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The neuropeptide galanin was first discovered 30 years ago. Today, the galanin family con-
sists of galanin, galanin-like peptide (GALP), galanin-message associated peptide (GMAP),
and alarin and this family has been shown to be involved in a wide variety of biological
and pathological functions.The effect is mediated through three GPCR subtypes, GalR1-3.
The limited number of specific ligands to the galanin receptor subtypes has hindered the
understanding of the individual effects of each receptor subtype.This review aims to sum-
marize the current data of the importance of the galanin receptor subtypes and receptor
subtype specific agonists and antagonists and their involvement in different biological and
pathological functions.
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THE GALANIN FAMILY
Since the discovery of galanin 30 years ago, several bioactive pep-
tides have been reported to be part of the galanin family. The dis-
covery of galanin was followed by the characterization of a second
peptide originating from the same prepropeptide as galanin, the
galanin message associated peptide (GMAP). Furthermore, a third
peptide, GALP, was identified with capacity to bind to the galanin
receptor subtypes, GalR1-3, followed by the characterization of a
splice variant of GALP named alarin.

GALANIN
Galanin was discovered among several other bioactive peptides
with C-terminal α-amide motif, using a new method by Profes-
sor Viktor Mutt and colleagues at Karolinska Institute, Stockholm
(Tatemoto et al., 1983; Hökfelt, 2005; Lang et al., 2007). The 29
amino acid long peptide (30 amino acids in humans) was named
galanin after its N-terminal glycine and its C-terminal alanine.
The N-terminal end of galanin is crucial for its biological activity
and the first 15 amino acids are conserved in all species (the tuna
fish being the exception; Kakuyama et al., 1997). Interestingly, the
C-terminal region (residues 17–29) varies among species and it
lacks receptor affinity (Table 2), which is also true for N-terminal
fragments shorter than galanin (1–11) (Land et al., 1991b). The
C-terminus is believed to primarily serve as a protector against
proteolytic attacks (Land et al., 1991a; Bedecs et al., 1995). In a
membrane-mimicking environment, galanin adopts a horseshoe-
like shape, where the N-terminus is organized in an α-helical
conformation, followed by a β-bend around the proline in position
13 and a more uncertain configuration of the C-terminal region
(Wennerberg et al., 1990; Morris et al., 1995, Öhman et al., 1998).

Galanin has been ascribed a large range of different func-
tions. To accomplish these, the galanin gene has a highly plastic

expression pattern, which has been portrayed numerous times
in the literature. Galanin was early shown to be induced by
estrogens (Vrontakis et al., 1987, 1989; Kaplan et al., 1988), and
later, three copies of estrogen responsive element, ERE, were
identified in the promoter region of the human galanin gene
(Kofler et al., 1995). Thereafter, the galanin expression has also
been shown to be up-regulated by the leukemia inhibitory fac-
tor (LIF; Corness et al., 1996; Sun and Zigmond, 1996), and
down-regulated by the nerve growth factor (NGF; Verge et al.,
1995).

Galanin is widely expressed in the central and peripheral ner-
vous system as well as in the endocrine system and co-exists
with a number of classical neurotransmitters, including acetyl
choline, serotonin, glutamate, GABA, noradrenalin, and dopamine
(Melander et al., 1986; Hökfelt et al., 1987; Xu et al., 1998; Liu
et al., 2003). Galanin also co-exists with other neuropeptides
like enkephalin, NPY, substance P, vasopressin, calcitonin gene-
regulated peptide, and gonadotropin-releasing hormone (Rökaeus
and Carlquist, 1988; Merchenthaler et al., 1990; Zhang et al.,
1993a,b, 1995).

An extensive up-regulation of galanin was seen during
development of sensory and motor systems (Gabriel et al.,
1989; Xu et al., 1996) and after nerve injury, both in
PNS and CNS (Hökfelt et al., 1987) and also, an exten-
sive up-regulation in the basal forebrain of patients with
Alzheimer’s disease (AD; Chan-Palay, 1988a,b). Epileptic seizures
have been shown to rapidly deplete galanin (Mazarati et al.,
1998).

Galanin has also been shown to be expressed in keratinocytes,
eccrine sweat glands and around blood vessels (Kofler et al.,
2004). Furthermore, galanin has been proposed to be expressed
in macrophages of the dermis (reviewed in Bauer et al., 2010).
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GALANIN MESSAGE ASSOCIATED PEPTIDE
There are very few studies regarding the localization, function, and
pharmacological potential of GMAP. It was early shown that the
sequence of GMAP displays a much greater divergence between
species than galanin (Lundkvist et al., 1995). Immunohistochem-
istry has shown that GMAP distribution generally parallels that
of galanin (Hökfelt et al., 1992) although heterologous distribu-
tion was observed in certain areas. Xu et al. (1995a,b) showed that
GMAP has a pharmacological action in spinal nociceptive trans-
mission in rat spinal cord (Andell-Jonsson et al., 1997; Hao et al.,
1999). GMAP has also been assigned anti-microbial activities and
hypothesized to be part of the innate immune system, since it

suppresses Candida albicans growth and the budded-to-hyphal-
form transition of C. albicans (Rauch et al., 2007) (Table 1).
Recently, in an extended study, it was shown that GMAP could
significantly reduce growth in six out of seven Candida strains
(Holub et al., 2011).

GALANIN-LIKE PEPTIDE
Ohtaki et al. (1999) characterized a third peptide, isolated from
porcine hypothalamus, that was recognized to induce GTP-
binding to a membrane preparation of GalR2-transfected cells.
They named this new peptide galanin-like peptide, or GALP.
Porcine GALP was shown to act as an agonist in a GTPγS binding

Table 1 | A short summary of the involvement of the galanin family in different physiological and pathological functions.

Agonist Antagonist

GALANIN RECEPTOR 1

Reduces acetylcholine release in cardiac neurons (Potter and Smith-White,

2005)

Anxiolytic and antidepressant (Kuteeva et al., 2008)

Antinocicepive effects for neuropathic pain (Liu et al., 2001) Improving memory and learning (Wrenn et al., 2004; Bailey et al., 2007)

Treatment for diseases of altered extrinsic afferent signaling around that

gastrointestinal tract (Page et al., 2007)

Anticonvulsant, reduces initiation of seizures (Mazarati et al., 2004b; Bulaj

et al., 2008)

GALANIN RECEPTOR 2

Neuroprotective effects against Alzheimer’s disease (Pirondi et al., 2010)

Anxiolytic and antidepressant (Kuteeva et al., 2008)

Anticonvulsant by reduction of severity of seizures (Mazarati et al., 2004a;

Robertson et al., 2010)
GALANIN RECEPTOR 3

Inhibit oxytocin secretion (Radács et al., 2010) Anxiolytic and antidepressant (Swanson et al., 2005; Kuteeva et al., 2008;

Ash et al., 2011)

Reduced alcohol consumption (Ash et al., 2011)

Reduces severity of acute pancreatitis (Barreto et al., 2011)

EXOGENOUS GALANIN

Increases heart rate, induces tachycardia and a weak vasodepressor response (Narváez et al., 2000)

Impaired performance in memory tests (Wrenn et al., 2004; Bailey et al., 2007)

Increases alcohol intake (Schneider et al., 2007)

Inhibit the secretion of vasopressin and oxycotin (Ciosek and Cisowska, 2003; Izdebska and Ciosek, 2010; Radács et al., 2010)

Anticonvulsant effects (Mazarati et al., 1992, 1998, 2000, 2004b; Chepurnov et al., 1998; Lu et al., 2010; Robertson et al., 2010,)

Anti-nociceptive (Xu et al., 2012)

Neuroprotective effects against Alzheimer’s disease (Pirondi et al., 2010) Anxiolytic- and antidepressant (Kuteeva et al., 2008)

EXOGENOUS GALP

In rats: an acute increase (30–60 min) of food intake, followed by reduction in food intake (Lawrence, 2009), increased sexual behavior in male rats (Fraley

et al., 2004)
In mice: decreased food intake (Lawrence, 2009), an acute decrease in body temperature followed by an increase in body temperature (Man and Lawrence,

2008a)
Inhibition of male sexual behavior in mice (Kauffman et al., 2005)

EXOGENOUS ALARIN

In male mice: Increase of acute food intake, acute increase of body weight, increased LH levels, decrease of neurogenic inflammation, no change in body

temperature (Fraley et al., 2012)
Anti-edema and vasoconstrictive effects (Santic et al., 2007)

Increases LH levels in mice and rats (Boughton et al., 2010; van Der Kolk et al., 2010; Fraley et al., 2012)

EXOGENOUS GMAP

Anti-microbial activities (Rauch et al., 2007; Holub et al., 2011)

Facilitation of the flexor reflex, decrease of spinal cord blood flow (Xu et al., 1995a)
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Table 2 | Affinities of galanin, GALP, GMAP, and alarin, as well as fragments of galanin and GALP, for the three galanin receptor subtypes,

determined as Ki.

Ligand K i (nM) Reference

GalR1 GalR2 GalR3

Rat galanin(1–29) 1.0 1.5 1.5 Wang et al. (1997b)

0.3 (h) 1.6 (h) 12 (h) Borowsky et al. (1998)

0.9 (h) 1.2 (h) 7.4 (h) Lu et al. (2005b)

Human galanin(1–30) 0.4 (h) 2.3 (h) 69 (h) Borowsky et al. (1998)

Porcine galanin(1–29) 0.23 (h) 0.95 (h) 9.8 (h) Borowsky et al. (1998)

Galanin(1–16) 4.8 5.7 50 Wang et al. (1997b)

Galanin(2–29) 85 1.9 12 Wang et al. (1997b)

Galanin(3–29) >1000 >1000 >1000 Wang et al. (1997b)

Galanin(2–11) >5000 (h) 88 271 Lu et al. (2005a)

879a (h) 1.8a – Liu et al. (2001)

Porcine GALP 4.3 0.24 – Ohtaki et al. (1999)

Human GALP 77a (h) 28a (h) 10a (h) Lang et al. (2005)

Human GALP(1–32) 129a (h) 69a (h) – Lang et al. (2005)

Human GALP(3–32) 33a (h) 15a (h) – Lang et al. (2005)

Rat GALP 45a 18.7a 1530a (h) Boughton et al. (2010)

Alarin >1000 >1000 >1000000 Boughton et al. (2010)

GMAP(1–41) – >840 – Wang et al. (1997a)

– – >1000 Wang et al. (1997b)

GMAP(44–59) – >1000 >1000 Wang et al. (1997b)

Displacement is performed on the rat galanin receptor unless indicated otherwise. (h) human; apresented as IC50 values; – not determined.

assay and to have a preferential binding (20 times) toward GalR2
(Ohtaki et al., 1999). A later study using human GALP showed that
GALP interacts with GalR3 with three times preferential selectivity
as compared to GalR2 (Lang et al., 2005) (Table 2).

The amino acid sequence of GALP-(9–21) is identical to that
of galanin (1–13).

Galanin-like peptide distribution in the CNS appears to be
rather restricted, disparate to the much broader expression pat-
tern seen for galanin. Cells identified to produce GALP mRNA and
protein have only been found in the hypothalamic arcuate nucleus
(ARC), the median eminence and infundibular stalk, and the pos-
terior pituitary when studied in the rat, mouse, and macaque
(Juréus et al., 2000, 2001; Kerr et al., 2000; Larm and Gundlach,
2000; Takatsu et al., 2001; Cunningham et al., 2002; Fujiwara et al.,
2002). GALP-immunoreactive (IR) fibers were shown to project
to several regions of the forebrain (Takatsu et al., 2001).

Galanin-like peptide has also been shown to be expressed by
specialized glia-like cells known as pituicytes in the neuronal lobe
of dehydrated and salt loaded rats, where the expression is strongly
regulated by osmotic stimuli (Shen et al., 2001; Fujiwara et al.,
2002; Saito et al., 2003; Shen and Gundlach, 2004). Furthermore,
studies show that the GALP gene expression, especially in the pitu-
icytes, is induced by both acute and chronic inflammatory stimuli
(Saito et al., 2003, 2005). Central administration of GALP increases
IL-1α and IL-1β and it has been suggested that IL-1 mediates both
the anorectic and febrile actions of GALP (Man and Lawrence,
2008b).

Intracerebroventricular (i.c.v.) injection of GALP profoundly
stimulates male sex behaviors in rat (Fraley et al., 2004), seemingly

independent of the testosterone milieu (Stoyanovitch et al., 2005)
(Table 1). Interestingly, the opposite is seen in mice were GALP
instead inhibits male sex behavior (Kauffman et al., 2005).
Recently, Taylor et al. (2009) presented evidence supporting the
hypothesis that this effect of GALP depends upon hypothalamic
dopamine input to the medial preoptic area (mPOA).

Several studies have proposed that GALP does not solely inter-
act with the three known galanin receptor subtypes (Man and
Lawrence, 2008a). Krasnow et al. (2004) reported that GALP injec-
tion affect food intake and body weight in a similar manner in both
GalR1-KO and GalR2-KO mice compared to wild type littermates.
Furthermore, to somewhat exclude the possibility that this effect
was mediated through GalR3, the authors showed that the GALP
fragment, GALP (1–21), failed to mimic the effect of full length
GALP (Krasnow et al., 2004).

ALARIN
The newest member of the galanin peptide family, alarin, a 25
amino acid long peptide named after its N-terminal alanine and
its C-terminal serine originating as a splice variant of the GALP
mRNA (Santic et al., 2006). The alarin peptide has been isolated
from murine brain, thymus, skin (Santic et al., 2007), human
neuroblastic tumors, and human skin (Santic et al., 2006, 2007)
and has no detectable affinity toward either of the three galanin
receptor subtypes (Boughton et al., 2010) (Table 2). Recently,
two publications characterized in more detail the alarin-LI in the
murine brain (van Der Kolk et al., 2010; Eberhard et al., 2012).
Alarin-LI has a much broader expression pattern than GALP and
was found in such diverse areas as the accessory olfactory bulb,
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different nucleus in the hypothalamus, within the locus coeruleus
(LC) and locus subcoeruleus of the midbrain.

When first discovered, alarin was ascribed vasoconstrictive
and anti-edema activities (Santic et al., 2007) (Table 1). Con-
tradictory to the effect of GALP, alarin has neither an effect on
body temperature nor an effect on male sex behaviors in rodents
(van Der Kolk et al., 2010; Fraley et al., 2012). Recently, it was
shown that alarin stimulates acute food intake and some stud-
ies have reported a significant increase in body weight after 24 h,
although other studies were unable to confirm this (Boughton
et al., 2010; van Der Kolk et al., 2010; Fraley et al., 2012). Cen-
tral injection of alarin elicit a gonadotrophin-releasing hormone
(GnRH)-mediated increase in leutizing hormone (LH)-levels in
both rats and mice (Boughton et al., 2010; van Der Kolk et al.,
2010; Fraley et al., 2012).

GALANIN RECEPTOR SUBTYPES
All three galanin receptor subtypes are members of the GPCR
superfamily but the subtypes have substantial differences in sites of
expression as well as their functional coupling and subsequent sig-
naling activities. These differences between the receptor subtypes
contributes to the diversity of possible physiological effects and
the plausible pharmacological relevance of targeting the galanin
family (Table 1).

GALANIN RECEPTOR TYPE 1
The first known galanin receptor, galanin receptor type 1 (GalR1),
was isolated from the Bowes human melanoma cell line (Habert-
Ortoli et al., 1994) and subsequently rat (Burgevin et al., 1995;
Parker et al., 1995) and mouse (Jacoby et al., 1997; Wang et al.,
1997c) receptor was cloned.

The human GalR1 gene contains three exons and the hGalR1
gene translates into a 349 amino acid long protein (Jacoby et al.,
1997). The homology between species is rather high, as 93% of the
residues in rat GalR1 are identical to those of human GalR1 (Jacoby
et al., 1997). The expression of GalR1, but neither GalR2 nor
GalR3, is regulated by cyclic adenosine monophosphate (cAMP)
through the transcription factor CREB (cAMP regulatory ele-
ment binding protein; Zachariou et al., 2001; Hawes et al., 2005).
The GalR1 expression does not fluctuate during development
(Branchek et al., 2000; Burazin et al., 2000).

GalR1 mRNA was initially identified by northern blot to be
found in the fetal brain and small intestinal tissues (Habert-Ortoli
et al., 1994). It has, thereafter, been identified by reverse transcript
polymerase chain reaction (RT-PCR) in the gastrointestinal tract
(Lorimer and Benya, 1996). However, a later study identified the
GalR1 expression to be exclusively in the central and peripheral
nervous system (Waters and Krause, 2000), where it was detected in
hippocampus, hypothalamus, amygdala, thalamus, cortex, brain-
stem (medulla oblongata), spinal cord, and dorsal root ganglia
(DRG; Gustafson et al., 1996; Waters and Krause, 2000), even if
broader central and peripheral tissue distribution has also been
reported (Sullivan et al., 1997).

Activation of GalR1 results in a pertussis toxin (PTX) sen-
sitive inhibition of adenylate cyclase (AC) through interaction
with Gαi/αo types of G-proteins (Habert-Ortoli et al., 1994;
Parker et al., 1995; Wang et al., 1997c) which leads to opening

of GIRK channels. Activation of GalR1 can also stimulate a
mitogen associated protein kinase (MAPK) activity, through a
PKC-independent mechanism, consistent with that the mediator
is the βγ-subunit of Gαi (Wang et al., 1998).

GALANIN RECEPTOR TYPE 2
The second galanin receptor type (GalR2) was identified in rat
hypothalamus, spinal cord, and DRG (Fathi et al., 1997; Howard
et al., 1997; Smith et al., 1997; Ahmad and Dray, 2004) and subse-
quently in mouse spleen (Pang et al., 1998) as well as from various
human tissues (Bloomquist et al., 1998; Borowsky et al., 1998).
The human GalR2 has rather high sequence identity to rat GalR2
(92%), although there is one notable difference; the 15 amino acid
extension of the C-terminal end in human GalR2 (Kolakowskim
et al., 1998; Waters and Krause, 2000).

GalR2 is able to activate the stimulatory pathway of Gαq/11 class
of G-proteins, i.e., PTX-insensitive. This triggers PLC activity and
intracellular phosphoinositol turnover, mediating the release of
Ca2+ into the cytoplasm from intracellular stores and opening
Ca2+-dependent channels (Smith et al., 1997; Kolakowskim et al.,
1998; Wang et al., 1998). GalR2 is also able to activate MAPK
through a PKC and Gαo class of G-proteins dependent mecha-
nism (Wang et al., 1998). This may in turn lead to the downstream
PI3K-dependent phosphorylation of Protein Kinase B (PKB) lead-
ing to suppression of caspase-3 and caspase-9 activity (Ding
et al., 2006; Elliott-Hunt et al., 2007). GalR2 activation may also
inhibit forskolin stimulated cAMP production in a PTX-sensitive
manner, suggesting the activation of Gαi/αo types of G-proteins
(Fathi et al., 1997; Wang et al., 1997a). Consequently, both GalR1
and GalR2 activation can inhibit CREB (Badie-Mahdavi et al.,
2005).

GalR2 is expressed in a wider pattern, compared to GalR1, as
it is found in several peripheral tissues including the pituitary
gland, gastrointestinal tract, skeletal muscle, heart, kidney, uterus,
ovary, and testis as well as in regions in the CNS (Smith et al.,
1997; Bloomquist et al., 1998; Waters and Krause, 2000). In the
brain, the highest levels of GalR2 are detected in hypothalamus,
dentate gyrus, amygdala, piriform cortex, and mammillary nuclei
(Mitchell et al., 1999; O’Donnell et al., 1999; Waters and Krause,
2000).

Interestingly, GalR2 expression levels vary during the develop-
ment of the rat brain with a broader distribution with a peak in
expression before postnatal day 7, particularly in cortex and thal-
amus, and much reduced levels after postnatal day 14 (Burazin
et al., 2000).

GALANIN RECEPTOR TYPE 3
Galanin receptor type 3 (GalR3) was first isolated from rat hypo-
thalamic cDNA libraries (Wang et al., 1997b) and later from
human cDNA (Kolakowskim et al., 1998; Smith et al., 1998). The
368 amino acid long hGalR3 shares 36% amino acids identity
with hGalR1 and 58% with hGalR2 and approximately 90% with
rGalR3 (Kolakowskim et al., 1998).

The distribution pattern of GalR3 is somewhat unclear but
it is assumed that this receptor has a more restricted expression
pattern in relation to the other two receptors. Transcript levels is
most prominent in the hypothalamus (Wang et al., 1997b; Smith
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et al., 1998; Mennicken et al., 2002) although, some studies report
a wider distribution of GalR3 throughout central and peripheral
tissues (Kolakowskim et al., 1998; Waters and Krause, 2000).

Signaling properties of GalR3 are still ill-defined. Activation
of GalR3 expressed in Xenopus oocytes or Xenopus melanophores
leads to the activation of Gαi/αo type of G-proteins inhibiting
AC which results in the opening of GIRK channels (Kolakowskim
et al., 1998; Smith et al., 1998).

PEPTIDE LIGANDS FOR THE GALANIN RECEPTORS
Endogenous galanin has high affinity for all three galanin recep-
tors (Wang et al., 1997b). The N-terminal part of galanin is crucial
for receptor interaction and the galanin fragment galanin (1–16)
retains the high affinity of its parental peptide. When galanin
(1–16) underwent an L-alanine scan and subsequent testing on
rat hypothalamus membranes, Gly1, Trp2, Asn5, Tyr9, and Gly12

were identified as pharmacophores (Land et al., 1991b). A later
study, which tested an identical set of peptides on separated
GalR1 and GalR2 membranes, identified Trp2, Tyr9, and Leu10

as pharmacophores on both receptor subtypes (Carpenter et al.,
1999).

Several N-terminal truncated galanin fragments have been
shown to have a preference for GalR2 (Wang et al., 1997b; Liu
et al., 2001), in concurrence with the fact that Gly1 is of great
importance for ligand binding to GalR1. Further truncation, with
as little as two amino acids, leads to a complete loss of receptor
affinity to all receptor subtypes (Wang et al., 1997a).

Liu et al. (2001) published the galanin fragment galanin (2–11)
as a GalR2 selective agonist, although they did not test it on GalR3

(Table 3). Later publication has unfortunately shown that it has
similar affinity toward GalR3 (Lu et al., 2005a), without testing
receptor signaling, even so, it has been used extensively as a non-
GalR1 agonist. Lundström and colleagues showed that Trp2, Asn5,
Gly8, Tyr9, and Leu10 were identified as crucial for interactions
with GalR2 by performing Ala-scan on the peptide (Lundström
et al., 2005a).

The interaction between the galanin receptor subtypes and
GALP has received less attention. GALP, isolated from porcine
tissues, was original published as a GalR2 preferring ligand, with a
20 times difference in affinity between GalR1 and GalR2 (Ohtaki
et al., 1999). Later it was shown, using human GALP, that GALP
also interacts with GalR3. In this study GALP was ascribed a GalR3
preferential selectivity (3 times differences; Lang et al., 2005).
Recently, Boughton et al. (2010) showed a more than 10 times
preferential binding toward GalR3 for the rat GALP (Table 2).

Several chimeric ligands have been synthesized, conjugating
galanin (1–13) to other bioactive molecules, yielding M15 (also
called galantide; Bartfai et al., 1991), M32 (Wiesenfeld-Hallin et al.,
1992b), M35 (Wiesenfeld-Hallin et al., 1992b, Ögren et al., 1992,
Kask et al., 1995), C7 (Langel et al., 1992), and M40 (Langel et al.,
1992; Bartfai et al., 1993). Although, they all maintain antagonistic
properties in vivo at doses between 0.1 and 10 nmol when deliv-
ered i.c.v. or intrathecally (i.t.; Parker et al., 1995; Lu et al., 2005b),
they all have a partial agonistic nature in vivo at doses higher than
10 nmol when delivered i.c.v. or i.t. (Kask et al., 1995; Lu et al.,
2005b).

The first introduced chimeric peptide which acts as an antago-
nist of the galanin receptor family was M15 (Bartfai et al., 1991).

Table 3 | Published ligands and their affinities for the galanin receptor subtypes.

Peptide K i (nM) K i (GalR1)/ K i (GalR2) K i (GalR3)/ K i (GalR2) Reference

GalR1 GalR2 GalR3

M1151 98.6 28.9 874 3.4 30 Saar et al. (2011)

M1152 2370 36.4 656 65 18 Saar et al. (2011)

M1153 1890 4.98 230 380 46 Saar et al. (2011)

M1145 587 6.55 497 90 76 Runesson et al. (2009)

M15 0.65 1.0 1.0 0.65 1 Smith et al. (1998)

M35 0.11 (h) 2.0 (h) – 0.055 – Borowsky et al. (1998)

0.325 3.24 2.09 0.1 0.64 Smith et al. (1998)

4.8 8.2 4.7 0.58 0.57 Lu et al. (2005b)

M40 2.4 (h) 4.1 (h) – 0.58 – Borowsky et al. (1998)

6.76 3.55 79.4 1.9 22.3 Smith et al. (1998)

1.8 5.1 63 0.35 12.3 Lu et al. (2005b)

M617 0.23 (h) 5.7 (h) – 0.04 – Lundström et al. (2005b)

– – 49 (h) – – Sollenberg Eriksson et al. (2010)

M871 420 (h) 13 (h) – 32.3 – Sollenberg Eriksson et al. (2006)

– – >10000 (h) – – Sollenberg Eriksson et al. (2010)

Gal-B2 3.5 (h) 51.5 (h) – 0.019 – Bulaj et al. (2008)

[N-Me,des-Sar]Gal-B2 364 (h) 20 (h) - 18.2 – Robertson et al. (2010)

Gal2–11 >5000 (h) 88 271 56.8 3.08 Lu et al. (2005a)

The sequences and structures of the ligands are listed inTable 4.

Displacement was performed on the rat galanin receptor unless indicated otherwise. (h) human; – not determined.
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Table 4 |The sequences for the galanin family peptides along with the discussed analogs.

Name Sequence

GALANINFAMILY

Rat galanin(1–29) GWTLNSAGYLLGPHAIDNHRSFSDKHGLT-amide

Human galanin(1–30) GWTLNSAGYLLGPHAVGNHRSFSDKNGLTS

Porcine galanin(1–29) GWTLNSAGYLLGPHAIDNHRSFHDKYGLA-amide

Galanin(1–16) GWTLNSAGYLLGPHAI-amide (rat/porcine)

GWTLNSAGYLLGPHAV-amide (human)

Rat Galanin(2–29) WTLNSAGYLLGPHAIDNHRSFSDKHGLT-amide

Rat Galanin(3–29) TLNSAGYLLGPHAIDNHRSFSDKHGLT-amide

Galanin(2–11) WTNLSAGYLL-amide

Porcine GALP APVHRGRGGWTLNSAGYLLGPVLHPPSRAEGGGKGKTALGILDWKAIDGLPYPQSQLAS

Human GALP APAHRGRGGWTLNSAGYLLGPVLHLPQMGDQDGKRETALEILDLWKAIDGLPYSHPPQPS

Human GALP(1–32) APAHRGRGGWTLNSAGYLLGPVLHLPQMGDQD

Human GALP(3–32) AHRGRGGWTLNSAGYLLGPVLHLPQMGDQD

Rat GALP APAHRGRGGWTLNSAGYLLGPVLHPPSRAEGGGKGKTALGILDLWKAIDGLPYPQSQLAS

Alarin APAHRSSTFPKWVTKTERGRQPLRS (human)

APAHRSSPFPPRPTRAGRETQLLRS (mouse)

GMAP(1–41) ELPLEVEEGRLGSVAVPLPESNIVRTIMEFLSFLHLKEAGA (rat)

GMAP(44–59) SLGIPLATSSEDLEQS (rat)

PEPTIDE LIGANDS

M1151 GWTLNSAGYLLGPK(ε-NH-C(O)Glu)-amide

M1152 WTLNSAGYLLGPK(ε-NH-C(O)Glu)-amide

M1153 RGRGNWTLNSAGYLLGPK(ε-NH-C(O)Glu)-amide

M1145 RGRGNWTLNSAGYLLGPVLPPPALALA-amide

M15 GWTLNSAGYLLGPQQFFGLM-amide

M35 GWTLNSAGYLLGPPPGFSPFR-amide

M40 GWTLNSAGYLLGPPPALALA-amide

M617 GWTLNSAGYLLGPQPGFSPFR-amide

M871 WTLNSAGYLLGPEHPPPALALA-amide

Gal-B2 (Sar)WTLNSAGYLLGPKKK(palmitoyl)K-amide

[N-Me,des-Sar]Gal-B2 (N-Me)WTLNSAGYLLGPKKK(palmitoyl)K-amide

NON-PEPTIDE LIGANDS

Galnon GalR1–3 agonist

Galmic GalR1 agonist

(Continued)
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Table 4 | Continued

Name Sequence

Sch 202596  

O

O

CH3

O

CH3

O

O

O

Cl

CH3

Cl

O

OH

OH

OH
O

CH3

O

GalR1 antagonist

Dithiepine-1,1,4,4,-tetroxide  

S

S
O

O

O
O

R

SNAP 37889 GalR3 antagonist

SNAP 398299 GalR3 antagonist

(Continued)

Here, the galanin (1–13) fragment, was coupled to a C-terminal
fragment in substance P (residue 5–11), reported to have agonistic
effect on the substance P receptor. M15 showed an about 10-fold
higher affinity than the endogenous galanin to unspecified sub-
types of the galanin receptor family in membrane preparations of
rat tissues. Later, M35 was synthesized (Ögren et al., 1992) with
an improved in vivo stability (Wiesenfeld-Hallin et al., 1992b).
M15, M32, M35, and M40 have similar affinity as galanin and

have been valuable tools in galanin research but are limited by
their relative non-specificity toward the different galanin recep-
tors (Ögren et al., 1992) and by their weak interactions with other
receptors than the galanin receptors (Wiesenfeld-Hallin et al.,
1992a).

M617 resembles the M35 peptide, with the substitution of
proline at position 14 to a glutamine, which results in a 25-
fold selectivity for GalR1 over GalR2 in vitro (Table 3). M617
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Table 4 | Continued

Name Sequence

GalR3ant GalR3 antagonist

Sar, sarcosine.

has thereafter been shown to produce anti-nociceptive effects
(Jimenez-Andrade et al., 2006) and to delay the development of
seizure in an animal model (Mazarati et al., 2006). The M871
peptide is N-terminally truncated and has two additional amino
acid residues compared to the M40 peptide and function as a par-
tial agonist, selective for GalR2 (Sollenberg Eriksson et al., 2006,
2010). M871 has been used in several in vivo studies (Jimenez-
Andrade et al., 2006; Alier et al., 2007; Kuteeva et al., 2008).
Several GalR2 selective agonists have been reported over the years
(Pooga et al., 1998; Runesson et al., 2009; Saar et al., 2011).
Small changes in the N-terminus of galanin have been associ-
ated with lost binding affinity. However, recently analogues with
modifications at both N-terminus and C-terminus have been pre-
sented, namely M1145 (Runesson et al., 2009) and M1153 (Saar
et al., 2011). M1145 was reported as the first specific GalR2 ago-
nist with a 90-fold binding preference for GalR2 over GalR1
and 76-fold preference over GalR3 (Runesson et al., 2009). The
importance of the development of M1145 and M871 and other
subtype selective agonists and antagonists can almost not be
overestimated and is the key to a successful delineation of gala-
ninergic system and to identify its potential as a therapeutic
target.

Recently, several galanin analogs, all modified by introducing
several cationic amino acid residues and a palmitoyl moiety was
shown to exhibit improved bioavailability after systemic admin-
istration (Bulaj et al., 2008; White et al., 2009). One of these,
the Gal-B2, with a slight selectivity toward GalR1 (Table 3),
was shown to have anticonvulsant effect in several tested ani-
mal models (White et al., 2009). In a later study, Bulaj and
colleagues modified Gal-B2 to obtain a ligand with an 18 times
preferential binding toward GalR2, which displayed similar anti-
convulsant activity as the parental peptide (Robertson et al.,
2010). Future characterization will probably identify other poten-
tial application of Gal-B2 and other systemically active galanin
analogs.

NON-PEPTIDE LIGANDS
The non-peptide ligand galnon was identified after screening a
combinatorial peptidomimetic library (Table 5). It acts as an ago-
nist in functional studies both in vitro and in vivo (Saar et al.,
2002; Bartfai et al., 2004). It has been evaluated in models of anxi-
ety and depression (Rajarao et al., 2007), feeding (Abramov et al.,
2004), and pain (Wu et al., 2003). Galmic (Table 5) is a non-
peptide agonist with higher affinity for GalR1 compared to GalR2,
which under conditions of intrahippocampal administration was
6-fold more potent than galnon in inhibiting self-sustaining status
epilepticus (SE), an in vivo model for epilepsy (Bartfai et al., 2004;
Ceide et al., 2004). Nevertheless, both galnon and galmic potentials
are limited by the fact that they have multiple sites of interactions,
i.e., D2 dopamine receptors, grehlin and melanocortin receptors,
which produce unwanted physiological effects (Florén et al., 2005;
Lu et al., 2005b).

The metabolite Sch 202596 (Table 5), originated from an
Aspergillus sp. culture found in an abandoned uranium mine
in Tuolemene County California, was found to have a modest
affinity to GalR1 in vitro (Chu et al., 1997). Sch 202596 was
characterized as a molecule with a spirocoumaranone skeleton
and has only partly been synthesized so far (Katoh et al., 2002).
Several 1,4-dithiins and dithiipine-1,1,4,4-tetroxides with binding
affinity to GalR1 were identified at the R. W. Johnson Pharmaceu-
tical Institute (Scott et al., 2000). The compound 2,3-dihydro-2-
(4-methylphenyl)-1,4-dithiepine-1,1,4,4-tetroxide (Table 5) was
shown to be a submicromolar antagonist. It has an IC50

of 190 nM for GalR1 and above the highest tested con-
centration (30 µM) for GalR2. However, its reactive nature
and its low solubility makes it unattractive from a therapeu-
tic point of view. Nevertheless, it has been used and evalu-
ated in several studies (Mahoney et al., 2003; Kozoriz et al.,
2006).

A series of 3-imonio-2-indolones were identified as specific
GalR3 antagonists, with Ki-values for GalR3 as low as 17 nM
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Table 5 | Affinities of non-peptidergic galanin receptor ligands for the three galanin receptor subtypes, determined as Ki on human receptor

subtypes.

Ligand K i (nM) Reference

GalR1 GalR2 GalR3

Galnon 11700 34100 – Saar et al. (2002)

Galmic 34200 >100000 – Saar et al. (2002)

Sch 202596 1700 – – Chu et al. (1997)

Dithiepine-1,1,4,4-tetroxide 190a >30000a – Scott et al. (2000)

SNAP 37889 >10000 >10000 17.4 Swanson et al. (2005)

SNAP 398299 >1000 >1000 5.3 Swanson et al. (2005)

GalR3ant >10000 >10000 15 Barr et al. (2006)

The structures of the ligands are listed inTable 4.

Displacement is performed on the rat galanin receptor unless indicated otherwise.
apresented as IC50 values; – not determined.

and above the tested 10 µM for the other receptors studied
(Konkel et al., 2006a). One of these was referred as SNAP37889
(Swanson et al., 2005) (Table 5). One drawback of the above
mentioned indolones is the low aqueous solubility (less than
1 µg/ml) which motivated further studies, leading to the iden-
tification of a compound with an increased water solubility
and selectivity, 1,3-dihydro-1-[3-(2-pyrrolidinylethoxy)phenyl]-
3-[[3-(trifluoromethyl)phenyl]imino]-2H -indol-2-one, referred
as SNAP398299 (Swanson et al., 2005; Konkel et al., 2006b)
(Table 5). Another of the synthesized indolones (Table 5) was
evaluated in vivo by Barr et al. (2006), which together with the
other articles and several patent applications (Konkel et al., 2004)
indicates that specific GalR3 ligands are in development.

A series of 2,4,6-triaminopyrimidines were recently introduced
by The Scripps Research Institute (Sagi et al., 2011). They present
both GalR1 and GalR2 selective compounds with Ki-values start-
ing from 330 nM. Further development of these compounds
is likely ongoing and published in due course. Studies from
the same institute led to characterization of the first identified
allosteric modulator, named CYM2503, for the galanin receptor
family, i.e., GalR2 (Lu et al., 2010). CYM2503 failed to displace
galanin in binding studies and showed no detectable signaling
by itself, but potentiated the effect of galanin when administered
simultaneously (Lu et al., 2010).

GALANIN LIGANDS AS POSSIBLE THERAPEUTICS FOR EPILEPSY
Among the early reported biological effects of galanin were the
decreased excitability of myenteric neurons (Tamura et al., 1988)
and cardiac ganglia (Konopka et al., 1989). These findings, together
with reports that the hippocampus, which is a key structure for
the initiation and maintenance of seizures, have a considerable
amount of galaninergic innervation (Lu et al., 2005b) draw atten-
tion to galanin as a possible anticonvulsant (Mitsukawa et al.,
2008).

Mazarati et al. (1992) reported that galanin had an anticon-
vulsant effect in a picrotoxin-kindled seizure model. Since then,
galanin has been shown to up-regulated in several models of SE
(in adult rats), i.e., in kainic acid-induced SE (Wilson et al., 2005)
and after perforant path stimulation-induced SE (Mazarati et al.,

1998). Galanin administrated i.c.v. had anticonvulsant activity in
rodents exposed to either PTZ or Li-pilocarpine (Chepurnov et al.,
1998; Mazarati et al., 1998, 2000). Similar results were obtained
when SE was induced by perforant path stimulation (Mazarati
et al., 1998, 2004a).

The galanin receptor subtypes present in the hippocampus
have been investigated and both GalR1 and GalR2 are present
in relatively high levels (Lu et al., 2005b) with GalR1 mRNA in
CA-fields and GalR2-mRNA in the dentate gyrus (Burazin et al.,
2000). The involvement of GalR3 in hippocampus is still not well
characterized.

GalR1-KO mice displayed a more severe seizure phenotype
when SE is induced by either perforant path stimulation or Li-
pilocarpine exposure but not when induced by KA exposure
compared to WT (Mazarati et al., 2004b). Li-pilocarpine expo-
sure resulted in cell death in CA1, an effect that was elevated in
GalR1-KO mice (Mazarati et al., 2004b). Inbred mice with a lower
expression of GalR1 has a larger cell loss than wildtype littermates
in several hippocampal regions when exposed to KA (Kong et al.,
2008; Schauwecker, 2010) without any alteration in seizure para-
meters. Some studies has also reported that GalR1-KO mice exhibit
spontaneous epilepsy (Jacoby et al., 2002; Fetissov et al., 2003;
McColl et al., 2006) although other studies could not replicate this
phenotype (Mazarati et al., 2004b).

GalR2-KO mice display no difference in seizure susceptibil-
ity in two model of SE compared to WT (Gottsch et al., 2005). In
contrast to the knockout mice, application of a putative GalR2 spe-
cific ligand shorten the SSSE duration and decreased the seizure
density and seizure episodes in the perforant path stimulation
model, but not the duration of single seizure episodes (Mazarati
et al., 2004a). Similar effects were reported after addition peptide
nucleic antisense (PNA) oligonucleotide that mediated transient
downregulation of GalR2. PNA-treatment resulted in an increase
in the severity of SSSE after perforant path stimulation (Mazarati
et al., 2004a). Increased damage to hilar interneurons was also seen
after PNA-application (Mazarati et al., 2004a).

Acute administration of two systemically active non-selective
subtype galanin receptor agonists, galnon, and galmic, has been
shown to prevent self-sustained seizure activity (Saar et al.,
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2002; Bartfai et al., 2004) and penthylenetetrazole (PTZ)-induced
seizures (Saar et al., 2002). Galnon has shown to interact with
several other receptors (Florén et al., 2005), although the anti-
convulsant effect seems to be mediated via GalR1, as pretreatment
with a GalR1-specific PNA attenuates its anticonvulsant properties
(Saar et al., 2002).

In concordance with this, application of non-selective subtype
galanin receptor antagonists has been shown to worsen the sever-
ity of SE in several models, i.e., kainic acid-induced seizures (Reiss
et al., 2009), hippocampal kindling model (Kokaia et al., 2001),
self-sustained SE (SSSE), and PTZ-induced convulsions (Chep-
urnov et al., 1998; Mazarati et al., 1998, 2000; Saar et al., 2002).
A recent study showed that M15, a non-selective subtype galanin
receptor antagonist significantly induced cell death in several hip-
pocampal areas although no differences in the latency of onset or
duration of severe seizures were seen (Schauwecker, 2010).

Galanin-KO mice have a lower threshold for developing SE
after perforant path stimulation or KA exposure compared to
WT (Mazarati et al., 2000). Furthermore, Gal-KO mice displayed
a neuronal injury in the CA3-region that was not present in
WT littermates (Mazarati et al., 2000). In concordance with this,
Galanin-OE mice have a higher threshold for SE induced by either
perforant path stimulation or PTZ and KA exposure compared
to WT (Mazarati et al., 2000). Gal-OE mice have been shown to
be less affected during hippocampal kindling, a model for human
complex partial epilepsy (Kokaia et al., 2001).

Utilizing a recombinant adeno-associated viral (AAV) sys-
tem that overexpresses galanin resulted in a dramatic reduc-
tion in KA-induced seizure episodes and the total time spent
in seizures although no reduction of cell damage was seen (Lin
et al., 2003). The same vector delayed the initiation of convulsions
at generalized seizure stages and shortened the duration of

electrographic after discharges in rats undergoing hippocampal
kindling (Kanter-Schlifke et al., 2007). A similar AAV system that
overexpresses galanin together with the fibronectin secretory sig-
nal sequence succeeded to the attenuation of KA-induced seizures
and the neuronal death after KA exposure (Haberman et al., 2003).

A recent study showed that a GalR2 allosteric modulator
increased the latency to the first electrographic seizure, decrease
the total time in seizure and decreased the mortality in the
Li-pilocarpine SE-model (Lu et al., 2010).

Furthermore, acute administration of the systemically active
subtype galanin receptor agonist, Gal-B2, with a moderate GalR1
preferential binding, prevents seizures in the 6 Hz mouse model of
pharmacoresistant epilepsy (Bulaj et al., 2008). It was later shown
to be active also in other seizure and epilepsy models (White et al.,
2009). An analog with a moderate GalR2 preferential binding [N-
me, des-Sar]Gal-B2, also prevent seizure in the 6 Hz mouse model
(Robertson et al., 2010). The authors conclude that these GalR1-
and GalR2 preferential analogs (with 15 and 18 times selectivity,
respectively) exhibit similar levels of anticonvulsant activity in the
6 Hz mouse model.

In summary, the wide involvement of galanin family peptides
in physiological and pathological conditions has drawn attention
to this neuropeptide family. Among the earliest areas of interests
was the usage of galanin as a possible anticonvulsant.

Due to the three different galanin receptors specific expression
in the CNS, several attempts have been made trying to char-
acterize the contribution of each receptor and delineate their
effects. Unfortunately, more selective or specific ligands are still
needed.

Recent publications of stable peptide ligands have made new
administration routes available as well as attract attention from
the pharmaceutical industry.
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