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Retinoic acid-related orphan receptors RORα and RORγ play a regulatory role in
lipid/glucose homeostasis and various immune functions, and have been implicated
in metabolic syndrome and several inflammatory diseases. RORα-deficient mice are
protected against age- and diet-induced obesity, hepatosteatosis, and insulin resistance.
The resistance to hepatosteatosis in RORα-deficient mice is related to the reduced
expression of several genes regulating lipid synthesis, transport, and storage. Adipose
tissue-associated inflammation, which plays a critical role in the development of insulin
resistance, is considerably diminished in RORα-deficient mice as indicated by the reduced
infiltration of M1 macrophages and decreased expression of many proinflammatory genes.
Deficiency in RORγ also protects against diet-induced insulin resistance by a mechanism
that appears different from that in RORα deficiency. Recent studies indicated that RORs
provide an important link between the circadian clock machinery and its regulation of
metabolic genes and metabolic syndrome. As ligand-dependent transcription factors,
RORs may provide novel therapeutic targets in the management of obesity and associated
metabolic diseases, including hepatosteatosis, adipose tissue-associated inflammation,
and insulin resistance.
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INTRODUCTION
In the past 50 years, the occurrence of obesity has greatly increased
worldwide in both adults and children and has become a major
health-care concern in many countries. In the United States 30%
of the population is considered obese, while more than 66% of
adults and almost 17% of children and adolescents are overweight
(Browning et al., 2004; Ogden et al., 2012). Obesity is associated
with an increased risk of several pathologies, including type 2 dia-
betes, cardiovascular disease, and non-alcoholic fatty liver disease
(NAFLD). Accumulating evidence indicates that networks regu-
lating lipid metabolism and inflammation are highly integrated
and play a critical role in the development of these pathologies
(Hotamisligil, 2006; Donath and Shoelson, 2011; Ouchi et al.,
2011; Glass and Olefsky, 2012). Obesity leads to a systemic state
of low-grade inflammation, particularly involving adipose tissue,
that is causally involved in the development of insulin resis-
tance and other diseases. Blood levels of free fatty acids (FFA)
are elevated in obesity and through their interaction with Toll-
like receptor 4 (TLR4) FFA induce proinflammatory pathways in
macrophages and other cell types that may promote insulin resis-
tance (Samuel and Shulman, 2012). Recent studies demonstrated
that retinoic acid-related orphan receptors (RORs) are among
many factors that through their modulation of immune responses
and lipid/glucose homeostasis regulate the development of inflam-
mation, metabolic syndrome, and insulin resistance (Jetten, 2009;
Solt and Burris, 2012).

RORα AND γ PROTEINS
The RORs alpha, beta, and gamma (RORα–γ or NR1F1–3)
constitute a subfamily of nuclear receptors that function as ligand-
dependent transcription factors (Jetten, 2004, 2009; Solt and
Burris, 2012). RORs exhibit a domain structure typical of nuclear
receptors and contain an N-terminal domain, the function of
which has not yet been clearly defined, a highly conserved DNA-
binding domain (DBD) consisting of two zinc finger motifs, a LBD,
and a hinge domain spacing the DBD and LBD. By using differ-
ent promoters and/or alternative splicing each ROR gene produces
several isoforms that vary only in their N-terminal region. Some of
these isoforms exhibit a distinct tissue-specific pattern of expres-
sion and control different genes and biological processes. RORs
regulate transcription by binding as monomers to ROR response
elements (RORE), which consist of the core sequence “AGGTCA”
preceded by an A/T-rich sequence, in the regulatory region of
target genes. The activation function (AF-2), localized at the C-
terminus within the LBD of RORs, is involved in the recruitment
of co-activators or co-repressors that mediate the transcriptional
activation or repression by RORs. Recent studies have identified a
number of (ant)agonists that interact with the LBD of ROR and
either activate or inhibit ROR transcriptional activity (Kallen et al.,
2002; Huh and Littman, 2012; Solt and Burris, 2012). Interaction
with agonists induces a conformational change in the LBD that
allows release of the co-repressor complex and promotes assem-
bly of a co-activator complex that mediates the transcriptional
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activation by ROR, while the inverse happens for antagonists.
These observations not only indicated that RORs function as
ligand-dependent transcription factors, but also suggested that
RORs might be potential therapeutic targets to treat disease.

RORs AS REGULATORS OF SEVERAL IMMUNE PROCESSES
RORα and RORγ are important regulators of several diverse
immune functions. RORγ-deficient mice lack lymph nodes and
Peyer’s patches indicating that it is essential for lymph node devel-
opment (Kurebayashi et al., 2000; Sun et al., 2000). Recent studies
demonstrated that RORα and the RORγt isoform play a key role in
T cell lineage determination (Ivanov et al., 2006; Yang et al., 2008;
Jetten, 2009). The RORγt isoform in particular and to a lesser
extent RORα, is required for the differentiation of naïve T cells
into interleukin 17 (IL-17) producing T helper 17 (Th17) cells.
IL-17A expression is directly regulated by RORs through their
interaction with ROREs in the Il17 promoter (Yang et al., 2008).
Proinflammatory Th17 cells and IL-17 have been implicated in
several autoimmune diseases and other inflammatory disorders.
Deficiency in RORγt or both RORα/γ receptors has been shown to
greatly inhibit the generation of Th17 cells and the development
of experimental encephalomyelitis in mice. In addition, mice defi-
cient in RORα or RORγ displayed a diminished susceptibility to
allergen-induced lung inflammation and collagen-induced arthri-
tis (Jaradat et al., 2006; Tilley et al., 2007) and polymorphisms
in RORα have been associated with increased susceptibility to
asthma (Ramasamy et al., 2012). A recent study identified a role for
RORα in the generation of natural helper (NH) cells (Halim et al.,
2012). RORα-deficient, but not RORγ-deficient, mice lack NH
cells. NH cell-deficient mice generated by RORα-deficient bone
marrow transplantation exhibited normal Th2 cell responses, but
failed to develop acute lung inflammation in response to a pro-
tease allergen. These findings might at least in part explain the
reduced susceptibility to allergen-induced lung inflammation in
RORα-deficient mice (Jaradat et al., 2006).

An increased Th17 response has been reported to correlate
with white adipose tissue (WAT)-associated inflammation and
the development of insulin resistance in obese mice and patients
(Ahmed and Gaffen, 2010; Bertola et al., 2012). Whether inhibition
of Th17 differentiation plays a role in the protection RORα- and
RORγ-deficient mice against diet-induced insulin resistance needs
further study. RORα or RORγ have also been implicated in the
regulation of thymopoiesis. Loss of RORγt results in accelerated
apoptosis of double-positive thymocytes, while RORα deficiency
significantly reduces the generation of single positive thymocytes
( Kurebayashi et al., 2000; Sun et al., 2000; Dzhagalov et al., 2004).

RORα IN DIET- AND AGE-INDUCED OBESITY
Study of Staggerer (RORαsg/sg ) mice, a natural mutant strain con-
taining a deletion in the RORα gene that results in loss of RORα

expression, indicated that RORα plays a critical role in the control
of lipid metabolism and the development of various aspects of
metabolic syndrome. These investigations showed that RORαsg/sg

mice are protected against age- and diet-induced obesity and the
development of several obesity-linked pathologies, including adi-
pose tissue-associated inflammation, hepatosteatosis, and insulin
resistance (Kang et al., 2011; Lau et al., 2011). RORαsg/sg mice

fed a high fat diet (HFD) gain relatively less weight and exhibit
a significantly lower total body fat index compared to wild-type
(WT) littermates on a HFD. Similarly, male RORαsg/sg mice were
also protected against age-induced obesity. Adipose tissue is the
main site of storage of excess energy that is stored in the form of
triglycerides in single large lipid droplets. The reduced adiposity
in RORαsg/sg mice was largely related to smaller adipocyte size due
to diminished deposition of triglycerides.

RORα, particularly the RORα4 isoform, has been shown to be
highly expressed in WAT and to be induced during differentiation
of D1 and 3T3-L1 preadipocytes (Austin et al., 1998). Overexpres-
sion of RORα in preadipocytes inhibits adipocyte differentiation
(Duez et al., 2009; Ohoka et al., 2009). This appears to be mediated
through a direct interaction of RORα with CCAAT/enhancer-
binding protein β (C/EBPβ) that results in the inhibition of the
recruitment of the co-activator CBP and repression of C/EBPβ

transcriptional activity. These studies suggest that RORα has a
negative regulatory role in adipocyte differentiation. This func-
tion, however, does not explain the reduced adiposity observed in
RORα-deficient mice.

Obesity is a consequence of an imbalance between energy
intake and expenditure (Glass and Olefsky, 2012; Samuel and
Shulman, 2012). However, the decrease in diet-induced adipos-
ity in RORαsg/sg mice was found not to be due to reduced food
intake or increased fecal lipid excretion. Indirect calorimetric
analysis showed that VO2, VCO2, and heat generation were signif-
icantly enhanced in RORαsg/sg mice on a HFD (Kang et al., 2011).
This suggested that elevated energy expenditure might at least in
part be responsible for the reduced weight gain and resistance to
hepatosteatosis and insulin insensitivity in RORαsg/sg mice.

RORα AND WAT-ASSOCIATED INFLAMMATION
In addition to functioning as the main site of storage of extra
energy in the form of triglycerides derived from food intake, white
adipocytes produce a variety of endocrine hormones, including
leptin, adiponectin, resistin, and retinol-binding protein 4 (RBP-
4) which regulate food intake, lipid metabolism, and inflammation
(Hotamisligil, 2006; Guilherme et al., 2008; Glass and Olefsky,
2012). Leptin and adiponectin promote insulin sensitivity, while
resistin and RBP4 have the opposite effect and impair insulin
sensitivity. It is now well-recognized that obesity is associated
with a chronic state of low grade, systemic inflammation and
that this is an important contributory factor in the development
of insulin resistance (Hotamisligil, 2006; Odegaard and Chawla,
2008; Nishimura et al., 2009; Glass and Olefsky, 2012). Progres-
sive infiltration of various immune cells, including macrophages
and CD8+ effector T lymphocytes, in WAT lead to increased
release of proinflammatory cyto- and chemokines. In addi-
tion to the accumulation of bone marrow-derived macrophages,
there is also a shift from anti-inflammatory “alternatively acti-
vated” (CD11c−CD206+) M2 macrophages to proinflammatory
“classically activated” (CD11c+CD206−) M1 macrophages (Sun
et al., 2011; Glass and Olefsky, 2012), which in advanced obesity
aggregate into crown-like structures (CLS) surrounding necrotic
adipocytes. Recent studies indicated that CD8+ T cells are criti-
cal in promoting recruitment of macrophages in WAT in obesity
(Weisberg et al., 2003; Odegaard and Chawla, 2008; Nishimura
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et al., 2009). In addition, a reduction in anti-inflammatory
T regulatory (Treg) cells and an increase in proinflammatory
Th17 response further stimulate WAT-associated inflammation
(Figure 1).

Deficiency of RORα greatly inhibits diet-induced adipose
tissue-associated inflammation in mice (Kang et al., 2011; Lau
et al., 2011). This is indicated by the greatly reduced infiltration
of macrophages and CD8+ T lymphocytes in WAT of RORαsg/sg

mice fed a HFD. This was further supported by the significant
reduction in the formation of CLS and the expression of sev-
eral macrophage markers, such as F4/80, Mac-2, macrophage
expressed 1 (Mpeg1), and macrophage scavenger receptor 1
(Msr1), in WAT of RORαsg/sg mice. Moreover, the relative per-
centage of proinflammatory M1 macrophages was significantly
diminished in RORαsg/sg WAT. This was supported by flow cyto-
metric analysis and the much lower levels of Cd11c expression.
The reduced inflammation in RORαsg/sg WAT is further indicated
by gene expression profiling showing a greatly reduced expres-
sion of a large number of chemokines, including Ccl2, Ccl8, Ccl3,
and Ccl7, the chemokine receptors Ccr3, Ccr5, and Ccr7, the
proinflammatory cytokines Tnfα and IL-6, the interleukin 1 recep-
tor antagonist (Il1rn), osteopontin (Opn), CD44, serum amyloid
3 (Saa3), and several TLRs and metalloproteinases in WAT of
RORαsg/sg mice compared to their WT counterparts (Kang et al.,
2011). The expression of these genes has been reported to be ele-
vated in obesity and many of these genes have been implicated in
obesity-induced inflammation in WAT as well as insulin resistance.
For example, both the CCL2/CCR2 and CCL3/CCR5 pathways

have been reported to promote recruitment of macrophages in
adipose tissue (Kanda et al., 2006; Kitade et al., 2012). CD44, a
multifunctional cell membrane protein that acts as a receptor
for hyaluronan and Opn, has been shown to regulate migra-
tion of macrophages and neutrophils (Johnson and Ruffell, 2009).
CD44 and Opn null mice are protected against the development
of HFD-induced hepatosteatosis, WAT-associated inflammation,
and insulin resistance (Nomiyama et al., 2007; Bertola et al., 2009;
Kiefer et al., 2011; Kodama et al., 2012). These observations suggest
that suppression of several proinflammatory genes and pathways
in RORαsg/sg WAT is causally linked to the reduced inflammation
(Figure 1). Future studies have to determine what the primary
effects are by which RORα regulate the expression of these genes.

RORα AND HEPATOSTEATOSIS
Obesity is associated with increased prevalence of NAFLD, which
is characterized by elevated lipid accumulation in hepatocytes
(Fabbrini et al., 2010). NAFLD develops when the rate of fatty
acid uptake and synthesis and subsequent esterification to triglyc-
erides is greater than the rate of fatty acid oxidation and secretion.
Advanced NAFLD progresses into increased inflammation and
hepatotoxicity. Several studies showed that compared to WT mice
hepatic triglyceride levels are considerably reduced in RORαsg/sg

mice fed a HFD or aging male RORαsg/sg mice (Raspe et al., 2001;
Lau et al., 2008; Kang et al., 2011). These observations indicated
that RORαsg/sg mice are protected against the development of
age- and diet-induced hepatosteatosis. Gene expression profiling
revealed that the expression of a number of lipogenic genes was

FIGURE 1 | RORα functions as a positive regulator of hepatosteatosis,

WAT-associated inflammation, and insulin-resistance in diet- and

age-induced obesity. Loss of RORα inhibits the hepatic expression of

lipogenic genes and suppresses the expression of proinflammatory genes
and the infiltration of macrophages in WAT, and as a result protects against
these pathologies.
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significantly reduced in the liver of RORαsg/sg mice fed a HFD.
Expression of Srebp-1c and fatty acid synthase (Fas), key regu-
lators for lipogenesis, was reduced in liver of RORαsg/sg mice.
In addition, the expression of several genes involved in the main
pathway of triglyceride synthesis, including glycerol-3-phosphate
acyltransferase (Gpam or Gpat1) and acyl-glycerol-3-phosphate
acyltransferase 9 (Agpat9) and Mogat1, which is part of an
alternative pathway of triglyceride synthesis, were significantly
diminished in RORαsg/sg liver (Kang et al., 2011). The hepatic
expression of the cell death-inducing DFFA-like effectors a and
c (Cidea and Cidec) and perilipin 2 (Plin2 or Adfp), which play
a critical role in the regulation of lipid storage, lipid droplet for-
mation, and lipolysis (Gong et al., 2009; Greenberg et al., 2011),
was also suppressed in RORα-deficient mice. RORα has been
reported to activate Plin2 transcription directly through inter-
action with ROREs in the Plin2 promoter (Kang et al., 2011).
Recently, the expression of fibroblast growth factor (Fgf21), an
important regulator of lipid/glucose metabolism, was found to be
directly regulated by RORα in hepatocytes (Wang et al., 2010c).
Together these observations suggest that the protection against
hepatosteatosis in RORαsg/sg mice is related to reduced expression
of many genes involved in promoting lipogenesis and triglyc-
eride storage, some of which are directly regulated by RORα

(Figure 1).

RORα AND INSULIN RESISTANCE
Both adipose-associated inflammation and hepatosteatosis have
been linked to the pathogenesis of insulin resistance in obesity
(Guilherme et al., 2008; Donath and Shoelson, 2011; Samuel and
Shulman, 2012), although a cause-effect relationship not always
exists between hepatosteatosis and diabetes (Sun and Lazar, 2013).
The phenotypic differences observed between WT and RORαsg/sg

mice fed a HFD are consistent with this correlation. RORαsg/sg

mice, which are protected against obesity, hepatosteatosis, and
WAT-associated inflammation, exhibited a significantly reduced
susceptibility to diet-induced insulin resistance and glucose intol-
erance compared to obese WT mice (Lau et al., 2008; Kang et al.,
2011). In humans, two studies have revealed a connection between
RORα, obesity, and type 2 diabetes. A rearrangement result-
ing in disruption of human RORα1 was found to be associated
with severe obesity (Klar et al., 2005), while a recent GWAS study
showed an association between a single nucleotide polymorphism
in RORα (rs7164773) and increased risk for type 2 diabetes in the
Mexico Mestizo population (Gamboa-Melendez et al., 2012).

Many inflammatory and lipogenic genes, including Plin2, Il1rn,
Opn, CD44, and Cidec, that are down-regulated in RORαsg/sg mice
have been reported to also regulate insulin sensitivity. Plin2 null
mice displayed reduced hepatic lipid accumulation and improved
insulin sensitivity and glucose tolerance in an ob/ob background
(Chang et al., 2010). Il1rn, one of the genes most dramatically
repressed in WAT of RORαsg/sg mice (Kang et al., 2011), has been
reported to be highly up-regulated in WAT of obese humans and
to regulate insulin sensitivity (Juge-Aubry et al., 2003; Somm et al.,
2006). Similarly, Opn expression was found to be elevated in obe-
sity, while Opn deficiency was shown to inhibit obesity-induced
inflammation and insulin resistance (Bertola et al., 2009; Kiefer
et al., 2011). Deficiency in CD44, a receptor for Opn, also results

in improved insulin sensitivity (Kodama et al., 2012) suggesting
a role for the Opn/CD44 pathway in the control of insulin sen-
sitivity. Mice deficient in Cidea or Cidec, which play a role in
lipid storage, are protected from diet-induced obesity and display
improved insulin sensitivity (Gong et al., 2009). Thus, the down-
regulation of several genes, including Plin2, Il1rn, Opn, CD44,
and Cidec in RORαsg/sg mice may collaboratively be responsi-
ble for the improved insulin sensitivity through their interrelated
effects on inflammation, adipogenesis, and lipid homeostasis
(Figure 1).

In addition to adipose tissue and liver, the pancreas and the
skeletal muscle also play important roles in energy homeostasis
and insulin resistance. The pancreatic islets produce a number
of hormones, including insulin and glucagon, that are critical in
the regulation of lipid and glucose homeostasis (Saltiel and Kahn,
2001; Cryer, 2012). RORα was shown to be selectively expressed in
the glucagon-producing alpha cells; however, its role in these cells
and its relationship to the phenotype observed in RORα-deficient
mice needs yet to be established (Mühlbauer et al., 2013). In skele-
tal muscle, RORα has been reported to regulate the expression of
a number of genes involved in lipid and carbohydrate metabolism
(Lau et al., 2011). Ectopic expression of an RORα mutant in skele-
tal muscle C2C12 cells reduced the expression of the lipogenic
genes, sterol regulatory element-binding transcription factor 1
(Srebp1), Fas, and stearoyl-CoA desaturase 1 (Scd1), and genes
involved in cholesterol efflux, such as ATP-binding cassette, sub-
family A, member 1 (Abca1). Caveolin-3 (Cav3) and carnitine
palmitoyltransferase-1 (Cpt1) were found to be directly regulated
by RORα. Changes in the expression of these genes may be in part
responsible for the modulation of lipid and glucose homeostasis
by RORα.

In muscle, insulin stimulates glucose uptake by stimulating
the translocation of Glut4 (Slc2a4) to the plasma membrane
(Rose and Richter, 2005). This involves phosphorylation of the
insulin receptor substrate 1 (IRS1), which leads to the activation
of phosphatidylinositol 3-kinase (PI3K) and subsequently AKT,
which then promotes Glut4 translocation. Recently, evidence was
provided for a role of RORα in PI3K-Akt signaling (Lau et al.,
2011). Akt1/2 expression was up-regulated in skeletal muscle of
RORαsg/sg mice and this correlated with an increase in the level
of insulin-induced Akt phosphorylation, Glut4 expression, and
glucose uptake. This stimulation in Akt signaling might at least
in part account for the improved insulin sensitivity observed in
RORαsg/sg mice.

RORγ1 AND INSULIN SENSITIVITY
The RORγ gene generates two different isoforms, RORγ1 and
RORγt (RORγ2), that are expressed in a highly tissue-specific
manner (Jetten, 2009). Expression of the RORγ1 isoform is
restricted to several peripheral tissues, including liver, adipose tis-
sue, kidney, small intestines, pancreas, and skeletal muscle. Recent
studies identified RORγ1 as a negative regulator of adipocyte
differentiation and a modulator of obesity-associated insulin resis-
tance (Meissburger et al., 2011; Tinahones et al., 2012). In obese
RORγ −/− mice, the number of adipocytes was increased (hyper-
plasia), while adipocyte size was reduced. Fasting blood insulin
levels were shown to be significantly lower in diet-induced obese
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RORγ −/− mice and in RORγ −/−ob/ob double knockout mice
and mice displayed improved insulin sensitivity. In addition,
RORγ −/− adipocytes were highly insulin sensitive leading to
improved control of circulating FFA. These observations are con-
sistent with a recent study showing that, opposed to adipose
hypertrophy, obese patients with adipose tissue hyperplasia (many
small adipocytes) exhibit better glucose and lipid profiles and
might be less susceptible to developing insulin resistance (Hoffst-
edt et al., 2010) and with data showing that in human patients the
level of RORγ 1 expression positively correlated with adipocyte size
and insulin resistance (Meissburger et al., 2011; Tinahones et al.,
2012). Up to now, no association has been established between
RORγ polymorphisms and susceptibility to insulin resistance in
humans. However, in cattle, a single polynucleotide polymor-
phism in RORγ has been linked to increased adiposity (Barendse
et al., 2007). These observations suggest that the loss or potentially
the inhibition of RORγ1 might protect against insulin resistance
and type 2 diabetes.

In addition to adipose tissue, regulation of lipid and glucose
metabolism in other tissues, including liver, pancreas, and skele-
tal muscle might be part of the mechanism by which by RORγ

modulates insulin sensitivity. In skeletal muscle, RORγ has been
reported to regulate the expression of genes associated with lipid
and carbohydrate metabolism as well as the production of reac-
tive oxygen species (Raichur et al., 2007). A recent study revealed
that RORγ was selectively expressed in insulin-producing pan-
creatic β cells; however, its role in β cells and how this relates
to the modulation of insulin sensitivity by RORγ has yet to be
established (Mühlbauer et al., 2013). Further study is required
to understand the modulation of lipid/glucose homeostasis and
insulin sensitivity by RORγ.

CONNECTION BETWEEN RORs, CIRCADIAN RHYTHM, AND
METABOLIC SYNDROME
It has been well established that many behavioral and physio-
logical activities display circadian rhythms that are regulated by
endogenous clocks (Asher and Schibler, 2011; Bass, 2012; Mohawk
et al., 2012). At the molecular level the clockwork consists of
an integral network of several interlocking positive and negative
transcriptional and translational feedback loops that include the
transcriptional regulators brain and muscle ARNT-like 1 (Bmal1),
neuronal PAS domain protein 2 (Npas2), circadian locomotor out-
put cycles kaput (Clock), two cryptochrome proteins (Cry1, 2), the
nuclear receptors Rev-erbα and -β, E4 promoter-binding protein
4 (E4bp4), and three period proteins (Per1-3).

Accumulating evidence suggests that disruption of circadian
rhythm is closely associated with several pathologies, including
sleep disorders, cancer and metabolic syndrome (Maury et al.,
2010). Recent studies have established a strong link between
the circadian clock machinery and the regulation of a number
of metabolic pathways (Asher and Schibler, 2011; Bass, 2012).
Bmal1, Clock, and Cry1 have been implicated in the regulation
of glucose homeostasis and dysfunction in these proteins lead to
impaired glucose tolerance (Rudic et al., 2004; Zhang et al., 2010).
Hepatic overexpression of Cry1 has been reported to improve
insulin-sensitivity in insulin-resistant db/db mice (Zhang et al.,
2010). In addition, circadian oscillator components, such as Cry1,

have been implicated in the regulation of immune responses
(Castanon-Cervantes et al., 2010; Logan and Sarkar, 2012; Narasi-
mamurthy et al., 2012). In Cry1−/−Cry2−/− cells, NF-κB and
protein kinase A (PKA) signaling pathways are constitutively acti-
vated resulting in elevated levels of circulating TNFα, Il-1β, and
Il-6 (Narasimamurthy et al., 2012).

A number of studies demonstrated that RORs play a role in the
modulation of circadian behavior and clock gene expression ( Sato
et al., 2004; Ueda et al., 2005; Duez and Staels, 2010; Figure 2).
Bmal1, Npas2, E4bp4, and Cry1 transcription are directly regu-
lated by RORγ and RORα in several peripheral tissues through
their interaction with ROREs in their regulatory regions (Crumb-
ley et al., 2010; Takeda et al., 2011, 2012). RORγ1 appears to be the
major ROR isotype modulating the circadian expression of clock
genes in peripheral tissues. RORγ1 itself exhibits a strong oscilla-
tory pattern of expression in several peripheral tissues, including
kidney, liver, pancreas, and adipose tissue, while RORα exhibits
only a weak circadian expression pattern (Mongrain et al., 2008;
Takeda et al., 2012; Mühlbauer et al., 2013). The RORγ1 gene is
directly regulated by Bmal1/Clock heterodimers which interact
with two successive E-boxes in the RORγ1 promoter (Mongrain
et al., 2008; Takeda et al., 2012). Recent studies have suggested that
RORγ1 and RORα might provide a link between the clock machin-
ery and their regulation of metabolic genes (Takeda et al., 2012;
Figure 2). Data demonstrating that the circadian pattern of expres-
sion of a number of metabolic genes are regulated by clock proteins
and RORs and observations showing that circadian expression
of RORγ1 is controlled by the clock machinery suggested that
RORs might function as downstream mediators in the mechanism
by which clock proteins regulate the circadian expression of

FIGURE 2 | In peripheral tissues, RORs function as intermediate

regulators providing a link between clock proteins and their regulation

of lipid and glucose metabolism. The oscillatory pattern of expression of
RORγ is regulated by circadian clock proteins Bmal1 and Clock or Npas2
through E-box, whereas RORα does not exhibit a strong oscillatory pattern
of expression. In turn, RORγ activates expression of several clock genes
through ROREs together with RORα. Both RORα and RORγ regulate the
circadian pattern of expression of target genes involved in lipid/glucose
metabolism. ROR (ant)agonists may modulate the amplitude of peripheral
clock oscillation of these metabolic outputs and might be useful in the
treatment of insulin resistance, obesity, and tissue inflammation.
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metabolic genes (Sato et al., 2004; Akashi and Takumi, 2005;
Guillaumond et al., 2005; Ueda et al., 2005; Crumbley et al.,
2010; Duez and Staels, 2010; Takeda et al., 2011, 2012). This is
supported by observations showing that RORs regulate the cir-
cadian pattern of expression of a number of genes involved in
the lipid/glucose homeostasis, including Plin2, sulfotransferase
Sul1E1, the vasopressin receptor Avpr1a, and citrate synthase (CS),
which exhibit roles in lipogenesis, glycogenolysis, and/or choles-
terogenesis (Kang et al., 2007; Crumbley et al., 2012; Takeda et al.,
2012). Thus, RORs appear to be part of the mechanism that links
the circadian clock to its regulation of lipid/glucose homeostasis,
inflammation, and insulin resistance (Figure 2).

RORs AS THERAPEUTIC TARGETS FOR METABOLIC
SYNDROME AND INSULIN RESISTANCE
X-ray crystallography studies of the LBD of RORα identified
the presence of cholesterol in the ligand-binding pocket of
RORα (Kallen et al., 2002). Subsequent studies identified choles-
terol sulfate, 7-dehydrocholesterol, and 25-hydroxycholesterol
as RORα agonists (Kallen et al., 2004). All-trans retinoic acid
and the synthetic retinoid, ALRT 1550 were reported to
bind and function as antagonists for RORβ and RORγ, but
not RORα (Stehlin-Gaon et al., 2003). Recently, ursolic acid
and several oxygenated sterols, including 7α-hydroxycholesterol
(7α-OHC), 7β-hydroxycholesterol, 7-ketocholesterol, and 24S-
hydroxycholesterol, were shown to function as inverse agonists
to both RORα and RORγ (Wang et al., 2010a; Xu et al., 2011),
while 20α-hydroxycholesterol and 22R-hydroxycholesterol acted
as agonists (Jin et al., 2010). The LXR agonist T0901317 and
several other synthetic derivatives, including SR1001, were iden-
tified as RORα and RORγ inverse agonists. Digoxin and several
derivatives were identified as specific inhibitors for RORγ tran-
scriptional activity (Fujita-Sato et al., 2011; Huh et al., 2011).
The ROR (inverse) antagonists have been reported to repress
the expression of ROR target genes and the activation of their
promoter regulatory region by inhibiting the recruitment of co-
activators. Moreover, ROR antagonists have been shown to inhibit
Th17 cell differentiation and IL-17 production both in vitro
and in vivo and to suppress the development of experimental
autoimmune encephalomyelitis (Huh et al., 2011; Jetten, 2011;

Solt et al., 2011). Therefore, antagonists for RORγ might be
potential drugs for pharmacological intervention in the treat-
ment and suppression of several autoimmune diseases, includ-
ing multiple sclerosis, collagen-induced arthritis, rheumatoid
arthritis, and asthma (Solt et al., 2010; Huh and Littman,
2012). Because of their role in regulating various features of
metabolic syndrome, RORα and γ antagonists might also have
beneficial effects in the management of obesity and insulin
resistance.

SUMMARY
The study of ROR-deficient mice has clearly demonstrated that
RORα and RORγ are important in several physiological pro-
cesses, including the regulation of several immune responses,
lipid/glucose homeostasis, and circadian rhythm. These studies
revealed that loss of RORα protects against the development of
diet- and age-induced obesity, hepatosteatosis, glucose intoler-
ance, and insulin resistance, while loss of RORγ protects against
insulin resistance. These protective effects have been linked to
suppression of the expression of multiple proinflammatory and
metabolic genes. RORs regulate expression of some of these
genes directly by binding ROREs in their regulatory region and
in certain cases involves changes in their circadian pattern of
expression. Although much progress has been made, what event
or which ROR target genes are the primary driving force by which
RORs influences WAT-associated inflammation, hepatosteatosis,
and insulin resistance needs further study. With the increas-
ing evidence for an interrelationship between the controls of
lipid/glucose metabolism, inflammation and circadian rhythm,
RORs might functions as intermediaries between the controls.
With the discovery of ROR antagonists, RORs may provide a
novel therapeutic target in the management of various aspect of
metabolic syndrome.
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