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Neurotensin (NT) is a tridecapeptide that is found in the central nervous system (CNS) and
the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone
in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems
including dopaminergic, sertonergic, GABAergic, glutamatergic, and cholinergic systems.
Due to its association with such a wide variety of neurotransmitters, NT has been impli-
cated in the pathophysiology of several CNS disorders such as schizophrenia, drug abuse,
Parkinson’s disease (PD), pain, central control of blood pressure, eating disorders, as well
as, cancer and inflammation. The present review will focus on the role that NT and its
analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and PD.
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INTRODUCTION
Neurotensin (NT) is a 13 amino acid neuropeptide (pGlu-Leu-
Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu) that was first iso-
lated from bovine hypothalamus by Carraway and Leeman (1973).
It is abundant in gastrointestinal tract where it plays a role in gut
motility. NT has also been detected in peripheral organs includ-
ing: heart, liver, lung, pancreas, spleen, and small intestine. It is a
paracrine and endocrine modulator of the cardiovascular system
and of the digestive tract and acts as a growth factor on a variety of
normal and cancerous cells. In addition, NT is widely distributed
in the central nervous system (CNS), with the highest concentra-
tion in the amygdala, lateral septum, ventral tegmental area (VTA),
and substantia nigra (SN).

In brain, NT plays a role in naloxone-independent antinocicep-
tion (Clineschmidt et al., 1979), hypothermia (Bissette et al., 1976),
control of anterior pituitary hormone secretion, and muscle relax-
ation (Kitabgi et al., 1992). NT also controls central blood pressure,
and inflammation (St-Gelais et al., 2006 for review). The physi-
ological functions of NT have been recently reviewed (Mustain
et al., 2011).

Many literature reviews have presented the basic role of brain
NT through its relationship with dopaminergic mesotelencephalic
projection system and its modulating glutamatergic transmission
and other signals (Seutin, 2005; Boules et al., 2006; Antonelli et al.,
2007; Ferraro et al., 2008). The current review discusses the poten-
tial clinical function of NT and the potential clinical use of its
analogs as novel therapy for neuropsychiatric disorders such as
schizophrenia, addiction, Parkinson’s disease (PD), and pain.

NEUROTENSIN RECEPTORS
Neurotensin mediates its effects through three NT receptors
(NTRs), the high affinity NTS1, the low affinity NTS2, and
NTS3. Both NTS1 and NTS2 are G-protein coupled receptors,
with seven-transmembrane domain. NTS1, the most studied
NTR, is expressed in both neurons and glial cells and is broadly

distributed in the CNS including medial septal nucleus, nucleus
basalis magnocellularis, suprachiasmatic nucleus, SN, and VTA
(Elde et al., 1990) as well as small dorsal root ganglion neu-
rons of the spinal cord (Zhang et al., 1995). Activation of NTS1
induces excitatory effect through G-proteins, resulting in intra-
cellular calcium influx. In turn, there is increased intracellular
levels of cAMP, cGMP, and IP3; and increased activities of PLC,
PKC, and Na+/K+-ATPase (Gilbert and Richelson, 1984; Watson
et al., 1992; Yamada and Richelson, 1993; Hermans et al., 1994;
Slusher et al., 1994; Poinot-Chazel et al., 1996; Lopez Ordieres and
Rodriguez de Lores Arnaiz, 2000; Trudeau, 2000). NTS1 has a close
association with dopaminergic and glutamatergic systems.

A high density of NTS1 receptors is co-localized with dopamine
(DA) neurons in the ventral mesencephalon (Brouard et al., 1992;
Nicot et al., 1995; Boudin et al., 1998). NT antagonizes DA effects
at D2 receptors via NTS1/D2 receptor–receptor interaction (Jiang
et al., 1994; Farkas et al., 1996). Several studies suggested that
NTS1 receptors on mesencephalic DA neurons play an important
role in sensitization to psychostimulant drugs and drug addic-
tion (Binder et al., 2001a; Berod and Rostene, 2002; Panayi et al.,
2005). Our recent work shows that (1) NTS1 knockout mice
(NTS1−/−) mice are spontaneously hyperactive and more sensitive
to d-amphetamine-induced hyperactivity (Liang et al., 2010); (2)
NTS1−/− mice have higher basal levels of DA and higher levels of
amphetamine-induced DA release in striatum as compared with
results for WT mice (Liang et al., 2010); and (3) NTS1−/− have
abnormal D2/D1 ratio in striatum (Liang et al., 2010), leading
to a decrease of d-amphetamine-induced glutamate and GABA
release in striatum (Li et al., 2010b). The results suggest that NTS1
through possible modulation of DA receptor plays an important
role in the dysregulation of striatal DA function which is thought
to be secondary to a glutamate deficiency in schizophrenia through
possible modulation of DA receptor. Additionally, a possible inter-
action between NTS1 and D1 receptor in medial prefrontal cortex
(mPFC) has been proposed in one of our recent studies (Li et al.,
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2010c). The same work also shows that there are significantly lower
basal glutamate levels and lower density of N -methyl-d-aspartate
(NMDA) receptor 2A subunit in the mPFC of NTS1 null mice as
compared with results for WT mice (Li et al., 2010c). These data
are consistent with the hypothesis that NTS1 is involved with the
pathophysiology of the hypofunction of the glutamatergic system
in schizophrenia.

The relationship between NTS1 and glutamatergic system has
been investigated by Antonelli’s group for years. Activation of
NTS1 promotes and reinforces endogenous glutamate signaling
in discrete brain regions by increasing the activation of PKC and
leading to phosphorylation of the NMDA receptor. NTS1 recep-
tors are highly expressed in nigro-striatal dopaminergic neurons,
which degenerate in PD. It has been hypothesized (Antonelli et al.,
2007) that in Parkinson’s patients, possible elevated NT levels
in the basal ganglia cause the NTS1 enhancement of excitotoxic
glutamate signaling contributing to the DA neuron neurodegen-
eration in SN. However, paradoxically, NT or an NTS1 agonist
has antiparkinson-like effect (Jolicoeur et al., 1991; Boules et al.,
2001b). The discrepancy is likely due to different routes and time
course of administration: local infusion in the striatum or SN
for 60 min versus acute systemic i.p. administration. We have dis-
cussed previously that the effects of a NTR agonist given outside
the brain cannot be predicted from studies in which a NTR agonist
is injected into discrete areas of the brain (Richelson et al., 2003).
Both groups agree that there is a critical role for NTS1 in PD.

NTS2 is localized mainly in the olfactory system, the cerebral
and cerebellar cortices, the hippocampal formation, and selective
hypothalamic nuclei, VTA, and SN. Importantly, strong expres-
sion of NTS2 receptors is in the areas related to pain, namely, the
periaqueductal gray (PAG) and the rostral ventrolateral medulla
(RVLM). Local administration of NT into the PAG and RVLM
induces opioid-independent analgesia (Behbehani, 1992) through
non-NTS1 dependent mechanisms (Dubuc et al., 1994). Anti-
sense oligonucleotide knockdown of NTS2 receptor significantly
decreases NT-induced analgesia, while oligodeoxynucleotides
against NTS1 had no effect in this regard. These results are also
supported by recent data from NT (Remaury et al., 2002) and the
NTS2 receptor-selective agonist NT79 (Boules et al., 2010). Taken
together it suggests that NTS2 plays an important role in pain.

NTS3/sortilin is a single transmembrane amino acid recep-
tor, structurally unrelated to either NTS1 or NTS2. Its mRNA
is expressed throughout the brain with high levels of expres-
sion in the SN, hippocampal formation, supraoptic nucleus, pir-
iform and cerebral cortices, and medial and lateral septal nuclei
(Mazella, 2001; Sarret et al., 2003). NTS3/sortilin participates in
the modulation of NT intracellular sorting (hence the name “sor-
tilin”) and signaling processes (Sarret et al., 2003) and has been
associated with the phosphatidylinositol 3-kinase and mitogen-
activated protein kinase pathways in glial cells (Martin et al., 2003).
NTS3/sortilin has been implicated in cell death in responsive cells
including neurons. This is thought to be due to the ability of
NTS3/sortilin to bind the unprocessed form of nerve growth fac-
tor (proNGF) (Nykjaer et al., 2004). Additionally, SorLA/LR11, a
mosaic protein of the vacuolar protein sorting 10 protein (Vps10p)
domain receptor family and the low density lipoprotein recep-
tor (LDLR) family, represents the fourth NTR (NTS4). It has a

similar structure as NTS3/sortilin, with a wide distribution in the
brain, especially in the hippocampus, cerebellum, cingulate gyrus,
entorhinal cortex, red nucleus, and oculomotor nucleus (Motoi
et al., 1999). NTS4 may be involved in the intracellular trafficking
and in termination of NT signaling (Jacobsen et al., 2001).

NT AND NEUROTRANSMITTER SYSTEMS
Neurotensin acts as a primary neurotransmitter as well as a modu-
lator of other neurotransmitter systems such as the dopaminergic,
glutamatergic, GABAergic, cholinergic, and serotonergic systems
(Rakovska et al., 1998; Ferraro et al., 2008; Petkova-Kirova et al.,
2008). The functional and anatomical NT/DA interactions have
been the most extensively studied and reviewed (Binder et al.,
2001a; Jomphe et al., 2006; Fawaz et al., 2009; Thibault et al., 2011;
Tanganelli et al., 2012).

NEUROTENSIN AND DOPAMINE
As mentioned in the previous section, NT and DA are co-localized
in a subpopulation of mesencephalic neuron within the VTA
(Hokfelt et al., 1984; Seroogy et al., 1988; Bean and Roth, 1992).
Additionally, NT-like immunoreactivity is highly expressed in
areas enriched with DA cell bodies and nerve terminals such as
SN, VTA, neostriatum, and nucleus accumbens (NA) (Quirion
et al., 1982). NT also forms synaptic contacts with a subpopulation
of tyrosine hydroxylase (TH) immunoreactive neurons (Woulfe
and Beaudet, 1989). These data strongly indicate a modulatory
function of NT on DA neurotransmission.

Neurotensin directly or indirectly (e.g., through glutamate
release) modulates DA neurotransmission. NT can modulate DA
through: (1) up-regulating TH gene expression (Burgevin et al.,
1992a,b) or (2) decreasing the DA binding affinity for the DA D2

receptors (Fuxe et al., 1992a; Li et al., 1995). NT also opposes DA D2

receptor agonist-induced auto-inhibition of DA cell firing (Shi and
Bunney, 1992). Allosteric receptor–receptor interactions between
NT and DA D2 receptors, as well as second messenger-dependent
receptor alterations, such as phosphorylation and dephosphoryla-
tion, have also been implicated (see Fuxe et al., 1992b for review).
It is important to mention that within the terminal fields, NT
opposes the effects of DA both pre- and post-synaptically, lead-
ing either to an increase or to a decrease in DA transmission,
depending on the intrinsic anatomical location of NTRs (for a
more comprehensive review of the modulatory effects of NT on
DA neurotransmission, we refer the reader to Binder et al. (2001a)
and Kinkead and Nemeroff (2004).

NT AND SEROTONIN
Neurotensin receptors are present on serotonergic neurons in the
nucleus raphe magnus and dorsal raphe, where NT causes an
increase in their firing rates (Jolas and Aghajanian, 1996; Li et al.,
2001). Therefore, NT has been proposed to play a role in func-
tions known to be affected by the serotonergic system including
antinociception (Buhler et al., 2005; Boules et al., 2010), sleep-wake
cycle (Jolas and Aghajanian, 1997), and stress (Corley et al., 2002).

NT AND GLUTAMATE
There has been controversy regarding the effect of NT on gluta-
mate release and modification of the glutamatergic and NMDA
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receptors. NT increases glutamate release in the striatum, globus
pallidus, frontal cortex, and SN (Ferraro et al., 2011, 2012) impli-
cating NT in conditions such as stroke, Alzheimer’s disease,
and PD.

Others have reported that systemic administration of NT
analogs blocks ethanol-induced increases in glutamate levels in
the striatum (Li et al., 2011), and decreases phencyclidine (PCP)-
induced increases in glutamate in the prefrontal cortex (Li et al.,
2010a). These data support the idea that the antipsychotic-like
effects of NT may be mediated in part by its modulatory effect on
glutamate.

NT AND HYPOTHALAMIC-PITUITARY AXIS
EFFECT OF NT ON HORMONE RELEASE
The presence of NT in the anterior pituitary gland and hypothala-
mus and its storage and release at the median eminence implicate
NT and its receptors in neuroendocrine regulation (Rostene and
Alexander, 1997). NT is thought to possess a paracrine or an
autocrine role within the hypothalamus and the anterior pituitary
(Bachelet et al., 1997; Bello et al., 2004). NT stimulates both directly
and indirectly, the synthesis of corticotrophin releasing hormone
(CRH), gonadotropin-releasing hormone (GnRH) (Cooke et al.,
2009), growth hormone-releasing hormone (GHRH) (Blackburn
et al., 1980), and prolactin secretion at anterior pituitary and
median eminence (Memo et al., 1986).

CRH-ACTH
Neurotensin stimulates the activity of the hypothalamic-pituitary
CRH-adrenocorticotropin hormone (ACTH) system. Central
administration of NT increases ACTH and corticosterone in the
presence of CRH receptor activation in the paraventricular nucleus
(PVN) (Nussdorfer et al., 1992; Rowe et al., 1995). The modula-
tory action of NT on the pituitary-adrenocortical function in rats
has been reported to be biphasic. The lower dose of NT exerts
a stimulatory effect while the higher dose appears to have an
inhibitory effect on both the pituitary-ACTH release and adreno-
cortical secretion (Malendowicz and Nussdorfer, 1994). NT also
enhances the release of both CRH-ir and ACTH-ir in rat adrenal
medulla (Mazzocchi et al., 1997).

Gonadotropic hormones
Many neurons in the anteroventral periventricular (AVPV) and
medial preoptic nuclei (MPN) express estrogen receptors and
project to GnRH neurons (Smith and Wise, 2001). Surprisingly,
GnRH neurons do not seem to possess intracellular estrogen
receptors (Herbison and Theodosis, 1993) and evidence suggests
that other neurons mediate the stimulatory effects of estrogen on
GnRH secretion (Shivers et al., 1983). Interestingly,GnRH neurons
were found to express NTS1 receptors (Herbison and Theodosis,
1992) and GABA receptors (Herbison et al., 1993). The number of
GnRH neurons expressing NTS1-mRNA peaks during proestrus
suggesting that NT directly stimulates GnRH neurons contribut-
ing to luteinizing hormone (LH) surge (Smith and Wise, 2001).
There has been some controversy regarding the role of NT on LH
surge. While some report that the administration of NT directly
into the medial preoptic area (where GnRH cell bodies reside)
evokes pre-ovulatory GnRH/LH surge (Alexander et al., 1989a),

others indicate that NT has no effect on GnRH-stimulated LH
release (Leiva and Croxatto, 1994). The former group showed that
immunoneutralization of NT in the preoptic region attenuates
the LH surge induced by estrogen and progesterone treatment in
ovariectomized rats (Alexander et al., 1989b). The effect of NT on
LH secretion requires intact dopaminergic and alpha adrenergic
systems (Akema and Kimura, 1989).

Growth hormone
Neurotensin is co-expressed with growth hormone (GH) releasing
factor in the arcuate nucleus (Niimi et al., 1991) and modulates GH
release. NT regulates GH secretion, in prepubertal children and
adults (Bozzola et al., 1998a), as well as in neonates (Bozzola et al.,
1998b), through the modulation of somatostatin release from the
median eminence. In rats, estrogen plays a facilitatory role on NT-
induced GH release that is independent of hypothalamic GHRH
or somatostatin release (Ibanez et al., 1993).

Prolactin
With respect to prolactin release, NT has opposite actions, an
inhibitory effect at the hypothalamic site and an excitatory effect at
the pituitary. NT elevates plasma prolactin and GH levels in both
normal and estrogen-progesterone pretreated male rats (Rivier
et al., 1977). The inhibitory action of NT on prolactin release
is mediated by the release of DA into the hypophyseal portal
vein, which delivers the neurotransmitter to the anterior pituitary
gland causing inhibition of prolactin release (Vijayan et al., 1988;
McCann and Vijayan, 1992; Pan et al., 1992).

Thyroid hormones
Neurotensin also participates in the neuroendocrine control of the
thyroid hormones by regulating thyroid releasing hormone (TRH)
function and thyroid stimulating hormone (TSH) secretion. These
data indicate that NT is involved in the metabolic actions of these
hormones. The role of NT in the hypothalamic-anterior pituitary-
thyroid axis and the functional cooperation between NT and
thyroid hormones are excellently reviewed by Stolakis et al. (2010).

Effect of NT on feeding
In addition to its presence in the CNS NT is also found in neu-
roendocrine cells of the small bowel. There, NT participates in
enteric digestive processes, gut motility, and intestinal inflamma-
tory mechanisms. It also plays an important role in intestinal
lipid metabolism, thus controlling appetite, weight status, and
food intake (Kalafatakis and Triantafyllou, 2011). Additionally, NT
exerts central control on blood glucose, feeding patterns, and body
weight.

Centrally administered NT reduces appetite (Luttinger et al.,
1982; Hawkins, 1986; Cooke et al., 2009), an effect that is mainly
mediated by NTS1 (Remaury et al., 2002; Kim et al., 2008; Kim
and Mizuno, 2010).

The anorectic effect of centrally administered NT is potentiated
by peripheral injection of DA agonists, l-DOPA and bromocrip-
tine, results suggesting that the effect of NT may be mediated by its
ability to increase the activity of dopaminergic neurotransmission
in the CNS (Hawkins et al., 1986).

Similar effects were shown for the NT agonist,PD149163, in rats
and ob/ob mice (Feifel et al., 2010a) as well as the non-selective
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NT agonist NT69L in Sprague-Dawley and in obese Zucker rats
(Boules et al., 2000). The later study also showed that the effect of
NT69L on food intake and body weight is due to functional inter-
actions of NT with brain amines, and metabolic and endocrino-
logical systems. NT69L transiently increases blood glucose and
corticosterone levels and decreases TSH and T4 in Sprague-Dawley
and in Zucker rats. NT69L also decreases norepinephrine in
both the hypothalamus and NA, and increases DA, its metabolite
3,4-dihydroxyphenylacetic acid (DOPAC), and serotonin. These
results indicate that feeding and energy expenditures are modu-
lated by the interplay of hormones and neurotransmitters in the
CNS (Brunetti et al., 2005).

Additionally, the effect of NT on feeding and body weight is
also mediated, in part, by its action on the anorexigenic hormone
leptin, which is secreted by adipocytes and regulates food intake by
acting on hypothalamic neurons including NT-producing neurons
(Beck et al., 1998; Sahu et al., 2001). Leptin together with insulin
and α-melanocyte-stimulating hormones increase NT expression
in the hypothalamus (Sahu, 1998; Cui et al., 2005). Similarly, the
anorectic effect of leptin is at least partly mediated through cen-
tral NTS1 and the leptin-NTS1 signaling pathway is involved in
the regulation of food intake and the in the control of energy
balance (Leinninger et al., 2011) since the lack of NTS1 reduces
sensitivity to the anorectic action of leptin, causing hyperphagia
and abnormal weight gain (Kim et al., 2008).

EFFECT OF HORMONES ON NT SYNTHESIS AND RELEASE IN
HYPOTHALAMIC-PITUITARY AXIS
As NT modulates hypothalamic-pituitary axis (HPA) hormones,
circulating hormones influence NT synthesis in the hypothalamus
and anterior pituitary, results that suggest that NT mediates feed-
back effects of the hormones on neuroendocrine cells (Rostene and
Alexander, 1997). Estrogen and progesterone regulate the activity
of NT-synthesizing neurosecretory cells located in the hypothal-
amic arcuate nucleus (Alexander, 1999). Estrogen increases the
secretion of NT at the median eminence and alters NT binding and
NTS1-mRNA expression in the rostral preoptic nucleus (Moyse
et al., 1988; Alexander, 1993; Watanobe and Takebe, 1993; Alexan-
der and Leeman, 1994). GHRH neurosecretory cells synthesize
NT under basal conditions (Niimi et al., 1991) and GH injection
increases NT plasma levels in human (Schimpff et al., 1994).

Neurotensin’s endocrine activity, and its modulatory effects on
several neurotransmitter systems, kindled many studies suggest-
ing that NT plays a role in the pathophysiology of several CNS
disorders including PD, schizophrenia, and psychostimulant and
nicotine addiction as well as pain and eating disorders (Caceda
et al., 2006).

NT AND NEUROPSYCHIATRIC DISORDERS
SCHIZOPHRENIA
Schizophrenia is a devastating psychotic disorder that affects
approximately 1% of the population worldwide. The onset of
illness usually occurs relatively early in life with most patients
experiencing long-lasting adverse effects accompanied by severe
impairment (reviewed in Carpenter and Buchanan (1994). The
disease is manifested by positive symptoms (delusions, hallucina-
tions, and an altered perception of reality), and negative symptoms

(apathy, cognitive blunting, and social withdrawal), as well as
a disorganization of thought and behavior. Many schizophrenic
patients have difficulty holding a job or caring for themselves, plac-
ing a significant burden on their families and society. Additionally,
increased mortality is associated with schizophrenia as patients
experience a 20% shorter lifespan than the general population
and are at an increased risk for committing suicide (Newman and
Bland, 1991; Goff et al., 2001).

The exact cause(s) for the pathophysiology and progression of
schizophrenia are not known; however it is generally accepted that
associated symptoms are syndromal in nature, rather than mani-
festations of a single disease (Carpenter et al., 1999). These symp-
toms are likely caused by several compounding biochemical abnor-
malities and influenced by both genetics and environment. Theo-
ries as to the origin of these abnormalities focus on the dopamin-
ergic system, but have more recently been expanded to include
the serotonergic, γ-aminobutyric acid-ergic, and glutamatergic
systems, as well as the NT system.

One of the earliest and most studied theories is the DA hypoth-
esis of schizophrenia (Carlsson, 1988; Toda and Abi-Dargham,
2007; Howes and Kapur, 2009). While this theory originally
emphasized general hyperdopaminergia as a causative factor in
schizophrenia (Snyder, 1976), more recent versions focus on the
balance of DA within discreet regions of the brain. The cur-
rent theory predicts that hyperactive subcortical mesolimbic DA
projections (resulting in hyperstimulation of D2 receptors) are
the main cause for positive symptoms, while hypoactive meso-
cortical DA projections to the PFC (resulting in hypostimula-
tion of D1 receptors) are the main cause for negative symp-
toms and cognitive impairment (Weinberger, 1987; Toda and
Abi-Dargham, 2007). There is strong evidence for a close rela-
tionship between the dopaminergic system and NT (Nemeroff,
1986; Kitabgi et al., 1989), suggesting a role for NT in the
pathophysiology of schizophrenia.

Neurotensin and schizophrenia
A role for NT in schizophrenia has been hypothesized for over three
decades (Nemeroff, 1980). Specifically, the NT system is closely
associated with the dopaminergic system, and deficits in NT neu-
rotransmission have been implicated in the pathophysiology of
schizophrenia. Schizophrenics have a 40% decrease in NTRs in
the entorhinal cortex (Wolf et al., 1995), and schizophrenics with
decreased NT concentrations in their cerebral spinal fluid have sig-
nificantly higher levels of pretreatment psychopathology (Sharma
et al., 1997).

NT receptors have been detected on DA cell bodies in the
SN and VTA (Palacios and Kuhar, 1981; Szigethy and Beaudet,
1989) and NTR activation has an excitatory effect on midbrain
DA neurons (Pinnock, 1985; Seutin et al., 1989; Mercuri et al.,
1993). NT can inhibit DA D2 autoreceptor function, thus relieving
auto-inhibition of DA transmission (Jomphe et al., 2006) thereby
increasing DA release, firing rate, and the synthesis of the rate lim-
iting enzyme for DA synthesis, TH (Binder et al., 2001b). Because
of this close association of NT with dopaminergic neurons and
its neuromodulatory effects on the dopaminergic system, NT is
hypothesized to be therapeutic in the treatment of schizophrenia.
Central administration of NT does in fact cause antipsychotic-like
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effects (Jolicoeur et al., 1993), and therefore a great interest exists
for developing NT-mimetics for the treatment of neuropsychiatric
diseases, such as schizophrenia.

The potential role of NT as an antipsychotic drug
Several lines of evidence suggest that antipsychotics, the tradi-
tional treatment for schizophrenia, act through the induction of
endogenous NT (Kinkead et al., 1999): (1) all clinically effective
antipsychotic drugs affect in some way the NT system of rats. The
therapeutic potency of typical APDs is derived mainly from their
ability to antagonize DA D2 receptors with high affinity (Creese
et al., 1976). Typical antipsychotics are associated with extrapyra-
midal side effects (ESP) characterized by movement disorders
including tardive dyskinesia, dystonic reactions, and Parkinson-
ism. Alternatively, it is suggested that atypical APDs have a higher
affinity for 5-HT2A relative to DA D2 receptors (Meltzer et al.,
1989; Nordstrom et al., 1995; Kapur et al., 1998; Gefvert et al.,
2001). They are characterized by enhanced antipsychotic efficacy
and lower risk of EPS (Meltzer et al., 1989). Both typical and atyp-
ical antipsychotics, those associated with little or no EPS, increase
NT mRNA in specific regions of the brain after both acute and
chronic treatment (Govoni et al., 1980; Merchant et al., 1991, 1992;
Merchant and Dorsa, 1993). (2) These effects are selective for drugs
with antipsychotic efficacy, and are not seen with other classes
of psychotropic drugs. (3) Typical and atypical antipsychotic
drugs differentially affect the NT system. Typical antipsychotics
act on both the mesolimbic and nigro-striatal NT systems. By
contrast, the actions of atypical antipsychotics on NT are thought
to be restricted to the mesolimbic system, the region thought to
be the site of therapeutic effect in schizophrenia. (4) Centrally
administered NT elicits similar behavioral effects as systemically
administered atypical antipsychotic drugs. It is hypothesized that
the increase in NT neurotransmission in the mesolimbic system
mediates the therapeutic effects of APDs, while the increase in NT
neurotransmission in the nigrostriatum underlies the propensity
to cause ESP (Binder et al., 2001b; Caceda et al., 2006). Interest-
ingly, the pattern of increase in NT mRNA expression, NT tissue
content and release (Kinkead et al., 1999) is similar to that of
the immediate early genes, c-fos, FosB, and ∆Fos B, after acute
and chronic administration of typical and atypical APDs (Binder
et al., 2001b).

The ability of a compound to inhibit climbing induced by apo-
morphine (a DA agonist), hyperactivity induced by amphetamine
(indirect DA agonist), and to prevent the disruption of prepulse
inhibition (PPI) induced by amphetamine [1-(2,5-dimethoxy-
4-iodophenyl)-2-aminopropane] (DOI) (5-HT2A agonist), and
dizocilpine (non-competitive NMDA antagonist) are tests used
to predict antipsychotic-like activity of a drug. These tests also
distinguish between typical and atypical antipsychotic-like effects
(Merchant and Dorsa, 1993; Arnt et al., 1995) (see review by
Geyer and Ellenbroek, 2003). The ability of a compound to
block apomorphine-induced climbing over oro-facial stereotyp-
ies (sniffing and licking) induced by high doses of apomorphine,
suggests atypicality of that compound (Gerhardt et al., 1985).

Neurotensin has been shown to prevent the disruption of
amphetamine- and apomorphine-induced PPI (Feifel et al., 1997),
as well as attenuate apomorphine-induced climbing (Jolicoeur
et al., 1993), and amphetamine- and apomorphine-induced

hyperactivity without affecting stereotypy (Jolicoeur et al., 1983).
For these reasons it is hypothesized that NT transmission is integral
to the mechanism of action of antipsychotic drugs and that NT can
serve as an endogenous antipsychotic-like compound (reviewed in
Kinkead et al., 1999; Binder et al., 2001b; Kinkead and Nemeroff,
2002).

The behavioral effects of neurotensin analogs in animal models of
schizophrenia
As discussed above, there is strong evidence to support NT as an
endogenous antipsychotic drug. However, NT is easily degraded
by peptidases and cannot cross the blood-brain barrier. In an effort
to study more easily the effects of NT, our group has developed an
extensive series of NT(8–13) analogs that can be delivered periph-
erally, and that elicit effects similar to centrally administered NT.
These NT analogs have demonstrated antipsychotic-like activity
similar to endogenous NT as determined by behavioral tests in
rats. Most of our work has been with NT69L and NT79. NT69L
binds human NTS1 and human NTS2 with high affinity. By con-
trast, NT79 preferentially binds to NTS2, as its binding affinity
for the human NTS2 is approximately 25-fold higher than that
for human NTS1. NT69L (Cusack et al., 2000), NT79 (Boules
et al., 2010), and another analog NT77L (Boules et al., 2001c)
are each modified from NT at amino acid positions located in
the C-terminal 8–13 sequence. Additionally, PD149163, which is a
reduced amide bond NT(8–13) mimetic shows antipsychotic-like
activity.

PD149163 has strong affinity for NTRs (K i= 31.2 nM in new-
born mouse brain membranes) and improved metabolic stability
(Wustrow et al., 1995), a factor that promotes central activity after
systemic administration (Banks et al., 1995).

Table 1 shows the structures of some NT analogs.
NT69L elicits similar neurochemical and behavioral effects

as endogenous NT (for review, see Boules et al., 2003a).
Intraperitoneal delivery of NT69L selectively inhibits stereotyped
apomorphine-induced climbing at an ED50 of 16 µg/kg, without
affecting licking or sniffing at any dose given (Cusack et al., 2000).
Additionally, NT69L does not cause catalepsy (muscle rigidity) at
any dose given, but reverses haloperidol-induced catalepsy with an
ED50 of 0.2 mg/kg (Cusack et al., 2000). Catalepsy in rats has been
used as a predictor of EPS potential of APDs in humans.

NT69L significantly increases both amphetamine- and
dizocilpine-induced decreases in PPI with acute administration
with an ED50 of 0.08 and 0.05 mg/kg respectively (Shilling et al.,
2003; Boules et al., 2010), as well as with chronic administration
(Briody et al., 2010). Additionally, NT69L blocks PCP-induced
hyperactivity (Li et al., 2010a), a test that may reflect both posi-
tive and negative symptoms of schizophrenia (Snyder, 1980; Javitt
and Zukin, 1991). These results demonstrate that NT69L has
properties similar to those of atypical APDs.

NT77 is also thought to have antipsychotic-like properties,
although less potently than NT69L, based on similar rat behav-
ioral studies (Boules et al., 2001c). NT77L selectively blocks
apomorphine-induced climbing with an ED50 of 5.6 mg/kg with-
out affecting sniffing or licking behavior at any dose. NT77L
moderately prevents/reverses the cataleptic effect of haloperidol
(ED50 5.6 mg/kg) while it does not cause catalepsy itself at any
dose. The effects of NT77L on PPI have yet to be tested.
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Like NT69L and NT77L, NT79 also selectively blocks
apomorphine-induced climbing without affecting sniffing or lick-
ing behavior at any dose. Similarly, NT79 significantly blocks
amphetamine-induced hyperactivity as well as prevents the dis-
ruption of PPI induced by both amphetamine and DOI (Boules
et al., 2010). PD149163 antagonizes the reduction in PPI of the
rat startle reflex produced by amphetamine and dizocilpine (Feifel
et al., 1999), blocks the disruption in PPI induced by the 5-HT2A

agonist DOI (Feifel et al., 2003), and inhibits conditioned avoid-
ance responding, which is a highly validated test for screening APD
in rats,without causing catalepsy (Holly et al., 2011). These analogs
show promise for use in the treatment of schizophrenic symptoms
with a lower potential for adverse side effects. The antipsychotic
effects of NT analogs are summarized in Table 2.

Studies with the use of knockout mice lacking NT or NTR sub-
types suggest a role for NTS1 in the antipsychotic-like effect of
NT. NT knockout mice have reduced PPI and are not sensitive to
the PPI-disrupting effects of amphetamine as compared to wild
type mice. These data indicate the importance of endogenous NT
in the effects of amphetamine on PPI (Mechanic et al., 2009).
Additionally, the use of NTS1- and NTS2-knockout (NTS1−/−

and NTS2−/−) mice revealed hyper-dopaminergic state in the
NTS1−/−mice similar to the excessive striatal DA activity reported
in schizophrenia (Liang et al., 2010). Furthermore, the NTS1−/−

show changes in behavior, prefrontal cortex neurotransmitters,
and protein expression that are similar to wild type mice treated
with the psychomimetic PCP, an animal model for schizophrenia
(Li et al., 2010c). The involvement of NTS1 in the antipsychotic-
like effect of NT has been further demonstrated by the use of
NT agonists. Administration of the NT agonists, NT69L and NT-
2, reversed apomorphine-induced climbing in wild type but not
in NTS1−/− mice (Mechanic et al., 2009). Likewise, PD149163

significantly facilitates PPI and decreases the acoustic startle
response in wild type but not in NTS1−/− mice (Feifel et al.,
2010b).

PAIN
NT and pain
Neurotensin and NTRs modulate nociception at several differ-
ent levels (Dobner, 2005). In fact, on a molar basis, NT is more
potent than is morphine as an antinociceptive agent (Nemeroff
et al., 1979; al-Rodhan et al., 1991). Central administration of NT
induces an analgesic response in both the hot plate (HP) and acetic
acid-induced writhing tests in rats (Clineschmidt and McGuffin,
1977; Clineschmidt et al., 1979, 1982). NT also produces a long-
lasting antinociceptive effect in the tail-flick (TF) assay following
intra rostroventral medulla (RVM) administration (Fang et al.,
1987). These results indicate that NT can influence nociceptive
transmission at several different points in the descending pain
modulatory circuitry in the brain. There is also limited evidence
that NT may affect nociception transmission directly in the spinal
cord (Dobner, 2006). Intrathecal NT administration increased
both HP and aversive (hypertonic saline) response latencies, but
had no significant analgesic effect in the TF (Hylden and Wilcox,
1983). In addition, intrathecal injection of either NT or one of our
novel NT(8–13) into the spinal cord of rats modifies pain percep-
tion in a rodent model of persistent (Roussy et al., 2006) and of
neuropathic pain (Dansereau et al., 2006).

NT receptor subtypes and pain
The effect of NT on pain modulation is dose-dependent and
receptor-selective (Urban and Smith, 1993). NT not only inhibits
but also facilitates pain transmission in a dose-dependent manner.
High doses (nanomolar range) of the peptide injected into the

Table 1 | Structures of NT analogs.

1 2 3 4 5 6 7 8 9 10 11 12 13

NT p-Glu l-Leu l-Tyr l-Glu l-Asn l-Lys l-Pro l-Arg l-Arg l-Pro l-Tyr l-Ile l-Leu

NT69L – – – – – – – N -methyl-Arg l-Lys l-Pro l-neo-Trp Tert-Leu- l-Leu

NT72 d-Lys l-Pto l-neo-trp tert- l-Leu

NT77L – – – – – – – l-Arg d-Orn l-Pro l-neo-Trp tert-Leu l-Leu

NT79 – – – – – – – N -methyl-Arg l-Arg l-Pro d-3,1-Nal tert-Leu l-Leu

PD149163 H-Lys-psi[CH2NH] Lys Pro Trp Tle Leu-Oet

Table 2 | Antipsychotic effects of NT analogs.

Analog Apomorphine-induced

climbing

Reversal of Haloperidol-

induced catalepsy

Amphetamine-induced decrease

in PPI and hyperactivity

Dizocilpine/DOI-induced

decrease in PPI

PCP-induced

hyperactivity

NT69L Y1 Y2 Y3 Y4 Y5

NT77L Y6 Y6

NT79 Y7 Y7 Y7 Y7

PD149163 Y8,9 Y10

Y=has an effect.
1Cusack et al. (2000), Mechanic et al. (2009); 2Cusack et al. (2000); 3Boules et al. (2001a), Shilling et al. (2003), Briody et al. (2010); 4Shilling et al. (2003), Secchi et al.

(2009); 5Li et al. (2010a); 6Boules et al. (2001c); 7Boules et al. (2010); 8Feifel et al. (2008); 9Feifel et al. (1999), Shilling et al. (2004); 10Feifel et al. (1999), Feifel et al.

(2003), Shilling et al. (2004).
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RVM have an antinociceptive effect as measured by the TF latency
(TFL) in response to heat stimulus. In contrast, lower doses (pico-
molar range) have been shown to reduce latencies in the HP and
TF tests, facilitate spinal nociception response, and increase the
visceromotor response to noxious heat and visceral stimulation
respectively (Urban and Smith, 1993, 1994).

The basis of the opposing actions of NT and its dose-dependent
modulation is most probably due to separate and distinct NTR
subtype with varying affinity for the peptide (Smith et al., 1997),
as well as the involvement of separate and distinct neuronal path-
ways that modulate pain at the spinal level (Smith et al., 1997).
Evidence suggests that both NTS1 and NTS2 mediate the antinoci-
ceptive effects of NT, depending upon the antinociceptive test and
possibly, the species of rodent used. NTS1 and NTS2 modulate
pain-induced behavioral responses by acting on distinct spinal
and/or supra-spinal neural circuits (Roussy et al., 2008). Con-
tradictory results have been reported regarding the NTR subtype
mediating the antinociceptive effects of NT.

NTS1 and pain. Reports on mice lacking the NTS1 gene reveal
that NT and NT analogs fail to induce antinociception in the HP
test (Pettibone et al., 2002). Consistent with the knockout mice
studies, our group showed that the inhibition of NTS1 synthesis
with the use of antisense peptide nucleic acids (PNAs) target-
ing the NTS1 gene also results in loss of the analgesic properties
of NT in the HP test (Tyler et al., 1998b), results that implicate
NTS1 in thermal analgesia. Conversely, other evidence that argues
against the involvement of NTS1 in the analgesic effect of NT has
been reported and summarized by Dubuc et al. (1999a). Thus,
as summarized by this group, the analgesic effects of NT are not
antagonized by the NTS1-selective antagonist SR48692 (Dubuc
et al., 1994), the binding affinity of NT analogs to NTS1 does
not correlate with their analgesic effects (Labbe-Jullie et al., 1994),
and the administration of antisense oligonucleotides targeted to
NTS1 does not reduce NT-induced analgesia in the writhing test
in mice (Dubuc et al., 1999b). With respect to formalin-induced
pain, Roussy et al. (2010) concluded that NTS1 is important for
modulation of persistent pain following systemic administration
of morphine in NTS1−/− mice.

NTS2 and pain. NTS2 has also been implicated in the analgesic
effects of NT (Dubuc et al., 1999b; Remaury et al., 2002; Yamauchi
et al., 2003; Maeno et al., 2004; Sarret et al., 2005; Bredeloux
et al., 2006). Dubuc et al. showed, with the use of NTS2 oligonu-
cleotides, that NTS2 plays an important role in the writhing test.
These data were supported by a close correlation between NT ana-
log binding affinity at NTS2 and potency of the analog-induced
analgesia in mice (Dubuc et al., 1999b). Maeno et al. (2004) work-
ing with mice, suggested that NTS2 plays an important role in
thermal nociception. The role of NTS2 in mediating NT-induced
analgesia has been based on observations using NTS2 antisense
oligodeoxynucleotides and the NTS2 ligand levocabastine (Bre-
deloux et al., 2006). NTS2 has also been implicated in mediating
visceral antinociception (Dubuc et al., 1999a).

NT analogs and pain
As mentioned, NT must be administered directly into the
brain to exert its effect since it gets degraded by peptidases

(Tyler-McMahon et al., 2000a; Boules et al., 2005). Our laboratory
has been testing our brain-penetrating stable analogs of NT(8–13)
in several animal models of pain.

Studies by our group and others show that NT analogs are effec-
tive in treating thermal, visceral (acetic acid-induced writhing),
and persistent inflammatory (formalin-induced) pain (Tyler-
McMahon et al., 2000b; Bredeloux et al., 2008; Boules et al., 2009,
2010; Mechanic et al., 2009). However, as previously stated, evi-
dence suggests that the analgesic efficacy of NT analogs varies with
their selectivity for NTS1 and NTS2, the pain model, and, probably,
animal species.

Intrathecal injection of the NTS1-selective agonist, PD149163,
and the non-selective NT agonist NT69L significantly reduced
pain-evoked responses during the inflammatory phase of the for-
malin test (Roussy et al., 2008). The same analogs also produced
potent antiallodynic and antihyperalgesic effects in nerve injured
rats, a model of neuropathic pain (Guillemette et al., 2012). Sys-
temic injection of NT analogs NT69L, NT72 (NTS1-selective),
and NT77 causes analgesia in the HP test (Tyler et al., 1998a, 1999;
Boules et al., 2001c; Smith et al., 2011) with synergy to morphine
(Boules et al., 2009). Additionally, NT69L and NT72, significantly
reduce acetic acid-induced writhing (Smith et al., 2012).

Supporting the role of NTS2 in antinociception, intrathecal
injection of NTS2 agonists levocabastine and JMV431 significantly
inhibit the aversive behavior induced by formalin (Roussy et al.,
2009) and induced dose-dependent antinociceptive response in
the TF test (Sarret et al., 2005).

Interestingly, the NTS2-selective analog, NT79, is ineffective in
reducing thermal pain, but blocks acetic acid-induced writhing in
rats (Boules et al., 2010), without causing tolerance to its analgesic
effects (Smith et al., 2012). It is also interesting that NT79 does not
cause hypothermia. Since the NTS1-selective (NT72), and non-
selective (NT69L) NT agonists attenuate visceral nociception, it
is suggested that both NTR subtypes are involved in mediating
visceral analgesia and their roles appear to be NT analog depen-
dent (Smith et al., 2012). Additionally, the NTS2-selective analog,
NT79, reduces formalin-induced pain and does so in synergy with
morphine (Boules et al., 2011a). Further evidence for the involve-
ment of NTS2 in reducing persistent pain comes with the use
of knockout mice. Lafrance et al. (2010) demonstrated that mice
lacking NTS2 exhibit significantly lower stress-induced analgesia
following cold-water swim stress as compared to their wild type
littermates. Table 3 summarizes the analgesic effects of NT analogs.

Analgesic synergy between NT and morphine
Morphine is a µ-opioid receptor agonist that is widely used for the
treatment of many types of chronic pain. However, morphine and
other opioids are usually associated with some serious side effects.
Additionally, tolerance develops to their analgesic effects, but not
to all the side effects, and this tolerance requires dosage increases
over time, to attain a consistent level of analgesia. Increasing mor-
phine dosage increases the potential for serious undesired side
effects, such as respiratory depression.

Neurotensin exerts a potent µ-opioid-independent, antinoci-
ceptive effects in a variety of analgesic screening tests, including
tail-flick, HP, and writhing induced by acetic acid (Clineschmidt
et al., 1979, 1982; al-Rodhan et al., 1991; Wustrow et al., 1995;
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Table 3 | Analgesic effects of NT analogs.

Analog Hot plate Writhing Formalin NP

NT69L Y1 Y2 Y3 Y4

NT72 Y2 Y2

NT77 Y5

NT79 N6 Y6 Y7 Y8

PD149163 Y9 Y4

Y=has an effect; N=has no effect.
1Tyler-McMahon et al. (2000b), Boules et al. (2009), Smith et al. (2011); 2Smith

et al. (2012); 3Roussy et al. (2008), Roussy et al. (2009); 4Guillemette et al. (2012);
5Boules et al. (2001c); 6Boules et al. (2010); 7Boules et al. (2011a); 8Boules et al.

(2012); 9Roussy et al. (2008), Roussy et al. (2009).

Sarhan et al., 1997). Both NTS2 and µ-opioid receptors have been
found in the same brain structures involved in pain perception
(Basbaum and Fields, 1984; Asselin et al., 2001) and neurotensin-
ergic system seems to play an important role in the non-opioid
form of stress-induced analgesia (Seta et al., 2001; Gui et al., 2004;
Lafrance et al., 2010).

The functional analgesic interaction between endogenous NT
and the opioid system has been further illustrated by Tershner and
Helmstetter. These authors show that the antinociception induced
by the µ-opioid receptor activation in the amygdala is partly
dependent on the recruitment of NTRs in the ventral PAG (Tersh-
ner and Helmstetter, 2000). Additionally, mice rendered tolerant
to morphine showed a reduced analgesic effect to NT (Luttinger
et al., 1983) and morphine analgesia was considerably reduced in
NTS1-deficient mice. These data indicate that the NTS1 actively
participates in µ-opioid analgesia (Roussy et al., 2010). Conversely,
opioid receptor antagonists do not block NT-mediated antinoci-
ception (Clineschmidt et al., 1982; al-Rodhan et al., 1991), but the
perfusion of morphine in the PAG increases the extracellular levels
of NT-ir in a naloxone-dependent manner (Stiller et al., 1997).

The use of adjuncts such as the NMDA receptor antagonist
ketamine in combination with opioids to enhance their efficacy at
low doses, and attenuate the occurrence of tolerance has been
reported (Lutfy et al., 1996; Nishiyama, 2000). However, seri-
ous motor impairment is observed at doses of ketamine that are
antinociceptive in the rat and in human, and ketamine can be psy-
chotomimetic. Additionally, long-term exposure of ketamine on
spinal tissue leads to tissue necrosis (Vranken et al., 2005). Studies
in our laboratory show analgesic synergism between NT analogs
and morphine in the use of HP (Boules et al., 2009), in acetic acid-
induced writhing, and in formalin-induced pain (Boules et al.,
2011a). These studies provide novel potential use for NT analogs
in combination with morphine (and perhaps other opioids) to
improve the pharmacological treatment of pain while minimizing
specific adverse effects of each of the drugs at a higher dose.

NT AND PSYCHOSTIMULANT ABUSE
Psychostimulants, including nicotine, amphetamine, and cocaine,
are drugs that may be employed to improve cognitive and motor
function, but can be highly addictive. The mesocorticolimbic
system, to which NT colocalizes with DA and other neuro-
transmitters, provides the anatomic substrate for psychostimulant
dependence and craving (McBride et al., 1999; Di Chiara, 2000).

NT acts as a neurotransmitter as well as a modulator of DA
and other monoamine neurotransmitter systems and has been
linked through several lines of evidence to psychostimulant effects
(Richelson et al., 2003).

Behavioral sensitization to psychostimulants, an animal model
of addiction, is a process by which repeated administration of
the same dose of a drug produces increasing degrees of locomo-
tor effects (Domino, 2001). This process is thought to be due
to changes in the NA. Initiation of sensitization is associated
with changes in the NA shell, and maintenance of sensitization
with changes in the NA core (Iyaniwura et al., 2001; Balfour, 2004).
Behavioral sensitization models human acquisition of psychos-
timulant addiction and risk of relapse (Miller et al., 2001; De Vries
et al., 2002).

Locomotor sensitization depends on activation of the mesolim-
bic DA system with additional long-term influences on glutamate,
GABA, κ-opioid, and other neurotransmitter systems (Pierce and
Kalivas, 1997; Hahn et al., 2000). DA neurons originating in the
VTA and projecting to the shell and core of the NA lead to the
initiation and expression of sensitization, respectively (Pierce and
Kalivas, 1997). NT colocalizes with DA neurons and acts as a mod-
ulator of DA effects (Binder et al., 2001a). When injected into the
VTA, NT causes hyperactivity and DA release in the NA, similar to
the effects of psychostimulants (Kalivas and Duffy, 1990; Kalivas,
1994). However, NT injected into the NA reduces the response
to psychostimulants, an effect similar to that of brain-penetrating
NT analogs given extracranially (Ervin et al., 1981; Robledo et al.,
1993; Richelson et al., 2003).

The NT agonist NT69L, given intraperitoneally, blocks the
acute locomotor effects of cocaine and d-amphetamine (Boules
et al., 2001a), and blocks both the initiation and expression of sen-
sitization to nicotine after subcutaneous administration (Fredrick-
son et al., 2003a,b). This is one line of evidence suggesting NT
agonists may be effective for treatment of nicotine, amphetamine,
and cocaine addiction. Curiously, the NT antagonist SR48692
when administered chronically decreased locomotor sensitization
to cocaine (Felszeghy et al., 2007).

How then can a NTR agonist and a NTR antagonist have
similar effects in this particular animal model of addiction?
Although further research is needed, several lines of evidence
bear on this question. Repeated doses of the NT antagonist were
required to produce the intended effect on sensitization. Classi-
cally, chronic receptor blockade can lead to up-regulation of the
receptor, thus making the agonist more effective. Chronic block-
ade of the receptors may also lead to increased NT synthesis and
release. Another approach to this question is with animals lack-
ing NTRs. Studies with SR48692 would predict that mice lacking
NTS1 would not sensitize to psychostimulants. However, such null
mice are more sensitive to an acute injection of d-amphetamine
and had an enhanced response to the sensitizing effects of this
psychostimulant as compared to wild type mice (Boules et al.,
2006).

The NT agonist NT69L attenuates intravenous (IV) self-
administration of nicotine in rats (Boules et al., 2011b). Once
animals acquired stable responding to nicotine they were pre-
treated with either NT69L or saline. Pretreatment with NT69L
attenuated nicotine self-infusion under FR1 (fixed ratio of 1)
and FR5 schedules of reinforcement. Control rats that were
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response-independent “yoked” as well as rats that self-infused
saline showed minimal responses, indicating that nicotine served
as a reinforcer. The stimulant and reinforcing effects of nicotine
are attributed to stimulation of the mesolimbic DA system (Stein
et al., 1998; Di Chiara, 2000; George et al., 2000). In this study,
nicotine self-infusion increased TH, DA D1, and DA D2 receptor
mRNA in the VTA, consistent with increased burst firing. NT69L
antagonized these effects. In the PFC, an area implicated with
learning, NT69L increased TH and DA D1 mRNA. TH and DA D1

mRNA levels were also increased in the striatum in response to the
NT agonist. Taken together these results show that the NT ago-
nist NT69L attenuated nicotine self-administration and suggest
the drug would reduce craving and withdrawal symptoms (for
example, cognitive complaints that are common during nicotine
withdrawal).

Is there abuse potential for NT agonists? Although NT mim-
ics the effects of psychostimulants when injected directly into the
VTA, it blocks certain stimulant effects when injected into the
NA. NT analogs given extracranially (native NT is degraded by
peptidases when given peripherally) also block locomotor effects
of stimulants, and attenuate nicotine self-administration in rats.
Rats do not self administer NT. Therefore, the preponderance of
evidence argues against an abuse or addiction potential for NT
analogs. This conclusion is supported by data in rhesus monkeys;
the animals did not self-infuse NT69L (Fantegrossi et al., 2005).

Although questions remain, a growing body of data supports
a key role for NT in regulation of responses to psychostimulants.
To the extent animal models are predictive, and NT agonists show
promise for the treatment of human addiction. The relative con-
tributions of NTS1 and NTS2 receptors in these models have not
been extensively explored, and further research may lead to devel-
opment of agonists which retain efficacy with fewer side effects
such as hypothermia and hypotension.

NT AND PARKINSON’S DISEASE
Studies show that plasma NT concentrations are consistently
higher in PD patients as compared to controls and untreated as
compared to treated patients (Schimpff et al., 2001). PD patients
also have a twofold increase in NT content in both zona com-
pacta and zona reticulate of the SN compared to that for controls
(Fernandez et al., 1995). Brains from PD patients have fewer
dopaminergic neurons and very low expression of NTS1 (Yamada
and Richelson, 1995). Similar results were reported in an animal
model for PD, where MPTP treated mice had significantly lower
[3H] NT and [3H] mazindol binding in the striatum and SN,
results indicating severe reduction in NTRs and DA uptake sites
respectively. These data suggest that the dysfunction in NTRs may
be involved in the degradation processes causing PD. Caceda et al.
(2006) suggested that the increase in striatal and nigral NT tis-
sue concentrations, as well as in CSF and plasma levels may be
due either to a compensatory mechanism for the loss of DA neu-
rons to preserve motor function and/or to a dysregulation of NT
neurotransmission on striatal output favoring the striatopallidal
pathway (Caceda et al., 2006). Injection of NT resulted in a dose
related attenuation of muscular rigidity and tremors caused by
bilateral injection of the neurotoxin 6-hydroxydopamine in the
medial forebrain bundle (Jolicoeur et al., 1991). In addition, we

showed that injection of the NT agonist, NT69L, attenuated the
amphetamine and apomorphine rotatory behavior caused by the
unilateral injection of the same drug in the nigro-striatal pathway
(Boules et al., 2001b).

POTENTIAL SIDE EFFECTS OF NT AGONISTS
HYPOTHERMIA
Neurotensin (Bissette et al., 1976) and NT agonists (Tyler-
McMahon et al., 2000b; Boules et al., 2001c, 2003a; Feifel et al.,
2010a) elicit hypothermia in rodents. Hypothermia is mediated
by NTS1. This has been established with the use of NTS1−/−

and NTS2−/− mice (Remaury et al., 2002; Mechanic et al., 2009).
Additionally, NTS2-selective analogs do not induce hypothermia
(Boules et al., 2010), results that provide further proof for the
involvement of NTS1 receptor subtype in mediating hypother-
mia. Interestingly, studies show potential therapeutic use for the
NT agonist-induced hypothermia. The administration of the NT
agonist ABS-201 immediately or up to 60 min after stroke attack
significantly reduced infarct formation and brain cell death in an
animal model of focal ischemia (Choi et al., 2012). In addition, it
was effective in promoting long-term functional recovery in post-
stroke animals (Choi et al., 2012). Similar studies on regulated
hypothermia induced by the NT agonists reduce oxidative stress
in the brain during reperfusion from asphyxial cardiac arrest (Katz
et al., 2004a). Also, lowering body temperature with a NT agonist
provided a better neurologic outcome than brief external cooling
in a rat model of near drowning (Katz et al., 2004b). Consistent
with these results, hypothermia induced by the NT analog JMV-
449 had a neuroprotective effect in a mouse model of permanent
distal middle cerebral artery occlusion (Torup et al., 2003).

HYPOTENSION
Intracerebroventricular (ICV) or IV injections of NT induces a
dose-dependent drop in arterial blood pressure in anesthetized
rats. The drop in blood pressure is of rapid onset (30–60 s) and
of short duration (1–4 min) (Rioux et al., 1981). Interestingly, the
hypotensive effect of NT is not accompanied by any alteration in
cardiac actions (Rosell et al., 1976; Rioux et al., 1981).

DEVELOPMENT OF TOLERANCE
Animal studies show that tolerance develops to some but not all
the effects of NT analogs. Tolerance develops to the hypother-
mia, thermal analgesia, and anticataleptic effect of NTS1 agonists
(Boules et al., 2003b). Conversely, tolerance does not occur to the
NT agonist’s effects on the reversal of amphetamine- and cocaine-
induced locomotor activity (Boules et al., 2003b; Hadden et al.,
2005; Feifel et al., 2008), the reversal of apomorphine-induced
climbing (Boules et al., 2003b), and the reversal of amphetamine
or DOI-induced disruption of PPI (Feifel et al., 2007; Briody et al.,
2010).

Interestingly, NTS2 seem to play an important role in the
development of tolerance of NT69L-mediated hypothermia and
thermal analgesia (Smith et al., 2011), while tolerance to its anal-
gesic and anticataleptic effects the NTS2 analog NT79 does not
occur (Boules et al., 2010).

Thus, the development of tolerance depends on the NT analog,
their selectivity to the NTR subtypes, the paradigm being tested
and the dosing regimen (Wang et al., 2005; Feifel et al., 2008).
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CONCLUSION
The association of NT with several neurotransmitter and
endocrine systems suggests its involvement in a wide range of
physiologic processes throughout the body and implicates it in the
pathology of many neuropsychiatric diseases. Furthermore, the
development of NT analogs that can be administered systemically
may provide therapy for the treatment of several disorders includ-
ing schizophrenia, pain, and psychostimulant abuse. Additionally,
the use of NT analogs and genetically modified animals will allow

further understanding of the molecular role of NT in health and
disease.
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