 1.5 −1.5

Hyp 23k24 e3 Ubiquitin protein ligase CA968074 NM_007013 WWP1 1.6 −1.6

Hyp 02i24 Ependymin DY231713 NM_017549 EPDR1 1.3 −1.6

Hyp 03o21 Ependymin DY232010 NM_017549 EPDR1 1.4 −1.7

Hyp 24a12 eph Receptor a7 CA969719 NM_004440 EPHA7 1.6 −2.1

Hyp 15a10 Equilibrative nucleoside

transporter 1

CA965545 NM_001078174 SLC29A1 1.3 −1.6

Hyp 07b01 Eukaryotic translation

elongation factor-1 gamma

CA966738 NM_001404 EEF1G −1.5 1.7

Hyp 20j14 Eukaryotic translation

initiation factor 2, subunit 1

alpha

CA966561 NM_004094 EIF2S1 −1.3 −2.0 2.3

Hyp 09e01 Fibronectin 1b CA964120 NM_212482 FN1 −1.3 2.0 1.3

Hyp 24j21 fk506-Binding protein 1a CA966789 NM_054014 FKBP1A 1.3 −1.5

Hyp 03o09 Fructose-bisphosphate

aldolase c

FG392624 NM_005165 ALDOC 1.4 −1.6

Hyp 10m11 g Protein-coupled family

group member c

CA967701 NM_024051 GGCT 1.3 −1.6

Hyp 17n11 Gamma-glutamyl

cyclotransferase

CA965786 NM_024051 GGCT 1.3 −1.7

Hyp 03i20 Glutamine synthetase DY231974 NM_001033044 GLUL 1.2 −1.5

Hyp 10d04 Glutathione peroxidase 3 CA964192 NM_002084 GPX3 1.4 −1.5

Hyp 23o12 Glyceraldehyde

3-phosphate

dehydrogenase

CA968103 NM_002046 GAPDH 2.0 −2.1

Hyp 08h01 Glyceronephosphate-O-

acyltransferase

CA968696 NM_014236 GNPAT −1.6 2.2

Hyp 14b13 Granulin 1 CA964295 NM_002087 GRN −1.3 1.5

Hyp 19m14 h2a Histone member y2 CA965061 NM_018649 H2AFY2 −1.4 1.6

Hyp 14k03 Heat shock protein 90 beta CA964458 NM_007355 HSP90AB1 −1.3 1.7

Hyp 14i04 HECT domain containing 1 CA964417 NM_015382 HECTD1 −1.4 1.5

Hyp 24o12 Hexokinase I CA969997 NM_000188 HK1 1.6 −1.9

Hyp 08g14 High-density lipoprotein

binding protein

CA968690 NM_005336 HDLBP −1.4 1.6

Hyp 19d02 Hydroxysteroid (17-beta)

dehydrogenase 10

CA965806 NM_001037811 HSD17B10 −1.3 2.2 1.3

Hyp 03i10 Immunoglobulin mu heavy

chain

FG392590 XM_003120441 LOC100510678 1.5 −1.5

Hyp 04j23 Jumonji domain

containing 3

FG392963 NM_001080424 KDM6B 1.3 −1.5

Hyp 13o14 Latexin CF662717 NM_020169 LXN −1.7 1.6

Hyp 22g07 Leucine-rich repeat (in flii)

interacting protein 1

CA969350 NM_001137550 LRRFIP1 1.2 −1.7

Hyp 11p01 Leucine-rich repeat

containing 58

CF662658 NM_001099678 LRRC58 −1.3 2.2

Hyp 19f13 Loc548392 protein CA969104 unknown −1.4 2.0

Hyp 14m01 Malate dehydrogenase 1,

NAD (soluble)

CA964750 NM_005917 MDH1 −1.3 1.8 1.3
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Table 2 | Continued

Tissue AURATUS

ID

Best blast hit Accession Human homolog DA depletion or receptor

blockage

DA mimic

Accession Gene MPTP +

aMPT

SCH sulpiride SKF LY

Hyp 12k14 Male-specific protein CA970272 NM_001012241 MSL1 −1.3 1.9

Hyp 22o11 Map microtubule

affinity-regulating kinase 4

CA969512 NM_031417 MARK4 1.5 −2.0

Hyp 21l16 Membrane palmitoylated CA966525 NM_002436 MPP1 1.9 −1.6 1.3

Hyp 09p22 Methylcrotonoyl-

coenzyme a

carboxylase 2

CA964915 NM_022132 MCCC2 1.5 −1.8

Hyp 22k08 MHC class I antigen CA969424 unknown 1.4 −2.0

Hyp 08a03 mid1 Interacting g12-like

protein

CA970376 NM_021242 MID1IP1 −1.3 1.6

Hyp 09k02 mid1 Interacting g12-like

protein

CA964854 NM_021242 MID1IP1 −1.4 1.7

Hyp 08l01 Middle subunit CA965449 NM_002032 FTH1 −1.4 2.5

Hyp 03k10 Midkine-related growth

factor b

FG392604 no homolog 1.4 −1.5

Hyp 12n01 Mitochondrial ribosomal

protein l19

CA966046 NM_014763 MRPL19 −1.6 1.5

Hyp 19p16 Mitochondrial ribosomal

protein l20

CA967272 NM_017971 MRPL20 −1.4 2.0

Hyp 11j11 Mitogen-activated protein

kinase 7 interacting

protein 3

CF662634 NM_003188 MAP3K7 1.4 −1.7

Hyp 12p13 m-Phase phosphoprotein 6 CA966058 NM_005792 MPHOSPH6 −1.5 2.1

Hyp 06g06 Myelocytomatosis

oncogene b

CF662485 NM_002467 MYC 1.3 −2.7

Hyp 14n02 Myosin regulatory light

chain

CA964520 NM_013292 MYLPF −1.3 1.6

Hyp 24b19 nck Adaptor protein 2 CA969746 NM_003581 NCK2 1.4 −1.5

Hyp 19l18 Negative elongation

factor d

CA965844 NM_198976 TH1L −1.8 1.5

Hyp 03i12 Nel-like protein 2 FG392591 NM_001145107 NELL2 1.3 −1.7

Hyp 16k15 nlr Card domain

containing 3

CF662774 NM_178844 NLRC3 −1.3 1.8

Hyp 18c18 Nol1 nop2 sun domain

member 2

CA964613 NM_017755 NSUN2 −1.5 −1.5

Hyp 08o01 Novel protein CA968809 no homolog −1.4 1.5

Hyp 11d07 Novel protein CF662614 no homolog 1.3 −1.5

Hyp 15i06 Novel protein (zgc:136439) CA965636 no homolog −1.6 1.6

Hyp 15b13 Novel protein lim domain

only 3 (rhombotin-like 2;

zgc:110149)

CA965552 NM_001001395 LMO3 −1.4 2.0

Hyp 11e15 Novel sulfotransferase

family protein (cytosolic

sulfotransferase)

CA965939 NM_001055 SULT1A1 −1.3 1.9

Hyp 19e01 Nuclear receptor sub-

family group member 2

CA966183 NM_005126 NR1D2 −1.4 2.1

Hyp 15e23 Phosducin-like 3 CA966723 NM_024065 PDCL3 1.5 −1.6

Hyp 12l11 Plasma retinol-binding

protein 1

CA966039 NM_006744 RBP4 1.3 −1.5

(Continued)
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Table 2 | Continued

Tissue AURATUS

ID

Best blast hit Accession Human homolog DA depletion or receptor

blockage

DA mimic

Accession Gene MPTP +

aMPT

SCH sulpiride SKF LY

Hyp 03k09 Poplar cDNA sequences FG392603 no homolog 1.3 −1.5

Hyp 08g04 Prostaglandin h2

d-isomerase

CA968684 NM_000954 PTGDS −1.5 1.5

Hyp 22p03 Proteasome (macropain)

26s non-4

CA969527 NM_002810 PSMD4 1.4 −1.6

Hyp 12b01 Proteasome (macropain)

alpha 5

CA965983 NM_002790 PSMA5 −1.5 2.0 1.3

Hyp 12i01 Purine nucleoside

phosphorylase

CA967769 NM_000270 PNP −1.5 1.6

Hyp 22b23 Response gene to

complement 32

CA969259 NM_014059 C13orf15 1.3 −2.0

Hyp 22g21 Ribosomal protein l13 CA969362 NM_000977 RPL13 1.5 −1.7

Hyp 08o16 Ribosomal protein l27a CA968817 NM_000990 RPL27A −1.3 1.5

Hyp 12d13 Ribosomal protein l27a CA965998 NM_000990 RPL27A −1.5 1.6

Hyp 09o01 Serine incorporator 1 CA964172 NM_020755 SERINC1 −1.4 1.5

Hyp 21a01 sh3-Domain grb2-like 2 CA967895 NM_003025 SH3GL1 −1.5 1.7 1.3

Hyp 09g14 si:ch211-Protein CA964823 no homolog −1.4 1.8

Hyp 24i19 StAR-related lipid transfer

(START) domain

containing 4

CA969885 NM_139164 STARD4 1.4 −2.1 1.6

Hyp 09n02 Sterol-c5-desaturase

(fungal delta-5-desaturase)

homolog (cerevisiae)

CA964885 NM_006918 SC5DL −1.3 2.5

Hyp 12p21 Surfeit 4 CA966062 NM_033161 SURF4 −1.5 1.6

Hyp 20o02 Tetraspanin 9 CA965906 NM_006675 TSPAN9 −1.6 1.6

Hyp 24i22 Transaldolase 1 CA969888 NM_006755 TALDO1 1.4 −1.6

Hyp 15f10 Translocon-associated

protein subunit delta

precursor

CA965601 NM_006280 SSR4 1.3 −1.8

Hyp 12f01 Transthyretin precursor CA966004 NM_000371 TTR −1.3 3.0

Hyp 07h01 Triosephosphate

isomerase

CA968504 NM_000365 TPI1 −1.3 1.8

Hyp 14f24 Troponin c-type 2 CA964383 NM_003279 TNNC2 1.4 −2.1

Hyp 21g17 Troponin c-type 2 CA967929 NM_003279 TNNC2 −1.5 1.6

Hyp 22g09 Tubulin alpha 8 like 4 CA969352 NM_006082 TUBA1B 1.3 −1.8

Hyp 03o23 Tubulin beta-2c FG392672 NM_006088 TUBB2C 1.4 −1.5

Hyp 17j23 Tubulin beta-2c chain CA965774 NM_006088 TUBB2C 1.4 −1.5

Hyp 14f02 u2 Small nuclear RNA

auxiliary factor-1

CA964363 NM_006758 U2AF1 −1.7 2.4 1.3

Hyp 22l09 Vacuolar protein

sorting 13c

CA969449 NM_018080 VPS13C 1.3 −1.5

Hyp 20j02 Vacuolar protein sorting 4a CA966560 NM_013245 VPS4A −1.5 1.7 1.6

Hyp 14j12 Vimentin CA964445 NM_003380 VIM 1.4 −1.5

Hyp 24i24 Vimentin CA969890 NM_003380 VIM 1.4 −1.7

Hyp 12i13 Vitellogenin 2 CA967775 no homolog −1.3 1.4

Hyp 19o08 Zinc and double phd

fingers family 2

CA965067 NM_006268 DPF2 −1.5 1.5

Hyp 23a24 Zinc finger ccch-type

containing 7a

CA967982 NM_017590 ZC3H7B 2.0 −2.3
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Table 2 | Continued

Tissue AURATUS

ID

Best blast hit Accession Human homolog DA depletion or receptor

blockage

DA mimic

Accession Gene MPTP +

aMPT

SCH sulpiride SKF LY

Hyp 15i14 Zinc finger protein 782 CA965639 NM_001001662 ZNF782 −1.3 2.0

Hyp 20c13 Zona pellucida glycoprotein CA966260 no homolog −1.6 1.7

Tel 12o17 ccaat Enhancer-binding

protein beta

CA967804 NM_005194 CEBPB −1.6 1.7

Tel 12e10 Leucine-rich ppr-motif

containing

CA970240 NM_133259 LRPPRC −1.8 1.6

Tel 14f04 Solute carrier family 2

(facilitated glucose

fructose transporter)

member 5

CA964365 NM_207420 SLC2A7 −1.3 1.9

ESTs were manually selected based on identical AURATUS GeneIDs and on the basis of differential regulation in opposite directions for MPTP or the antagonists vs.

agonists, or in the same direction for MPTP vs. antagonists. All ESTs were identified as being differentially regulated (q < 5%) in all treatments. Only those with BLAST

hits (NCBI), obtained with Blast2GO, are shown. Duplicate names may exist in the list, but were not identified by sequence overlap (cap3) and may represent separate

genes or individual isoforms. The median “minimum ExpectValue”=1.9E−57 and the average “mean similarity”=84.8%±1%. In the case where a suitable BlastX

hit was unavailable, the best BlastN hit is used and is listed in the complete table in the supplemental data (Table A1 in Appendix). SCH, SCH 23390; SKF, SKF 38393;

LY, LY 171555.

discussed here. It is not our intention to examine all of the
genes/ESTs listed in Table 2, but we have selected some to discuss
in terms of current and emerging ideas in dopaminergic neuron
(dys)function. The genes/ESTs below are discussed relative to DA
receptor stimulation.

The DA agonists and the DA depletion experiments provided
the greatest number of reciprocal changes in gene expression
compared to the DA antagonist experiment, which is likely due
to the fact that both the agonist and depletion experiments were
conducted at the same time of year (May) when the fish were of
similar sexual maturity (GSI ∼4.6%) compared to the antagonist
experiment (June) when fish were sexually regressing (GSI ∼3%).
The difference in the number of gene changes between these time
points highlights the importance of seasonality of dopaminergic
action in the neuroendocrine brain of fish (Zhang et al., 2009b).
Indeed, the inhibitory tone of DA on gonadotropin release at
these times of year indicate that the fish are in different physi-
ological states (Trudeau et al., 1993; Vacher et al., 2002) and thus
may respond to DAergic manipulation differently. This is appar-
ent in some of the genes listed in Table 2 (full list in Table A1 in
Appendix), and is a limitation of our approach. We are, however,
comparing the effects of DAergic manipulation against paired con-
trol fish and are looking for genes that are consistently differentially
expressed as a result of that manipulation. While few genes were
differentially expressed in the DA antagonist experiment when
compared to the other two datasets, the new microarray data
presented here provides some further insight into teleost brain
function.

Norepinephrine levels were severely reduced in addition to DA
levels in MPTP+ αMPT-treated fish; however, the genes discussed
below are limited to those showing opposite changes to specific DA
agonists supporting the hypothesis that genes are therefore likely
regulated by DA itself.

The identification of ependymin and vimentin in the hypothal-
amus highlights the significance of neuronal plasticity and tissue
remodeling in response to DAergic manipulations. Ependymin
is an extracellular glycoprotein and neurotrophic growth fac-
tor involved in optic nerve regeneration, synaptic plasticity, and
long-term potentiation in Cypriniformes (Shashoua, 1991; Adams
and Shashoua, 1994; Adams et al., 1996). Moreover, ependymin
was shown to be overexpressed in regenerating echinoderms
(Suarez-Castillo et al., 2004). Ependymin-related proteins were
identified in amphibians and mammals (Suarez-Castillo and
Garcia-Arraras, 2007) and Shashoua et al. (2001) showed that
a short fragment of goldfish ependymin was able to activate
the AP-1 transcription factor in neuroblastoma and primary rat
brain cortical cultures. Similarly, vimentin is an intermediate fil-
ament and is known to increase during cerebellar regeneration
in the brown ghost knifefish, Apteronotus leptorynchus (Clint and
Zupanc, 2002). At least 2 forms of vimentin exist in goldfish (Glas-
gow et al., 1994), and while the current analysis is unable to resolve
the form(s) of vimentin regulated by DA, it is likely that both of
the sequences listed in Table 2 correspond to the same form, as
they share nearly identical expression patterns in response to DA.
Both vimentin and ependymin, along with α- and β-actin and
tubulins (Table 2) were decreased in response to DA, supporting
the role of DA in synaptic plasticity and tissue remodeling (Kauer
and Malenka, 2007). Cytoskeletal remodeling is hypothesized to
be important for hormone secretion from the anterior pituitary in
mammals (Ravindra and Grosvenor, 1990). Furthermore, Ravin-
dra and Grosvenor (1988) demonstrated that domperidone, a
D2-specific antagonist that does not cross the blood-brain bar-
rier but can act on the pituitary, increased prolactin (PRL) levels
as well as pituitary polymerized tubulin levels, similar to levels
seen in suckling rats. This response, the authors observed, was
blocked by bromocriptine, a D2-specific agonist supporting a role
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FIGURE 2 | Multilevel Gene Ontology categorization of 110
annotated ESTs regulated by dopamine in the hypothalamus
into their corresponding Biological Process, Cellular
Component, and Molecular Function terms. GO Annotations

were first converted to GO-Slim annotations (goslim_generic.obo)
and the multilevel chart was constructed using a sequence
convergence cutoff of five (seven for Biological Process) to reduce
the complexity of the chart.

for DA in changes observed in the tubulin system in the anterior
pituitary. This is relevant because, in fish, it should be noted that
DAergic neurons in the mediobasal hypothalamus (e.g., posterior
tuberculum) project directly to the pituitary (i.e., are hypophys-
iotropic; Hornby and Piekut, 1990; Anglade et al., 1993). This is
important as it suggests the need for maintaining DA neuronal
populations throughout seasonal reproductive period. The iden-
tification of aromatase b (CYP19B, or AroB) in our analysis as
being inhibited by DA is of particular interest. Our RT-PCR tar-
geted validation of the decrease in AroB mRNA levels in response
to SKF 38393, it also confirmed an opposite change in direction
of AroB mRNA levels in response to DA depletion as identified
by the microarray. In adult fish, AroB is expressed only in radial
glial cells (Diotel et al., 2010; Le Page et al., 2010), which persist
throughout life and serve as neuronal progenitors in the brain.

At least some AroB-immunoreactive (ir) neurons in the medial
preoptic area (POA) of the Japanese quail brain respond to DA
(Cornil et al., 2004) and a few AroB-ir neurons in the POA of the
bluehead wrasse are in close proximity with, while a subset appear
to co-express, tyrosine hydrolase (TH; Marsh et al., 2006), the rate-
limiting step in DA synthesis and a marker for cathecholaminergic
neurons. Moreover, some TH-ir neurons in the POA of rainbow
trout express estrogen receptors (Linard et al., 1996) and testos-
terone and estradiol increase goldfish pituitary DA turnover rates
as measured following αMPT-induced catecholamine depletion
(Trudeau et al., 1993). More importantly, DA was shown to reduce
aromatase enzyme activity in quail POA homogenates in vitro
(Baillien and Balthazart, 1997). These studies, including the cur-
rent one, suggest that DA regulates AroB, possibly to modulate the
feedback mechanisms of sex steroids on the brain. However, AroB
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FIGURE 3 | Real-time RT-PCR of aromatase B mRNA levels in the
hypothalamus of SKF 38393-injected fish after 5 h or
MPTP + αMPT-injected fish after 24 h. SKF 38393 data were normalized
to β-actin and MPTP + αMPT data were normalized to 18S as they were
determined to be the most stable for the respective experiments. A
Mann–Whitney U Rank Sum test was performed on injected vs. control fish
with significance (*) considered at p < 0.05 (two-tailed).

is also important in neurogenesis and brain repair (reviewed in
Diotel et al., 2010). Interestingly, Pollard et al. (1992) showed full
recovery of DA levels in the brain of goldfish after 8 days using a
moderate dose of MPTP (50 µg/g), and Poli et al. (1992) demon-
strated spontaneous recovery of DA and NE levels in the goldfish
telencephalon, diencephalon, and medulla after 6 weeks following
injection of MPTP at a lower dose (10 µg/g) for three consecutive
days. These two studies suggest that in fish, unlike in mammals,
DA neurons regenerate following injection with MPTP, and may
be linked to higher aromatase activity in the fish brain. This is an
avenue of research we are currently conducting.

Multiple genes/ESTs identified as being regulated by DA are
involved in the lipid and fatty acid metabolic process or trans-
port. For example, 17β-hydroxysteroid dehydrogenase type 12B
(HSD17B12; down), high-density lipoprotein binding protein
(HDLBP; up), vitellogenin 2 (vtg2; up), cubulin (CUBN; up),
sh3-domain grb-like 2 (SH3GL1; up), StAR-related lipid transfer
domain containing 4 (STARD4; down), and sterol-c5-desaturase
homolog (SC5DL; up) were identified as being regulated by DA.
SC5D is involved in the biosynthesis of cholesterol (Sugawara
et al., 2001). HSD17B12 reduces 3-ketoacyl-CoA to 3-hydroxyacyl-
CoA in the second step of fatty acid elongation (Moon and
Horton, 2003). In vivo studies in zebrafish demonstrated that
HDLBP is not affected by the insulin family or growth hor-
mone, but it is hypothesized that HDLBP is involved in lipid
transfer based on its high expression in the liver and ovary
(Chen et al., 2003). CUBN is a high-density lipoprotein recep-
tor (Moestrup and Kozyraki, 2000) and STARD4 is hypothesized
to facilitate transport of a cholesterol precursor (Soccio et al.,
2002). Vtg is best characterized as a liver phosphoprotein stim-
ulated by estrogen and then deposited in the ovary (Jalabert,
2005; Kang et al., 2007), but is, in general, a lipid transport

molecule. The changes in these mRNAs suggest lipid mobilization,
possibly to derive energy for neuronal remodeling as discussed
above.

The granulins are conserved growth factors and are able to
stimulate the proliferation of macrophages in goldfish (Haning-
ton et al., 2006). Granulin also has protease inhibitor activity in
invertebrates (Hong and Kang, 1999) and cysteine protease activity
in plants (Chen et al., 2006). Granulin was shown to be rela-
tively lowly expressed in the brain of goldfish (Hanington et al.,
2006) and tilapia (Chen et al., 2007). It appears as though DA,
acting through the D1 receptor, stimulates expression of gran-
ulin in the hypothalamus of female goldfish. In the developing
rat hypothalamus, it was demonstrated that both estrogen and
androgen induced granulin expression (Suzuki et al., 2001) and
that estrogen induced granulin expression in the dentate gyrus
(hippocampus) of adult rats (Chiba et al., 2007). Furthermore, in
hippocampal rat tissue in vitro, estradiol enhanced neural progen-
itor cell proliferation and this response was blocked by a granulin-
specific antibody (Chiba et al., 2007). Although speculative, this
is relevant, as hydroxysteroid (17β) dehydrogenase was identified
here as being increased in response to DA, which interconverts
17β-estradiol and estrone, 16-α-hydroxyestrone and estriol, and
androstenedione and testosterone Stoffel-Wagner (2003), suggest-
ing that sex steroids influence the DAergic regulation of granulin
or, alternatively, the DA modulates estrogen-regulated granulin
expression.

Granulin mRNA levels were also identified as being decreased
4.2-fold in the goldfish telencephalon following a 2-days water-
borne exposure to 0.1 µM thyroid hormone (T3; Wiens, 2009).
While unconfirmed, this is intriguing because the current study
identified transthyretin (TTR) mRNA levels as being significantly
increased in response to DA. TTR is a thyroid hormone-binding
and transport protein and is necessary for maintaining normal
levels of circulating thyroid hormone in plasma (Episkopou et al.,
1993). Furthermore, TTR protein levels are increased in the cere-
brospinal fluid (CSF) of rats with degenerating nigrostriatal neu-
rons (Rite et al., 2007). Future studies aimed at examining the
potential interaction between T3 and DA are warranted, partic-
ularly as microarray analysis identified increases in mRNA levels
of iodothyronine deiodinase type I in the hypothalamus of female
fish in response to SKF 38393 and 171555 (D1- and D2-specific
agonists, respectively; Popesku et al., 2010).

The identification of U2 small nuclear RNA auxiliary factor-1
(U2AF1) mRNA levels as being increased by DA acting through
the D1 receptor (Table 2) is interesting. There are currently five
known small nuclear ribonucleoproteins (snRNPs) that make up
the spliceosome (Query, 2009). LSM7 protein, whose mRNA lev-
els were also increased in both DA agonist treatments (Popesku
et al., 2010) also forms part of the spliceosome complex (Salgado-
Garrido et al., 1999). The increase in both of these factors in
response to either DA agonist suggests that blockage of either
of these receptors would inhibit transcription of particular com-
ponents of the spliceosome, and thus decrease splicing activity,
thereby decreasing the amount of a particular splice variant.
The observed decrease of the D2 short isoform splice variant in
response to both D1 and D2 antagonists (Popesku et al., 2011b)
supports this hypothesis.
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Table 3 | Sub-network enrichment analysis groupings of genes identified as being regulated by dopamine.

Name Gene set seed Overlapping entities p-Value

Expression targets INS AGT, FN1, MYC, GAPDH, GLUL, GPX3, APOE, TTR, VIM, C3, APOA4, A2M,

ACTB, FTH1, CKM, BCKDK

1.37E−06

STAT3 FN1, MYC, VIM, APOA4, A2M, HSP90AB1, CYP19A1, C13orf15 6.46E−04

PGR FN1, MYC, GAPDH, CYP19A1, C13orf15 1.02E−03

SP1 AGT, FN1, MYC, APOE, VIM, C3, SLC29A1, CYP19A1, SH3GL1, SULT1A1,

ASF1B, CKM, BCKDK, CKB, CYP2F1

1.21E−03

NR3C1 AGT, FN1, MYC, GAPDH, GLUL, CYP19A1, SULT1A1 1.43E−03

JUN FN1, MYC, GLUL, APOE, VIM, A2M, CYP19A1, TPI1 1.48E−03

AKT1 FN1, MYC, GAPDH, MAP3K7, VIM, A2M, CYP19A1, CKM 2.10E−03

CEBPA AGT, MYC, GAPDH, GLUL, TTR, C3, APOA4, ACTB 3.63E−03

SMAD FN1, MYC, VIM, C13orf15, CKM 3.92E−03

IGF1 AGT, FN1, MYC, VIM, FKBP1A, CYP19A1, TUBA1B, ACTB 4.86E−03

SMAD3 FN1, MYC, VIM, CYP19A1, CKM 5.56E−03

HGF FN1, MYC, EIF2S1, VIM, C3, A2M 5.59E−03

SRC FN1, MYC, A2M, CYP19A1, PSMD4 6.62E−03

Cytokine FN1, MYC, PTGDS, GLUL, APOE, TTR, VIM, C3, APOA4, A2M, CYP19A1,

CIAPIN1, PSMD4

6.86E−03

HIF1A FN1, MYC, GAPDH, VIM, SLC29A1, PSMD4 7.38E−03

PI3K FN1, MYC, MAP3K7, FKBP1A, SLC29A1, HSP90AB1, CYP19A1, CKM 8.94E−03

NF−kB FN1, MYC, PTGDS, GAPDH, GLUL, GRN, APOE, VIM, C3, A2M, CYP19A1 8.97E−03

TP53 AGT, FN1, MYC, PTGDS, GAPDH, SLC29A1, HSP90AB1, CKM, PSMD4 9.81E−03

Jun/Fos FN1, MYC, PTGDS, APOE, TTR, VIM, A2M, CYP19A1, TPI1 1.12E−02

STAT AGT, FN1, MYC, C3, A2M 1.55E−02

CTNNB1 FN1, MYC, GLUL, VIM, PSMD4 1.67E−02

PKC FN1, MYC, PTGDS, GLUL, GRN, APOE, HSP90AB1, CYP19A1 1.69E−02

IL-6 FN1, MYC, APOE, TTR, A2M, HSP90AB1, CYP19A1, CKM 1.71E−02

Endotoxin PTGDS, GAPDH, APOE, A2M, ACTB 2.32E−02

IL-1β FN1, PTGDS, VIM, C3, A2M, HSP90AB1, ACTB, FTH1 2.35E−02

IFNG AGT, FN1, MYC, GAPDH, APOE, VIM, C3, A2M, HSP90AB1, TUBA1B 2.96E−02

TNF AGT, FN1, MYC, PTGDS, GAPDH, GLUL, APOE, VIM, C3, CYP19A1, ACTB 3.75E−02

EP300 AGT, FN1, GAPDH, HSP90AB1, CKM 4.67E−02

TGFB1 FN1, MYC, APOE, VIM, SLC29A1, CYP19A1, ACTB, C13orf15, CKM, RPS27 4.86E−02

LEP FN1, MYC, GAPDH, APOA4, CYP19A1 4.91E−02

Binding partners Vitamin D C3, APOA4, CUBN, ACTA1 2.81E−05

GAPDH FN1, GAPDH, FKBP1A, TUBA1B 7.44E−04

HDL FN1, TTR, A2M, HDLBP 1.36E−03

APP FN1, TTR, A2M, HSD17B10 1.92E−03

Myosin GAPDH, VIM, ACTB, MPP1 3.63E−03

Tubulin MAP3K7, APOE, TPI1, HK1, LRPPRC, EEF1G 5.21E−03

ATP MAP3K7, APOE, HSP90AB1, MCCC2 4.82E−02

Protein modification targets Trypsin AGT, FN1, GLUL, VIM, C3, A2M 4.39E−03

GST VIM, FKBP1A, TALDO1, NSUN2 8.28E−03

Only three annotated genes/ESTs were identified in the telen-
cephalon that were increased in response to D2 receptor agonists
and decreased in response to D2 receptor blockage or DA deple-
tion. This indicates that DA, acting through the D2 receptor,
regulates these genes/ESTs. That relatively few genes affected by
DA manipulation in the telencephalon was a surprising finding.
While we expected tissue-specific responses to the various phar-
macological treatments, we may have expected more than three
genes to be affected in the Tel. In the case of D2 receptor, mRNA

levels are high and specifically but widely expressed in regions of
both Hyp and Tel of the African cichlid fish, Astatotilapia burtoni
(O’Connell et al., 2011). However, it is not only the expression
of receptors that will determine the response to an exogenous
pharmacological agent, but also the ongoing effects of endoge-
nous DA levels that are acting on both D1 and D2 receptors
in vivo. It is clear in both goldfish and the cichlid, that DAergic
innervation in the Hyp and Tel are extensive but clearly differ-
ent, depending on the specific sub-region of each tissue (Hornby
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FIGURE 4 | SNEA diagrams showing the gene set target
relationships for (A) insulin, (B) cytokines, and (C)TGFβ1,
represented by arrows. Arrows with a+ in a circle indicate a positive
effect in addition to a relationship. Dead-head arrows (–|) indicate a

negative effect in addition to a relationship. Directional changes of up
(Red) and down (Blue) are color-coded. Results are shown relative to SKF
38393 with changes/color being opposite for MPTP+ αMPT. Gene
abbreviations are listed inTable 2.

and Piekut, 1990; O’Connell et al., 2011). The clear difference
in the global expression patterns in response to the various DA
manipulations we report for goldfish Hyp and Tel supports this.
Moreover, the type of cells expressing those receptors in each tissue
will undoubtedly be different, so we do indeed expect major tissue
differences.

Two of the DA-regulated genes/ESTs in the telencephalon are
leucine-rich ppr-motif containing protein (LRPPRC) and solute
carrier family 2 (facilitated glucose fructose transporter) mem-
ber 5 (SLC2A5; glucose transporter 5; GLUT5). LRPPRC is a core
nucleoid protein (Bogenhagen et al., 2008) and is hypothesized
to have a regulatory role in the integration of the cytoskeleton
with vesicular trafficking, nucleocytosolic shuttling, transcription,
chromosome remodeling, and cytokinesis based on its interactions
with other proteins by yeast 2-hybrid analysis (Liu and McKee-
han, 2002). The third gene regulated by D2 in the telencephalon,

CCAAT/enhancer-binding protein beta (C/EBPβ), is particularly
interesting. CaMKII phosphorylates C/EBPβ (Wegner et al., 1992),
which, in turn, activates transcription factor-1 (ATF1; Shimomura
et al., 1996), among other things. Methamphetamine administra-
tion to mice caused a dose-dependent increase in ATF1 and CREB
DNA-binding activities (Lee et al., 2002). As CaMKIIα protein
levels were increased in response to DA agonists (Popesku et al.,
2010), a working hypothesis of DAergic regulation of gene expres-
sion in the neuroendocrine brain of goldfish through the increase
in ATF1 can thus be put forth.

Sub-network enrichment analysis takes advantage of previ-
ously characterized interactions between genes (expression rela-
tionships) and proteins (binding relationships). It is also able
to associate genes and proteins with cell processes or diseases.
The SNEA approach was developed by Ariadne (Pathway Stu-
dio®). Briefly, data on molecular interactions are retrieved from
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the ResNet nine database which is compiled using MedScan. The
database contains over 20 million PubMed abstracts and approx-
imately 900 K full-text articles (May 27, 2011). A background
distribution of expression values in the gene list is calculated by
an algorithm. This is followed by a statistical comparison between
the sub-network and the background distribution using a Mann–
Whitney U -Test, a p-value is generated that indicates the statistical
significance of difference between two distributions (additional
details can be found in the technical bulletin pg. 717 from Path-
way Studio 7.0). SNEA has similar objectives to Ingenuity Pathway
analysis and each is a useful tool to visualize molecular datasets.
SNEA is different from KEGG which uses well defined biochemi-
cal and molecular pathways. SNEA has been applied in biomarker
discovery in mammals (Kotelnikova et al., 2012) and for gene and
protein networks in teleost fishes (Martyniuk et al., 2012; Trudeau
et al., 2012). For this study, we chose to use Pathway Studios to
visualize our data.

There were three major categories of the SNEA identified in
the current study: cell signaling (STAT3, SP1, SMAD, Jun/Fos),
immune response (IL-6, IL-1β, and TNF, cytokine, NF-κB), and
cell proliferation and growth (IGF1, TGFβ1). Inflammatory path-
ways modulated by DA have been characterized in mouse mod-
els and have been associated with degenerative processes and
cytokines released from glial cells play important roles in medi-
ating cellular responses to injury due to neurotoxicants such
as MPTP. For example, old male and female transgenic mice
injected intraperitoneally with MPTP (15 mg/kg for 2 days at two
injections/day) caused males to have dramatic increases in IL-1β

luciferase reporter gene activity that correlated to the increased
susceptibility of dopaminergic neurons to MPTP toxicity found in
old male mice (Bian et al., 2009). In the same study, mRNA lev-
els of TNF-α and IL-6 were not changed, but notable here is that
genes affected downstream of IL-6 and TNF signaling were altered
by DA in the goldfish hypothalamus, suggesting that these signal-
ing cascades can be sensitive to dopaminergic inputs. In support
of these data, both mRNA and protein levels for various cytokines
(IL-1β, TNF-α, and IL-6) and expression of their receptors were
significantly increased in the substantia nigra of MPTP-treated
mice (Lofrumento et al., 2011). Here we identify putative gene tar-
gets and subsequent genomic effects that may occur after cytokine
induction in the vertebrate CNS. A recent review by O’Callaghan
et al. (2008) discuss the role of MPTP in inflammation in rela-
tion to cytokine signaling, including cytokines identified in the
goldfish hypothalamus such as IL-1β and IL-6. Lastly, in regards
to the inflammatory response in the goldfish, many of the cell
signaling cascades are also involved in the immune response. For
example, JAK/STAT3 signaling plays a role in inflammation in
the mammalian brain in response to MPTP (Sriram et al., 2004).
Therefore, the gene set node for cell signaling molecules (e.g.,
STAT) identified in the goldfish may directly stimulate inductions
in cytokines.

Gene targets of IGF1 and TGFβ were also affected in expression
after DA depletion and DA agonism. IGF1 activates RAS, P13K,
and AKT signaling pathway to stimulate growth and differentia-
tion of cells. TGF-β is a member of the transforming growth factor
family that is involved in cell differentiation and regulation of the

immune system. Both these signaling pathways are known to have
a role in dopaminergic signaling and to be associated with the onset
of neurodegenerative diseases. There are reports to suggest that
IGF signaling may be involved in neuroprotection within the CNS.
IGF1 has been shown to have protective role in MPP+ induced
neurotoxicity in human neuroblastoma SH-EP1 cells by inhibit-
ing apoptotic processes (Wang et al., 2010) and female rats treated
with the neurotoxin 6-hydroxydopamine (6-OHDA) did not show
reduced tyrosine hydroxylase immunoreactivity (a marker for DA
toxicity) after intracerebroventricular infusion of IGF1 substantia
nigra compared to those without the treatment (Quesada et al.,
2008). The effect of IGF1 was dependent upon the PI3K/Akt path-
way. It is plausible that gene expression changes in the goldfish
hypothalamus in response to DA depletion and DA receptor activa-
tion are protective responses to DA-mediated neurotoxicity. Tong
et al. (2009) investigated IGF distribution in human post-mortem
brain tissues and report that IGF-I expression was significantly
elevated in the frontal cortex of Parkinson’s patients while IGF-II
expression was significantly reduced in the frontal white mat-
ter of PD patients. Thus, there are complex interactions between
different IGF signaling pathways in the neurodegenerative brain
(IGF1 and IGF2), however experimental evidence associates IGF
in these processes. Similar to IGF1, TGFβ signaling targets are
implemented in DA signaling in the goldfish hypothalamus. This
pathway has also been implicated in neurodegeneration (Andrews
et al., 2006) and the TGFβ signaling pathway can be modulated
with DA treatments (Recouvreux et al., 2011).

Fish models are increasingly being used for investigations into
the mechanisms of disease occurrence and progression (Weinreb
and Youdim, 2007). Here we provide examples and demonstrate
the usefulness of implementing SNEA to gain increased insight
into key regulators underlying neurotransmitter signaling in the
neuroendocrine brain and uncover novel associations between
disease states and pharmacological treatments. In so doing, we
provide a foundation for future work on dopaminergic regulation
of gene expression in fish.
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APPENDIX

FIGURE A1 | (A) Data distribution of the 268 ESTs identified as being
differentially regulated (q < 5%) by DA in hypothalamus. (B) Annotation
distribution of the 110 annotated ESTs. In the telencephalon (not shown), a
total of four sequences were found of which three had blast hits, and only
two were annotated.
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Table A1 | ESTs were manually selected based on identical AURATUS GeneIDs and on the basis of differential regulation in opposite directions

for MPTP or the antagonists vs. agonists, or in the same direction for MPTP vs. antagonists.

Tissue AURATUS

ID

Best blast hit DA depletion or receptor blockage DA mimic Accession

MPTP +

aMPT

SCH 23390 Sulpiride SKF 38393 LY171555

Hyp 08j13 14 kDa Apolipoprotein −1.5 1.7 CF662566

Hyp 08b22 17-Beta hydroxysteroid dehydrogenase type

12B, 3-ketoacyl-CoA reductase type B

1.4 −1.7 CA968619

Hyp 16j14 26s Protease regulatory subunit 4 −1.4 1.4 CA966407

Hyp 08e14 40S Ribosomal protein S27 −1.5 1.7 CA968660

Hyp 07f01 Abhydrolase domain containing 12 −1.6 1.8 CA967283

Hyp 22n08 Adenylate kinase 3-like 1 1.3 −1.5 CA969490

Hyp 08k20 Aldehyde dehydrogenase 7 family, member A1 −1.3 1.3 CA968758

Hyp 03h23 Aldolase C 1.4 −1.6 DY231930

Hyp 05f06 Alpha-2-macroglobulin-1 −1.6 1.5 2.1 CF662428

Hyp 22i24 Alpha-actin 1.4 −1.5 CA969403

Hyp 09p02 Angiotensinogen −1.5 1.8 1.3 CA964907

Hyp 09j02 Apolipoprotein a-iv −1.5 1.7 CA966743

Hyp 16n14 Apolipoprotein e −1.3 2.4 CF662778

Hyp 04a17 Aromatase b 1.3 −1.7 FG392770

Hyp 14k14 arp2 Actin-related protein 2 homolog −1.3 2.3 1.3 CA964468

Hyp 12l13 asf1 Anti-silencing function 1 homolog b

(cerevisiae)

−1.3 1.9 CA966040

Hyp 16l15 atp-Binding sub-family f member 2 −1.3 1.6 CA966450

Hyp 16o14 BC-10 protein −1.3 1.9 CA966992

Hyp 03o22 Beta-actin 1.3 −1.6 DY232011

Hyp 22l24 Branched chain ketoacid dehydrogenase kinase 1.6 −1.8 CA969461

Hyp 02a23 Calmodulin 1b 1.2 −1.7 FG392553

Hyp 17j08 Carassius auratus mRNA for BC-10 protein 1.3 −1.5 CA966515

Hyp 10f12 Carp DNA sequence from clone carpf-118,

complete sequence

1.5 −1.6 CA964207

Hyp 16e02 Chromosome 9 open reading frame 82 −1.4 1.6 CA966153

Hyp 14g01 Claudin 23 −1.4 1.8 CA964745

Hyp 14k02 Coiled-coil domain containing 47 −1.3 2.1 CA964457

Hyp 19a04 Cold shock domain-containing protein e1 −1.4 1.5 1.3 CA964993

Hyp 08o15 Complement C3-H2 −1.4 1.6 CA970421

Hyp 08b20 Complement component q subcomponent-like 4 −1.3 1.3 CA968617

Hyp 02c23 Creatine kinase b variant 1 1.3 −1.6 DY231608

Hyp 02n10 Creatine testis isozyme 1.2 −1.5 DY231690

Hyp 21l19 C-type lectin 1.5 −1.7 −1.7 CA969207

Hyp 19a14 Cubilin (intrinsic factor-cobalamin receptor) −1.4 1.4 CA964997

Hyp 17g09 cxxc Finger 1 (phd domain) 1.3 −1.7 CA964951

Hyp 11i01 Cyprinus carpio DN1 mRNA for DNase I,

complete cds

−1.4 1.7 CA965953

Hyp 06d13 Cytochrome p450 like −1.4 1.6 CA965416

Hyp 05l01 Cytokine induced apoptosis inhibitor 1 −1.4 2.3 CA966987

Hyp 10g12 Danio rerio HECT domain containing 1 (hectd1),

mRNA

1.5 −1.5 CA967652

Hyp 19h04 Danio rerio heterogeneous nuclear

ribonucleoprotein A/B, mRNA (cDNA clone

MGC:55953), complete cds

−1.4 1.8 CA965823

Hyp 24j13 Danio rerio lin-7 homolog A (C. elegans; lin7a),

mRNA

−1.4 1.4 CA969901

(Continued)
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Table A1 | Continued

Tissue AURATUS

ID

Best blast hit DA depletion or receptor blockage DA mimic Accession

MPTP +

aMPT

SCH 23390 Sulpiride SKF 38393 LY171555

Hyp 07m24 Danio rerio non-metastatic cells 4, protein

expressed in (nme4), mRNA

1.4 −1.7 CA964093

Hyp 22c24 Danio rerio SET translocation (myeloid

leukemia-associated) A (seta), mRNA

1.3 −1.6 CA969283

Hyp 08g15 Danio rerio zgc:110605 (zgc:110605), mRNA −1.3 1.6 CA970392

Hyp 12e04 Danio rerio zgc:55886 (zgc:55886), mRNA −1.3 1.7 1.3 CA966744

Hyp 24k14 Danio rerio zgc:77060 (zgc:77060), mRNA 1.9 −1.7 CA969922

Hyp 22m10 Danio rerio zgc:92169 (zgc:92169), mRNA 1.3 −1.6 CA969469

Hyp 09b02 Danio rerio zgc:92371 (zgc:92371), mRNA −1.4 2.0 1.3 CA964765

Hyp 03j12 Danio rerio neuron-specific protein family

member 1 (brain neuron cytoplasmic protein 1)

mRNA

1.3 −1.6 FG392599

Hyp 03f23 Deoxyribonuclease I-like 3 1.5 −1.5 DY231911

Hyp 23k24 e3 Ubiquitin protein ligase 1.6 −1.6 CA968074

Hyp 02i24 Ependymin 1.3 −1.6 DY231713

Hyp 03o21 Ependymin 1.4 −1.7 DY232010

Hyp 24a12 eph Receptor a7 1.6 −2.1 CA969719

Hyp 15a10 Equilibrative nucleoside transporter 1 1.3 −1.6 CA965545

Hyp 07b01 Eukaryotic translation elongation factor-1

gamma

−1.5 1.7 CA966738

Hyp 20j14 Eukaryotic translation initiation factor 2, subunit

1 alpha

−1.3 −2.0 2.3 CA966561

Hyp 09e01 Fibronectin 1b −1.3 2.0 1.3 CA964120

Hyp 24j21 fk506-Binding protein 1a 1.3 −1.5 CA966789

Hyp 03o09 Fructose-bisphosphate aldolase c 1.4 −1.6 FG392624

Hyp 10m11 g Protein-coupled family group member c 1.3 −1.6 CA967701

Hyp 17n11 Gamma-glutamyl cyclotransferase 1.3 −1.7 CA965786

Hyp 02g12 Gasterosteus aculeatus clone cnb214-a06

mRNA sequence

1.3 −1.5 DY231579

Hyp 03i20 Glutamine synthetase 1.2 −1.5 DY231974

Hyp 10d04 Glutathione peroxidase 3 1.4 −1.5 CA964192

Hyp 23o12 Glyceraldehyde 3-phosphate dehydrogenase 2.0 −2.1 CA968103

Hyp 08h01 Glyceronephosphate-O-acyltransferase −1.6 2.2 CA968696

Hyp 14b13 Granulin 1 −1.3 1.5 CA964295

Hyp 19m14 h2a Histone member y2 −1.4 1.6 CA965061

Hyp 14k03 Heat shock protein 90 beta −1.3 1.7 CA964458

Hyp 14i04 HECT domain containing 1 −1.4 1.5 CA964417

Hyp 24o12 Hexokinase I 1.6 −1.9 CA969997

Hyp 08g14 High-density lipoprotein binding protein −1.4 1.6 CA968690

Hyp 19d02 Hydroxysteroid (17-beta) dehydrogenase 10 −1.3 2.2 1.3 CA965806

Hyp 03i10 Immunoglobulin mu heavy chain 1.5 −1.5 FG392590

Hyp 04j23 Jumonji domain containing 3 1.3 −1.5 FG392963

Hyp 13o14 Latexin −1.7 1.6 CF662717

Hyp 22g07 Leucine-rich repeat (in flii) interacting protein 1 1.2 −1.7 CA969350

Hyp 11p01 Leucine-rich repeat containing 58 −1.3 2.2 CF662658

Hyp 19f13 loc548392 Protein −1.4 2.0 CA969104

Hyp 14m01 Malate dehydrogenase 1, NAD (soluble) −1.3 1.8 1.3 CA964750

Hyp 12k14 Male-specific protein −1.3 1.9 CA970272

Hyp 22o11 Map microtubule affinity-regulating kinase 4 1.5 −2.0 CA969512

(Continued)
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Table A1 | Continued

Tissue AURATUS

ID

Best blast hit DA depletion or receptor blockage DA mimic Accession

MPTP +

aMPT

SCH 23390 Sulpiride SKF 38393 LY171555

Hyp 21l16 Membrane palmitoylated 1.9 −1.6 1.3 CA966525

Hyp 09p22 Methylcrotonoyl-coenzyme a carboxylase 2 1.5 −1.8 CA964915

Hyp 22k08 MHC class I antigen 1.4 −2.0 CA969424

Hyp 08a03 mid1 Interacting g12-like protein −1.3 1.6 CA970376

Hyp 09k02 mid1 Interacting g12-like protein −1.4 1.7 CA964854

Hyp 08l01 Middle subunit −1.4 2.5 CA965449

Hyp 03k10 Midkine-related growth factor b 1.4 −1.5 FG392604

Hyp 12n01 Mitochondrial ribosomal protein l19 −1.6 1.5 CA966046

Hyp 19p16 Mitochondrial ribosomal protein l20 −1.4 2.0 CA967272

Hyp 11j11 Mitogen-activated protein kinase 7 interacting

protein 3

1.4 −1.7 CF662634

Hyp 12p13 m-Phase phosphoprotein 6 −1.5 2.1 CA966058

Hyp 06g06 Myelocytomatosis oncogene b 1.3 −2.7 CF662485

Hyp 14n02 Myosin regulatory light chain −1.3 1.6 CA964520

Hyp 24b19 nck Adaptor protein 2 1.4 −1.5 CA969746

Hyp 19l18 Negative elongation factor d −1.8 1.5 CA965844

Hyp 03i12 Nel-like protein 2 1.3 −1.7 FG392591

Hyp 16k15 nlr Card domain containing 3 −1.3 1.8 CF662774

Hyp 18c18 nol1 nop2 Sun domain member 2 −1.5 −1.5 CA964613

Hyp 08o01 Novel protein −1.4 1.5 CA968809

Hyp 11d07 Novel protein 1.3 −1.5 CF662614

Hyp 15i06 Novel protein (zgc:136439) −1.6 1.6 CA965636

Hyp 15b13 Novel protein lim domain only 3 (rhombotin-like

2) zgc:110149)

−1.4 2.0 CA965552

Hyp 11e15 Novel sulfotransferase family protein −1.3 1.9 CA965939

Hyp 19e01 Nuclear receptor sub-family group member 2 −1.4 2.1 CA966183

Hyp 15e23 Phosducin-like 3 1.5 −1.6 CA966723

Hyp 12l11 Plasma retinol-binding protein 1 1.3 −1.5 CA966039

Hyp 03k09 Poplar cDNA sequences 1.3 −1.5 FG392603

Hyp 12o13 PREDICTED: Danio rerio hypothetical

LOC560379 (LOC560379), mRNA

−1.3 1.5 CA966719

Hyp 24d23 PREDICTED: Danio rerio hypothetical

LOC567058 (LOC567058), mRNA

1.3 −1.5 CA966814

Hyp 15i02 PREDICTED: Danio rerio hypothetical protein

LOC553758 (LOC553758), mRNA

−1.3 1.6 CA965635

Hyp 19f14 PREDICTED: Danio rerio hypothetical protein

LOC792300 (LOC792300), mRNA

−1.3 2.5 CA965818

Hyp 07i10 PREDICTED: Danio rerio im:7148349

(im:7148349), misc RNA

1.7 −1.6 CA964049

Hyp 08j02 PREDICTED: Danio rerio similar to

Chromosome 19 open reading frame 43,

transcript variant 1 (LOC560758), mRNA

−1.5 2.1 CA968727

Hyp 19o03 PREDICTED: Danio rerio similar to

dipeptidyl-peptidase 6, transcript variant 1

(LOC566832), mRNA

−1.6 1.4 CA966233

Hyp 12o22 PREDICTED: Danio rerio similar to

histocompatibility 28 (LOC555357), mRNA

−1.6 1.5 CA970293

Hyp 17g21 PREDICTED: H3 histone, family 3B −1.3 1.8 CA964956

(Continued)
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Table A1 | Continued

Tissue AURATUS

ID

Best blast hit DA depletion or receptor blockage DA mimic Accession

MPTP +

aMPT

SCH 23390 Sulpiride SKF 38393 LY171555

Hyp 15o14 PREDICTED: hypothetical protein [Danio rerio] −1.2 2.0 CA965715

Hyp 22g11 PREDICTED: hypothetical protein LOC337077,

partial [Danio rerio]

1.3 −2.0 CA969354

Hyp 08g04 Prostaglandin h2 d-isomerase −1.5 1.5 CA968684

Hyp 22p03 Proteasome (macropain) 26s non- 4 1.4 −1.6 CA969527

Hyp 12b01 Proteasome (macropain) alpha 5 −1.5 2.0 1.3 CA965983

Hyp 12i01 Purine nucleoside phosphorylase −1.5 1.6 CA967769

Hyp 22b23 Response gene to complement 32 1.3 −2.0 CA969259

Hyp 22g21 Ribosomal protein l13 1.5 −1.7 CA969362

Hyp 08o16 Ribosomal protein l27a −1.3 1.5 CA968817

Hyp 12d13 Ribosomal protein l27a −1.5 1.6 CA965998

Hyp 09o01 Serine incorporator 1 −1.4 1.5 CA964172

Hyp 04c11 Sesbania drummondii clone ssh-36_01_a09_t3

mRNA sequence

1.2 −1.5 FG392711

Hyp 21a01 sh3-Domain grb2-like 2 −1.5 1.7 1.3 CA967895

Hyp 09g14 si:ch211-Protein −1.4 1.8 CA964823

Hyp 11l01 Siniperca chuatsi 28S ribosomal RNA gene,

partial sequence

−1.5 1.8 CA966341

Hyp 24i19 StAR-related lipid transfer (START) domain

containing 4

1.4 −2.1 1.6 CA969885

Hyp 09n02 Sterol-c5-desaturase (fungal delta-5-desaturase)

homolog (cerevisiae)

−1.3 2.5 CA964885

Hyp 12p21 Surfeit 4 −1.5 1.6 CA966062

Hyp 20o02 Tetraspanin 9 −1.6 1.6 CA965906

Hyp 24i22 Transaldolase 1 1.4 −1.6 CA969888

Hyp 15f10 Translocon-associated protein subunit delta

precursor

1.3 −1.8 CA965601

Hyp 12f01 Transthyretin precursor −1.3 3.0 CA966004

Hyp 07h01 Triosephosphate isomerase −1.3 1.8 CA968504

Hyp 14f24 Troponin c-type 2 1.4 −2.1 CA964383

Hyp 21g17 Troponin c-type 2 −1.5 1.6 CA967929

Hyp 22g09 Tubulin alpha 8 like 4 1.3 −1.8 CA969352

Hyp 03o23 Tubulin beta-2c 1.4 −1.5 FG392672

Hyp 17j23 Tubulin beta-2c chain 1.4 −1.5 CA965774

Hyp 14f02 u2 Small nuclear RNA auxiliary factor-1 −1.7 2.4 1.3 CA964363

Hyp 22l09 Vacuolar protein sorting 13c 1.3 −1.5 CA969449

Hyp 20j02 Vacuolar protein sorting 4a −1.5 1.7 1.6 CA966560

Hyp 14j12 Vimentin 1.4 −1.5 CA964445

Hyp 24i24 Vimentin 1.4 −1.7 CA969890

Hyp 12i13 Vitellogenin 2 −1.3 1.4 CA967775

Hyp 03a21 Zebrafish DNA sequence from clone

ch1073-368i11 in linkage group complete

sequence

1.4 −2.0 DY231868

Hyp 16n18 Zebrafish DNA sequence from clone CH211-

11J2 in linkage group 7, complete sequence

−1.3 1.8 CA966457

Hyp 19e02 Zebrafish DNA sequence from clone CH211-

126C2 in linkage group 14, complete sequence

−1.4 2.0 CA965014
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Table A1 | Continued

Tissue AURATUS

ID

Best blast hit DA depletion or receptor blockage DA mimic Accession

MPTP +

aMPT

SCH 23390 Sulpiride SKF 38393 LY171555

Hyp 24p11 Zebrafish DNA sequence from clone

CH211-128E9 in linkage group 15, complete

sequence

1.4 −1.6 −1.8 CA970016

Hyp 03f11 Zebrafish DNA sequence from clone

ch211-132l2 in linkage group complete sequence

1.4 −1.7 DY231843

Hyp 16n17 Zebrafish DNA sequence from clone

CH211-134D6, complete sequence

−1.3 1.4 CF662780

Hyp 09m02 Zebrafish DNA sequence from clone

CH211-157C7 in linkage group 7, complete

sequence

−1.4 1.7 CA964874

Hyp 03p21 Zebrafish dna sequence from clone

ch211-194m7 in linkage group 25 contains the

gene for a novel proteinvertebrate ndrg family

member 4 and a complete sequence

1.3 −1.5 DY232016

Hyp 19e13 Zebrafish DNA sequence from clone

CH211-221E5 in linkage group 8, complete

sequence

−1.3 1.5 CA966187

Hyp 02c11 Zebrafish DNA sequence from clone

ch211-271d10 in linkage group complete

sequence

1.4 −1.5 DY231543

Hyp 24d22 Zebrafish DNA sequence from clone

CH211-286F18 in linkage group 14, complete

sequence

1.4 −1.5 CA969787

Hyp 22o22 Zebrafish DNA sequence from clone

CH211-63O20 in linkage group 20, complete

sequence

1.3 −1.5 CA969522

Hyp 24h12 Zebrafish DNA sequence from clone

CH211-65M8, complete sequence

1.5 −1.6 CA969857

Hyp 22j22 Zebrafish DNA sequence from clone

DKEY-106L3 in linkage group 10, complete

sequence

1.3 −1.6 CA969418

Hyp 19m15 Zebrafish DNA sequence from clone

DKEY-10B15 in linkage group 10, complete

sequence

−1.4 −1.5 1.8 CA966228

Hyp 03h21 Zebrafish DNA sequence from clone dkey-13a3

in linkage group complete sequence

1.4 −1.5 DY231928

Hyp 22f11 Zebrafish DNA sequence from clone

DKEY-14A21 in linkage group 12, complete

sequence

1.4 −1.7 −1.6 CA969332

Hyp 24h11 Zebrafish DNA sequence from clone

DKEY-180P18 in linkage group 4, complete

sequence

1.8 −1.9 CA969856

Hyp 14g09 Zebrafish DNA sequence from clone

DKEY-210O7 in linkage group 6, complete

sequence

1.5 −1.4 CA967264

Hyp 22k16 Zebrafish DNA sequence from clone

DKEY-216E24 in linkage group 9, complete

sequence

1.3 −1.4 CA969432

(Continued)
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Table A1 | Continued

Tissue AURATUS

ID

Best blast hit DA depletion or receptor blockage DA mimic Accession

MPTP +

aMPT

SCH 23390 Sulpiride SKF 38393 LY171555

Hyp 13k21 Zebrafish DNA sequence from clone

DKEY-228N9 in linkage group 11, complete

sequence

1.3 −1.6 CA967861

Hyp 24j22 Zebrafish DNA sequence from clone

DKEY-231K15 in linkage group 3, complete

sequence

1.3 −1.6 CA969909

Hyp 15f02 Zebrafish DNA sequence from clone

DKEY-242H9 in linkage group 18, complete

sequence

−1.4 1.6 1.3 CA965596

Hyp 03i22 Zebrafish DNA sequence from clone

dkey-266h7 in linkage group 5 contains the 3

end of the gene for a novel proteinvertebrate

mitochondrial ribosomal protein l41the gene for

a novel proteinvertebrate patatin-like

phospholipase domain containing 6the gene for

a novel protein and the 3 end of the gene for a

novel proteinvertebrate atp-binding cassette

sub-family a abc1 member 2 complete

sequence

1.3 −1.7 FG392637

Hyp 18b02 Zebrafish DNA sequence from clone DKEY-3P10

in linkage group 23, complete sequence

−1.6 1.6 CA968927

Hyp 23k09 Zebrafish DNA sequence from clone

DKEY-40M6 in linkage group 16, complete

sequence

1.3 −1.5 CF662916

Hyp 10m12 Zebrafish DNA sequence from clone

DKEYP-1H4 in linkage group 18, complete

sequence

1.4 −1.6 CA967702

Hyp 22p07 Zebrafish DNA sequence from clone

DKEYP-64A3 in linkage group 2, complete

sequence

−1.4 1.3 CA969530

Hyp 19o08 Zinc and double phd fingers family 2 −1.5 1.5 CA965067

Hyp 23a24 Zinc finger ccch-type containing 7a 2.0 −2.3 CA967982

Hyp 15i14 Zinc finger protein 782 −1.3 2.0 CA965639

Hyp 20c13 Zona pellucida glycoprotein −1.6 1.7 CA966260

Tel 12o17 ccaat Enhancer-binding protein beta −1.6 1.7 CA967804

Tel 12e10 Leucine-rich ppr-motif containing −1.8 1.6 CA970240

Tel 14f04 Solute carrier family 2 (facilitated glucose

fructose transporter) member 5

−1.3 1.9 CA964365

All ESTs were identified as being statistically significantly differentially regulated (q < 5%) in all treatments. Only those with BLAST hits (NCBI), obtained with

Blast2GO, are shown. In the case where a suitable BlastX hit was unavailable, the best BlastN hit is used. Duplicate names may exist in the list, but were not

identified by sequence overlap (cap3) and may represent separate genes or individual isoforms. The median “minimum ExpectValue”=1.9E−57 and the average

“mean similarity”=84.8±1%.
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