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There is increasing evidence that dysregulated immune responses play key roles in the
pathogenesis and complications of type 1 but also type 2 diabetes. Indeed, chronic inflam-
mation and autoimmunity, which are salient features of type 1 diabetes, are now believed
to actively contribute to the pathogenesis of type 2 diabetes. The accumulation of acti-
vated innate and adaptive immune cells in various metabolic tissues results in the release
of inflammatory mediators, which promote insulin resistance and p-cell damage. More-
over, these dysregulated immune responses can also mutually influence the prevalence of
both type 1 and 2 diabetes. In this review article, we discuss the central role of immune
responses in the patho-physiology and complications of type 1 and 2 diabetes, and provide
evidence that regulation of these responses, particularly through the action of regulatory
T cells, may be a possible therapeutic avenue for the treatment of these disease and their
respective complications.
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THE PATHOGENESIS OF TYPE 1 DIABETES

Type 1 diabetes (T1D) is a chronic autoimmune disease resulting
from a T cell-dependent (both CD4" and CD8™") destruction of
the insulin-producing p-islets of Langerhans in the pancreas, lead-
ing to insulin deficiency and persistent hyperglycemia (Figure 1).
Upon B-cells destruction, T1D patients lose blood glucose control,
which provoke severe hyperglycemia. Even with current insulin
replacement therapies secondary complications such as heart dis-
ease, blindness, and kidney failure may arise. Diagnosis is typically
made early in life, with onset as young as 1year of age and in
most cases before the age of 18. The appearance of diabetes asso-
ciated autoantibodies in the serum is the first detectable sign of
emerging P-cell autoimmunity with over 90% of T1D patients
testing positive for at least one at the time of diagnosis. Notable
T1D auto-antigens identified include insulin, GAD65 (glutamic
acid decarboxylase, 65kDa isoform), IA2 (insulin auto-antigen
2), and zinc transporter 8 (ZNT8) (Sabbah et al., 1999; Orban
et al.,, 2009). Several reports suggest that insulin is a primary
auto-antigen for disease initiation. For example, elimination of
pro-insulin or insulin completely abolished insulitis and T1D in
NOD mice, while removal of another islet antigen, IGRP, did not
show protective effect (Krishnamurthy et al., 2006). Both, genetic
and poorly defined environmental factors act together to precipi-
tate disease progression. Most studies confirm a global increase in
incidence of T1D, particularly among young children. This likely
reflects various environmental changes, although the impact of any
individual exogenous factor has not yet been definitively proven.
Pathogens such as viruses and bacteria, early exposure to cow’s
milk, gluten, and meat preservatives and deficiency in dietary Vit-
amin D or omega 3 fatty acids have been proposed to contribute to
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the pathogenesis of T1D (Knip et al., 2005). Many epidemiological
efforts have been made to understand the potential role of viruses
in T1D pathogenesis. It is possible that viral antigenic mim-
icry could result in cross-reactive responses toward islet antigens.
The striking sequence similarities between the 2C protein from
coxsackievirus and GAD, a major auto-antigen in T1D, support
this notion (Kaufman et al., 1992). Alternatively induction of a
pro-inflammatory anti-viral response to infection, could activate
innate immune cells, break tolerance, and initiate autoimmunity.
It has also been established that in response to the viral infec-
tion, endocrine islet cells are able to produce pro-inflammatory
cytokines, such as IL-8, IL-6, TNFa, and CXCL10 that could fur-
ther trigger abnormal immune responses and T1D (Christen et al.,
2003; Berg et al., 2006). The gut microbiota, via interaction with
the host innate immune system, has been shown to modulate T1D
onset (Chervonsky, 2010). For example, in NOD mice, T1D inci-
dence dramatically decreases when mice are exposed to various
microbial products. Similarly, the so called “hygiene hypothesis”
suggests that the marked increase in T1D incidence in industri-
alized countries is related to reduced helminth burden therein
(Mathis and Benoist, 2012).

Early studies indicate that multiple genes within human leuko-
cyte antigen (HLA) on chromosome 6 are critical susceptibil-
ity loci for human autoimmune disease, including T1D. Two
T1D associated haplotypes, namely DR4-DQ8 and DR3-DQ2, are
present in 90% of children with the disease. Candidate gene stud-
ies identify insulin as a second important gene associated with
T1D susceptibility, contributing 10% of genetic susceptibility to
T1D. Over the last decade, whole genome screens have iden-
tified at least 40 other loci associated with T1D. Furthermore,
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FIGURE 1 | Timelines for type 1 diabetes. Model for temporal relationship between beta-cell mass decline and features of T1D pathogenesis. In addition to
genetic predisposition, environmental triggers induce islet autoimmunity and beta-cell death leading to prediabetes and subsequent clinical onset and

complications.

mutations in genes found in several of the susceptibility loci, such
as 1l-2, il-2ra, Ctla-4, PTPN22, il-10 have various autoimmune
manifestations, including T1D. These genes are associated with
the regulation of immune responses either by intrinsically con-
trolling T and B cell reactivity or by enhancing the development
and homeostasis of immunosuppression mediated by regula-
tory T (Treg) cells expressing Foxp3, a DNA-binding forkhead
winged helix transcriptional regulator known to drive their lineage
development.

Genetic susceptibility in humans and mice are both linked to
variations in the IL-2 signaling pathway. In humans, T1D risk
is related to the gene region encoding IL-2Ra, whereas in NOD
mice the IL-2 gene (Idd3 locus) confers susceptibility (Lyons et al.,
2000). Additionally, it has been established that phosphorylation
of STATS5, a crucial IL-2 signaling molecule, is reduced in T1D
patients, and could account for diminished Treg cell numbers
(Long et al., 2010). Furthermore, proper IL-2 signaling is essen-
tial for protection from diabetes in NOD mice. Work from our
group and others has demonstrated that protective IL-2 allelic
variants favor the expansion and suppressive function of Treg
cells directly in the islets (Sgouroudis et al., 2008). Moreover,
treatment of diabetic mice with IL-2 increases Treg cell num-
bers and induces expression of Treg cell-associated proteins such
as Foxp3, CD25, ICOS, and CTLA-4. Collectively IL-2 prefer-
entially enhances Treg immunosuppression and down-regulates

IFNy production by pathogenic, islet-infiltrating effector T cells
(Teff) (Grinberg-Bleyer et al., 2010).

FOXP3+ TREG CELLS — MASTER REGULATORS OF THE
IMMUNE SYSTEM

Natural CD4™" Treg cells which express Foxp3 and develop in the
thymus, represent a unique lineage of T cells with the ability to
suppress autoimmune and pathological responses (Figure 2, top
panel) (Piccirillo et al., 2005). They represent 1-10% of thymic
and peripheral circulating CD4™ T cells in mouse and human, and
are able to down-regulate the activation and function of various
immune effector cell subsets. Alternatively, Treg cells can differ-
entiate in the periphery from conventional T cells upon reception
of antigen-specific stimulation along with tolerogenic cytokine
signals. Natural and induced Treg cells are characterized by the
constitutive expression of the IL-2Ra chain (CD25) and prefer-
entially express Foxp3 (Fontenot et al., 2005). The importance
of Foxp3 has been demonstrated by mutations in the foxp3 gene
that result in the loss of Treg cell function and the development
of multi-organ autoimmunity, including autoimmune diabetes, in
IPEX patients and Scurfy mice (Hori et al., 2003; d’Hennezel et al.,
2012). Several factors like IL-2 and TGFP have been identified
that can enhance stabilize Foxp3 expression via demethylation of
CpG motifs within conserved regions of Foxp3 promoter (Shen
et al.,, 2009; Haiqi et al., 2011). Treg cell mediated suppression
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FIGURE 2 | Foxp3+ Treg cells control autoimmunity and T1D
pathogenesis. Foxp3+ Treg cells express high levels of Il-2Ra or CD25
and are dependent on Teff-derived Il-2. Alterations in local Il-2 production
may precipitate T1D by perturbing Treg cell function. Treg cells produce
the immunosuppressive cytokine IL-10. This results to the
down-regulation of inflammatory cytokines (IFNy and [L-17) and

decreased expansion of effector cell pools. However during the T1D
progression, inflammatory signals, can provoke loss of Foxp3
expression. These, so called ex-Foxp3 Treg cells acquire an effector cell
phenotype in terms of transcription factor expression and inflammatory
cytokine production and contribute to T1D pathology. As widely observed
features of Treg cell biology in autoimmune.

mechanisms are numerous and complex, including several cell sur-
face and soluble factors that directly control activation of effector
cells. Suppression is likely mediated via cell—cell contact dependent
mechanisms and production of immunomodulatory cytokines
such as IL-10 and TGF-B, IL-35, that inhibit DC and T cell activity
(Sakaguchi et al., 2009; Shevach, 2009).

THE IMMUNE-PROTECTIVE ROLE OF TREG CELLS IN T1D

The critical importance of Treg cells in autoimmune settings,
such as T1D, is well established (Atkinson and Leiter, 1999; Bach
and Chatenoud, 2001). In NOD mice, depletion of CD4+CD25+
Treg cells accelerates development of T1D (Salomon et al., 20005
Salomon and Bluestone, 2001). Furthermore, abolishment of co-
stimulatory pathways that are vital for Treg homeostasis, such as
CD28 and ICOS, in NOD mice exacerbates T1D (Salomon and
Bluestone, 2001; Anderson and Bluestone, 2005; Kornete et al.,
2012).

We and others have shown that T1D progression is NOD mice
is associated with a decrease in numbers and function of Treg cells
in the inflamed islets and defects in IL-2 production by effector T
cells seem largely responsible (Sgouroudis et al., 2008; Tang et al.,
2008; Tritt et al., 2008; Kornete et al., 2012). Overall, this demon-
strates that Treg cells function as major controllers of immune

homeostasis and tolerance in the periphery. However, more recent
finding indicated that Treg cells can become unstable and lose
Foxp3 expression in inflamed pancreatic sites during T1D progres-
sion (Figure 2, bottom panel) (Zhou et al.,2009; McClymont et al.,
2011). In the NOD mice, the lack of intra-islet IL-2 results in CD25
down-regulation and consequent reduction in Foxp3 expression.
These ex-Foxp3+ T cells produce inflammatory cytokines, such as
IFNy and IL-17 and have increased immunopathogenic potential
upon adoptive transfer (Zhou et al., 2009). A similar observation
has been made in T1D patients, in which a significant increase in
the number of IFNy and IL-17 secreting Foxp3+ Treg cells was
observed (McClymont et al., 2011).

BETA (B) CELLS: REGENERATION AND
TRANS-DIFFERENTIATION

The presence of B-cells in patients with long lasting T1D, despite
ongoing autoimmunity, suggests that regeneration of p-cells may
occur. About 60% of T1D patients enter a clinical “honeymoon
phase,” lasting between 3 months and 2 years, and characterized
by improved insulin secretion to the extent that some patients can
discontinue exogenous insulin (Muhammad et al., 1999; Abdul-
Rasoul et al., 2006). B-cells have a robust capacity to regenerate
by proliferation, likely in response to inflammation-driven signals
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(Akirav et al., 2008). Furthermore, recent studies revealed a pre-
viously unrecognized plasticity of endocrine cells in the pancreas.
However, depending on the nature of experimental B-cell destruc-
tion, these studies reached divergent conclusions regarding the
origin of new f-cells. Supporting the hypothesis of self-renewal,
partial abolition results in B-cell regeneration from surviving f-
cells (Dor et al., 2004; Nir et al., 2007). However, when more >99%
of B-cells are chemically destroyed, new B-cells are generated either
via differentiation of endocrine and islet precursors (Guz et al,,
2001; Thyssen et al., 2006) or by spontaneous reprograming of
differentiated endocrine cell types such as 3-cells (Fernandes et al.,
1997) or a-cells (Chung et al., 2010; Thorel et al., 2010; Zaret and
White, 2010).

Several factors have been proposed to influence p-cells regen-
eration. Inflammation, though driving autoimmune responses, is
implicated in B-cells proliferation. For example, while Th1 cell-
derived IFN-y is the main mediator of diabetogenesis in the
NOD mice, the transgenic expression of IFN-y enhances p-cells
proliferation and survival (Tuch et al., 1991; Ablamunits et al.,
2007). Similarly, inflammatory cytokines such as IL-1f, nitric
oxide (NO), and TNF-a were shown to cause p-cell replication
(Donath et al., 2003; Luo et al., 2005). More recently, Herold’s
group demonstrated that increased B-cell proliferation depends
on the inflammatory infiltrate itself and immunotherapeutic reg-
imens, namely administration of anti-CD3 mAb and Foxp3™
Treg cells that suppress inflammatory T cells, also decrease B-cell
replication (Sherry et al., 2006).

THE CONTROL OF T1D COMPLICATIONS BY TREG CELLS: THE
CASE FOR ATHEROSCLEROSIS

Persistent, dysregulated inflammation contributes to the develop-
ment of secondary chronic disorders such as vascular or neurode-
generative disease in T1D patients. One of the most common T1D
complications is atherosclerosis, an inflammatory disorder of the
arterial wall caused by the retention of cholesterol in the sub-
endothelial region of the artery. Whereas inflammation is driven
by both innate and adaptive immune effector cells, recent stud-
ies suggest that Foxp3+ Treg cells control the development and
progression of atherosclerosis (Veillard et al., 2004; de Boer et al.,
2007). Treg cells account for 1-5% of T cell population within
atherosclerotic lesions in which they produce of immunomodu-
latory cytokines, such as IL-10 and TGF-f (de Boer et al., 2007).
Pro-atherogenic ApoE-deficient mice exhibit significantly lower
numbers of Treg cells than their wild type counterparts (Mallat
etal.,,2003). The role of Treg cells was further elucidated via gener-
ation of low density lipoprotein receptor knock-out chimeric mice
(Ait-Oufella et al., 2006). Reconstitution of these mice following
irradiation with CD80/CD86 and CD28 deficient bone marrow
cells resulted in a marked reduction in Treg cells and an increase in
atherosclerotic lesion size compared to control mice (Ait-Oufella
et al., 2006). Finally, various successful immune therapies used in
atherosclerosis suggest an important role for Treg cells. Use of anti-
CD3 mAB reduced plaque formation when administered prior to
a high cholesterol diet and markedly decreased lesion progres-
sion in mice with established atherosclerosis (Steffens et al., 2006).
Vaccine administration into atherosclerotic prone mice of pro-
atherogenic auto-antigens, such as apolipoprotein B-100 or heat

shock protein, led to the inhibition of atherosclerosis development.
Both treatments resulted in increased production of Foxp3+ Treg
cells and secretion of TGF-f and IL-10 (van Puijvelde et al., 20063
Klingenberg et al., 2010).

THE PATHO-PHYSIOLOGY OF TYPE 2 DIABETES AND ITS
COMPLICATIONS

Whereas the autoimmune etiology of T1D pathogenesis is well
established, T2D was historically considered a non-immune con-
dition. However, recent work highlighting adiposity-associated
chronic inflammation in T2D implicates immune mediators in
metabolic dysregulation. In conjunction with adipocytes, the
innate and adaptive immune system drives systemic inflamma-
tion, promoting both insulin resistance and associated complica-
tions such as diabetic nephropathy (DN). As crucial mediators of
peripheral tolerance, it is not surprising that within this environ-
ment Treg cells are key regulators of adipose tissue inflammation
and resultant diabetogenesis.

Excess adiposity is associated with an increase in serum C-
reactive protein (CRP) and pro-inflammatory cytokines such as
IL-6 in humans (Visser et al., 1999). Furthermore, insulin resis-
tance positively correlated with the levels of these cytokines in
the blood of T2D patients (Bruun et al., 2003). The mechanism by
which inflammatory mediators can disrupt intracellular metabolic
signaling has been elucidated in mouse models. Stimulation of the
JNK and NF-kB pathways by pro-inflammatory cytokines activates
negative regulators of the insulin receptor pathway. Specifically
JNK and IKK-f phosphorylate insulin receptor substrate 1 (IRS1)
inhibiting tyrosine phosphorylation by the insulin receptor (Arkan
et al., 2005; Sabio et al., 2010). Genetic ablation of these kinases
results in significant amelioration of insulin resistance. Thus cross
talk between insulin receptor and inflammatory signaling cascades
can disrupt cell metabolism and exacerbate insulin resistance.

In addition to the predominant adipocyte population, lean
adipose tissue contains an appreciable number of leukocytes in
the absence of inflammation, suggesting involvement in fat tissue
homeostasis (Lumeng et al., 2007; Feuerer et al., 2009). How-
ever, profound accumulation of inflammatory immune infiltrates
accompanies the accrual of lipids in the visceral adipose tissue
(mVAT) of obese mice (Weisberg et al., 2003; Nishimura et al.,
2009). Most notably, macrophages of the inflammatory M1 sub-
type predominate in obese VAT over tolerogenic M2 macrophages
found in lean fat (Lumeng et al., 2007). The M1 phenotype is
the major source of pro-inflammatory cytokines that promote
insulin resistance in adipocytes. Though in humans a dichotomous
M1/M2 paradigm is absent, macrophages nonetheless accumu-
late in obese fat and drive inflammation (Zeyda et al., 2007).
Recently, CD8" Teff cells have been identified as key regulators
of macrophage recruitment and switch to the M1 type in obese
adipose tissue (Nishimura et al., 2009). CD8™ cells were observed
prior to macrophage populations in VAT of mice when obesity was
induced via high fat diet (HFD). Furthermore, in CD8 depleted or
deficient mice on HFD, VAT macrophage infiltration and pheno-
typic switch was repressed and indices of metabolic dysfunction
significantly ameliorated. Others have proposed that CD4™ T} 1
cells coordinate adipose tissue inflammation, describing restored
insulin sensitivity via T 1 cell depletion in a HFD mouse model of
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obesity (Winer et al., 2009). Collectively, these studies posit that T
lymphocytes drive adipose tissue macrophage (ATM) recruitment
and differentiation and consequent chronic inflammation in T2D.

In contrast, T lymphocytes can also exact essential regulatory
function in adipose tissue. In both mouse and human, Foxp3™
Treg cells have been found in both VAT and subcutaneous fat
(SAT) (Feuerer et al., 2009; Eller et al., 2011; Zeyda et al., 2011).
Indeed Treg cells comprised more than half of the total CD4 com-
partment in VAT of healthy C57BL/6 mice (Feuerer et al., 2009).
These Treg cells produce high quantities of the anti-inflammatory
cytokine IL-10 and uniquely express nuclear receptor PPAR-y,
which is necessary for their homeostasis and regulatory func-
tion in VAT (Feuerer et al., 2009; Cipolletta et al., 2012). Gene
expression profiling indicates PPAR-y and Foxp3 may coordi-
nately regulate VAT Treg transcriptional programs necessary to
suppress adipose-associated inflammation. This could be akin to
how recently identified Treg subsets are phenotypically specified to
suppress Ty 1, Th2, or T, 17 responses (Campbell and Koch, 2011).
While in both genetic and diet-induced mouse models a waning
of VAT Treg cells accompanies increasing adiposity, the effect of
obesity on VAT Treg cell numbers in humans remains contro-
versial (Feuerer et al., 2009). Whereas some groups have found
FOXP3 expression to negatively correlate with BMI, others report
no change or an increase in FOXP3 in the fat of obese individu-
als compared to normal BMI controls (Feuerer et al., 2009; Eller
et al., 2011; Zeyda et al., 2011). However, these studies indirectly
enumerate Treg cells via gPCR rather than flow cytometry and
thus do not discriminate between FOXP3 expression by bona fide
Treg cells, and transient FOXP3 upregulation by Teff cells upon
activation. Nevertheless, such findings highlight the risk in literal
application of established mouse models to human T2D.

Thus T cells direct adipose-induced systemic inflammation and
therefore may indirectly promote T2D complications via meta-
bolic disruption. Further evidence suggests T cells could mediate
immunopathology directly in the target organ. For instance, pro-
found infiltration of the kidneys by activated T cells is associated
with the development of DN in T2D patients (Moon et al., 2012).
This is accompanied by macrophage accumulation and produc-
tion of pro-inflammatory cytokines such as IFN-y and IL-1f
(Galkina and Ley, 2006). However the relative contribution of
inflammatory verses metabolic and hemodynamic factors to the
initiation and progression of renal lesions remains unclear. A study
of DN in db/db mice suggests Treg cells may dampen kidney
immunopathology (Eller et al., 2011). Treg depletion via admin-
istration of anti-CD25 antibodies exacerbated nephropathy, renal
dysfunction and leukocyte infiltration of the kidneys. Further-
more, adoptive transfer of Treg cells into db/db mice improved
kidney function and ameliorated DN. Thus, Treg cells suppress
inflammation both at the primary and secondary sites of T2D
pathogenesis. Like in T1D, Treg cells may represent a key home-
ostatic checkpoint that, if breached, results in the breakdown of
peripheral tolerance and progression of autoreactive responses.

IMMUNOTHERAPEUTIC STRATEGIES: CURRENT AND
FUTURE AVENUES

Type 1 diabetes susceptibility and pathogenesis results from
a complex interplay between genetic, environmental, and

immunological factors. Therefore, a multi-faceted solution is likely
necessary to effectively treat T1D. An ideal immunotherapy would
simultaneously shut down pathogenic T cells and enhance regu-
latory mechanisms, while also promoting p-cell regeneration or
neogenesis. All three therapeutic goals have been proposed to
occur through anti-CD3 mAB therapy. Anti-CD3 works as an
immune suppressant, promotes antigen-specific Treg cells and
both increases and preserves B-cell mass. Anti-CD3 mAB causes
internalization of the CD3-TCR complex and prevents Teff cells
from recognizing antigen. Furthermore it affects TCR-mediated
signal transduction and provokes apoptosis and anergy of Teff cells
(Chatenoud etal., 1982,1994). Beyond modulation of effectors cell
pools, anti-CD3 has recently been shown to promote induction
and stabilization of Treg cells (You et al., 2007; Penaranda et al.,
2011). Two independent clinical trials using either Teplizumab
(United States) or Otelixizumab (Europe) led to the sustained
preservation of insulin production. In NOD mice, anti-CD3 ther-
apy permanently reversed diabetes and in humans C-peptide levels
were sustained from 1 to 5 years, demonstrating long term protec-
tion could be obtained (Herold et al., 2002, 2009; Keymeulen et al.,
2005).

Can antigen-specific therapies prevent the immune-driven
pathology in disease? In T1D, several studies had focused on the
use of insulin and GADG65 as a primary targets for antigen-specific
therapies as they are proposed to be key initiating auto-antigens in
NOD mice and major auto-antigens in human. The most promi-
nent clinical trial so far involves oral insulin administration in
first-degree relatives of T1D patients with high levels of insulin
autoantibodies. This regimen modulates diabetogenic immune
responses and consequently delays diabetes onset by as much as
5years (Skyler et al., 2005). In addition, a single injection of the
GAD-alum vaccine, the most successful antigen-specific therapy
to date, delayed the loss of C-peptide production in new onset T1D
children and adolescents (Ludvigsson et al., 2008). Administration
of agents such as gastrin that stimulate beta cell neogenesis without
increasing proliferation, can minimize antigen spread and prevent
p-cell loss (Rooman et al., 2002). Lastly, modulation of local tissue
or systemic metabolism, possibly by targeting the PPAR-y path-
way, may impact the generation of adipose-related Treg cells and
suppress local inflammatory responses.

CONCLUSION

Thus in T1D and T2D, inflammation in the target tissue and at
secondary sites drives disease progression. Whereas in T1D this
response is quintessentially autoimmune, the factors that initiate
adipose tissue inflammation in T2D have yet to be elucidated.
However, in both conditions innate and adaptive leukocyte infil-
tration and local tissue destruction instigate chronic systemic
inflammation. This promotes diabetogenic complications includ-
ing autoimmune responses at secondary tissues and metabolic
perturbation in T2D. Treg cells, potent suppressors of autoimmu-
nity in the periphery, can dampen immune effector cell responses
in the B-islets. Furthermore, an important role for this subset in
inflamed adipose tissue has recently been characterized. Thus,
enhancing the activity of Treg cells may present a therapeutic
avenue to limit type 1 and type 2 diabetes pathogenesis and its
complications.
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