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The peripheral circadian oscillator plays an essential role in synchronizing local physiology to
operate in a circadian manner via regulation of the expression of clock-controlled genes.The
present study aimed to evaluate the circadian rhythms of clock genes and clock-controlled
genes expressed in the rat uterus endometrial stromal cells (UESCs) during the stage of
implantation by a DNA microarray. Of 12,252 genes showing significantly expression, 7,235
genes displayed significant alterations. As revealed by the biological pathway analysis using
the database for annotation, visualization, and integrated discovery online annotation soft-
ware, genes were involved in cell cycle, glutathione metabolism, MAPK signaling pathway,
fatty acid metabolism, ubiquitin mediated proteolysis, focal adhesion, and PPAR signaling
pathway.The clustering of clock genes were mainly divided into four groups: the first group
was Rorα,Timeless, Npas2, Bmal1, Id2, and Cry2; the second group Per1, Per2, Per3, Dec1,
Tef, and Dbp; the third group Bmal2, Cry1, E4bp4, Rorβ, and Clock ; the fourth group Rev-
erbα. Eleven implantation-related genes and 24 placenta formation-related genes displayed
significant alterations, suggesting that these genes involved in implantation and placenta
formation are controlled under circadian clock. Some candidates as clock-controlled genes
were evaluated by using RNA interference to Bmal1 mRNA. Down-regulation of Igf1 gene
expression was observed by Bmal1 silencing, whereas the expression of Inhβa was signif-
icantly increased. During active oscillation of circadian clock, the apoptosis-related genes
Fas and Caspase3 remained no significant changes, but they were significantly increased
by knockdown of Bmal1 mRNA. These results indicate that clock-controlled genes are up-
or down-regulated in rat UESCs during the stage of decidualization. DNA microarray analy-
sis coupled with RNA interference will be helpful to understand the physiological roles of
some oscillating genes in blastocyst implantation and placenta formation.

Keywords: uterus endometrial stromal cells, clock genes, clock-controlled genes, DNA microarray, implantation,
decidualization, Bmal1 siRNA, Per2-dLuc reporter gene

INTRODUCTION
Circadian rhythms are primarily synchronized with environmen-
tal time by the 24-h period of light-dark cycle. In mammals, the
master clock in the suprachiasmatic nucleus coordinates the sub-
sidiary oscillators in the majority of peripheral tissues. However,
autonomic circadian oscillators are also functional in peripheral
tissues. The peripheral circadian oscillators play critical roles in
synchronizing local physiology and metabolism to operate in a cir-
cadian manner via regulation of the expression of clock-controlled
genes (1). These physiological processes mainly include hormonal
secretion, gluconeogenesis, lipogenesis, and bile acid homeostasis
(2–4). In addition, cellular differentiation may cause the suspen-
sion of the cyclic expression of clock genes (5, 6). Recent studies
suggest that the circadian system is not only required for proper
growth control, but also involved in the circadian regulation of cell

proliferation and apoptosis. It has been reported that 2–10% of all
mammalian genes are controlled under the circadian clock (1, 7,
8). Most of these genes are involved in organ functions and show
tissue-specific expression. Only a small set of the clock-controlled
genes are expressed in multiple organs. Among them are genes that
encode key regulators of cell cycle progression (9, 10).

Several recent studies have demonstrated that circadian clock
genes are rhythmically expressed in the uterus (2, 11–15). In the
uterus composed of heterogeneous cell types, ovarian steroids
regulate the proliferation and differentiation of uterus endome-
trial stromal cells (UESCs). In rodents and humans, the UESCs
undergo proliferation and differentiation into decidual cells in
response to ovarian steroids and blastocyst implantation at the
early stage of pregnancy (16–18). This process ultimately results
in the formation of the placenta.
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Mice lacking the Clock gene display abnormal estrus cycles and
are infertile (19, 20). Furthermore, implantation fails in Bmal1
deficient mice, due to impaired steroidogenesis (21), and muta-
tions of Per1 and Per2 in mice display reproductive deficits in the
middle-aged mutant females (22). More recently, we proved the
Per2 expression is down-regulated in the UESCs during decid-
ualization that influences the expression of vascular endothelial
growth factor A (Vegfa) gene (23). Deregulation of the circadian
clock may attenuate or disrupt expression of the clock-controlled
genes and can have a profound influence on organ functions.
Studies have demonstrated that the circadian clock function is
very important for cell cycle, DNA damage response, and tumor
suppression in vivo (24–26).

In the present study, to search the clock-controlled genes
expressed during the period of implantation, we analyzed the
expression of the clock genes and clock-controlled genes in
cultured UESCs prepared from pregnant rats at the stage of

implantation using DNA microarray technology. We used trans-
genic rats constructed with mouse Per2 promoter-destabilized
luciferase (Per2-dLuc) reporter gene (27) to precisely adjust the
time of gene expression. In addition, several genes of significantly
expressed genes including growth factor genes and apoptosis-
related genes were analyzed using RNA interference (siRNA) to
Bmal1 mRNA to determine whether these were controlled under
circadian clockwork.

MATERIALS AND METHODS
ANIMALS
Mouse Per2 promoter region, assembly by NCBI and the Mouse
Genome Sequencing Consortium, was fused to a dLuc reporter
gene (27). Per2-dLuc transgenic rats were generated in accordance
with the method described in the patent publication number
WO/2002/081682 (Y.S. New Technology Institute, Utsunomiya,
Japan). Adult females were mated with fertile males, and 12:00 p.m.

Table 1 | siRNAsequences targetingBmal1 mRNA.

Target sequence 5′-3′ siRNA sequence5′-3′

siRNA1 GAAAAGAGGCGUCGGGACA (829–847) F:GAAAAGAGGCGUCGGGACAdTdT

R: UGUCCCGACGCCUCUUUUCdTdT

siRNA2 CAGUAAAGGUGGAAGAUAA (1358–1376) F: CAGUAAAGGUGGAAGAUAAdTdT

R: UUAUCUUCCACCUUUACUGdTdT

siRNA3 GAGAAAAGAUCACGACUAA (1775–1793) F: GAGAAAAGAUCACGACUAAdTdT

R: UUAGUCGUGAUCUUUUCUCdTdT

Non-silencing RNA (control) – F: UACUAUUCGACACGCGAAGdTdT

R: CUUCGCGUGUCGAAUAGUAdTdT

Table 2 | Primer sequences for the targeted genes in qRT-PCR.

Gene Accession No. Sequence 5′-3′ Amplicon (bp)

Bmal1 NM_024362 F: CCGTGGACCAAGGAAGTAGA 97

R: CTGTGAGCTGTGGGAAGGTT

Rev-erbα NM_031134 F: ACAGCTGACACCACCCAGATC 102

R: CATGGGCATAGGTGAAGATTTCT

Dbp NM_012543 F: GCAAGGAAAGTCCAGGTGCCCG 95

R: GCGTCTCTCGACCTCTTGGCT

Igf1 NM_178866 F: GTGTCCGCTGCAAGCCTAC 9

R: CAAGTGTACTTCCTTCTGAGTCTTGG

Inhβa NM_017128 F: ATGTGCGGATTGCTTGTG 95

R: CTTCCCGTCTCCATCCA

Fas NM_139194 F: TGCACCCGGACCCAGAATACCA 133

R: TGCTGGTTCGTGTGCAAGGCTC

Caspase3 NM_012922 F: GCGGAGCTTGGAACGCGAAGAA 120

R: ATCGGCAGTGGTGTCGGCGA

Gapdh NM_017008 F: AACCTGCCAAGTATGATGACATCA 111

R: ACAACTTCGGCGTCCTCTGTTGGA
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FIGURE 1 | Isolation protocols of total RNA samples from cultured
uterus endometrial stromal cells after dexamethasone
synchronization. According to the second to the third phases of the
Per2-dLuc oscillation, total RNA samples (n=3) individually isolated from
cultured UESCs at 30, 36, 42, and 48 h (shadow area) after dexamethasone
synchronization were used for microarray analysis.

Table 3 | Number of altered genes with fold change in the rat UESCs

as revealed by microarray analysis.

Sampling time (h) Number of genes

30 36 42 48

30 – 9 17 179

36 8 – 14 90

42 30 27 – 48

48 90 37 10 –

Red: number of up-regulated genes.

Blue: number of down-regulated genes.

on the day of finding spermatozoa in the vaginal smear was desig-
nated as day 0.5 of gestation. All the experiments were performed
under the control of the Guidelines for Animal Experiments in
the Faculty of Medicine, Kyushu University, and Law No. 105 and
Notification No. 6 of the Government of Japan.

PREPARATION AND CULTURE OF UESCs
The UESCs were isolated from Per2-dLuc transgenic rats on day
4.50 of gestation as reported previously (6, 28, 29). The harvested
cells were washed thrice with fresh DMEM/F12, and seeded onto
35 mm collagen-coated dishes at the density of 2× 105 cells/dish
with 2 mL of culture medium (phenol red-free DMEM/F12 sup-
plemented with 10% charcoal-treated FBS and 1×PS). The culture

medium was replaced at 15 min after cell seeding to remove epithe-
lial cells. Cells were cultured in a humidified atmosphere of 95% air
and 5% CO2 at 37°C for 2 days. Then, cells were cultured in serum-
free medium supplemented with 1× antibiotic-antimycotic (AA;
Nacalai Tesque, Kyoto), 1× Insulin-Transferrin-Selenium (ITS,
Life Technologies, Grand Island, NY, USA), 0.1% bovine serum
albumin (BSA, Sigma Chemicals), and 100 nM progesterone (P4,
Sigma Chemicals) for additional 2 days prior to other treatments.

REAL-TIME MONITORING OF Per2-dLuc OSCILLATIONS
The cultured UESCs were synchronized with 100 nM dexam-
ethasone for 2 h in the serum-free medium containing 1× AA.
Then, cells were given the serum-free medium DMEM/F12 sup-
plemented with 15 mM HEPES, 0.1 mM luciferin (Wako, Tokyo),
0.1% BSA, 1× AA, and 1× ITS, and subjected to luminescence
determination. Luciferase activity was chronologically monitored
at 37°C with a Kronos Dio AB-2550 luminometer (ATTO, Tokyo)
interfaced to a computer for continuous data acquisition, as
described previously (6, 13, 14). The amplitude and period of Per2-
dLuc oscillations were documented by the single Cosinor method
using Timing Series Single 6.3 (Expert Soft Tech., Richelieu,
France).

MICROARRAY ANALYSIS
RNA samples isolated from cultured UESCs at 30, 36, 42, and
48 h after dexamethasone synchronization were used for microar-
ray analysis using the Whole Rat Genome Microarray 4× 44 K
Ver3.0 (Agilent Technologies, Santa Clara, CA, USA) represent-
ing 30,367 probe sets. The preparation of the samples, microarray
hybridizations, and bioinformatics analysis were performed by the
Cell Innovator at the Kyushu University (Fukuoka, Japan). Bioin-
formatics analysis was performed using Agilent Future Extraction
software (Agilent Technologies). The data were filtered for sig-
nal intensity values (p≤ 0.05, detectable), which allowed remov-
ing very low signal values. After this filtering, 12,252 probe sets
remained. Probe sets passing the quality control were then ana-
lyzed by ANOVA, and p-values of <0.05 were considered signif-
icant. The ratio from signal intensity values of four time points
was calculated. For the pathway analysis, probe sets were then
used for gene ontology analysis using Database for Annotation,
Visualization, and Integrated Discovery (DAVID) Bioinformatics
Resources (http://david.abcc.ncifcf.gov/) (30). Pathways regulated
at p < 0.05 were considered significant.

BMAL1 siRNA TRANSFECTION
Three sequences targeting the Bmal1 mRNA and no silencing RNA
for rat were purchased from BOVAC Co. (Kurume, Japan). The
sequences of RNA oligos used are listed in Table 1. The scrambled
RNA for rat was used as no silencing RNA (BOVAC Co.). Both
the Bmal1 siRNA and no silencing RNA were used at final con-
centrations of 25 nM. The cells were maintained with transfection
medium for duration of 12 h (31). Then the medium was replaced
with DMEM/F12 supplemented with 1× AA, 1× ITS, 0.1% BSA,
and 100 nM P4.

RNA EXTRACTION AND RT-qPCR
Cultured cells were harvested at the indicated times, and total RNA
was isolated using RNeasy Mini kit (Qiagen), according to the
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manufacturer’s protocol. RNA samples were treated with RNase-
free DNase I (Qiagen). The cDNAs were generated by reverse
transcription with random primers using a High Capacity Reverse
Transcription kit (Applied Biosystems). One microgram of total
RNA were reverse transcribed in 20 µL of mixture using MMLV
High Performance Reverse Transcriptase (Epicentre Biotechnolo-
gies) and Oligo-dT primer according to the manufacture’s pro-
tocol. Primer sets used for real-time PCR were listed in Table 2.
PCR was performed with a 1:15 dilution of cDNA samples in
Master SYBR Green I mixture (Roche Diagnostics) with specific
primers (0.25 µM final of each primer) using Mx3000P Real-time
QPCR System (Stratagene). Relative quantification of the mRNA
levels was performed using the comparative cycle threshold (∆Ct)
method. The ∆Ct for each sample was normalized to Gapdh and
expressed as relative to the control values (23).

STATISTICAL ANALYSES
All data are presented as means± SEM of at least three separate
experiments, each performed with triplicate samples. The ampli-
tude of Per2-dLuc was documented by Cosinor analysis using
Timing Series Single 6.3 (Expert Soft Tech., Richelieu, France).
The statistical differences of examined values of target genes
in cultured UESCs were determined by Student’s t -test using
SigmaPlot software (Ver. 11.2; Systat Software, San Jose, CA, USA).
Differences were considered significant at p < 0.05 or less.

RESULTS
DNA MICROARRAY ANALYSIS OF OSCILLATING GENES EXPRESSED IN
THE RAT UESCs AFTER DEXAMETHASONE SYNCHRONIZATION
During monitoring of Per2-dLuc activity oscillation, RNA samples
were prepared at 30, 36, 42, and 48 h after dexamethasone

synchronization and global gene expression patterns were deter-
mined using DNA microarray technology (Figure 1). The analy-
sis revealed 7,235 significantly altered genes in the UESCs. The
increased expression (357 genes) and decreased expression (202
genes) of genes showing with fold change were obtained from
7,235 significantly altered genes at four time points during oscilla-
tion (Table 3). The majority of fold-changed genes were identified
in both RNA samples 30 versus 48 h and 36 versus 48 h, includ-
ing growth factors, transcription factors, receptors, channels, and
enzymes (Table 4). For example, the expression of growth fac-
tors such as Inhβb, Gdf10, and Gdf15 were increased during the
interval, whereas the expression of Igf1 was decreased. To place
the microarray results in the cellular context, we performed the
biological pathway analysis using the DAVID online annotation
software. This analysis revealed that genes were involved in cell
cycle, glutathione metabolism, MAPK signaling pathway, fatty acid
metabolism, ubiquitin mediated proteolysis, focal adhesion, PPAR
signaling pathway, and so on (Table 5). It was identified that the
expression of 38 cell cycle related genes were significantly altered
during the second to third phase of Per2-dLuc activity oscillation
(p < 0.00001).

FUNCTIONAL MOLECULAR MACHINERY OF A CIRCADIAN CLOCK
EXISTS IN THE RAT UESCs AFTER DEXAMETHASONE
SYNCHRONIZATION
In order to determine whether 18 clock genes displayed diur-
nal rhythmic expression, we performed gene clustering on the
microarray results. The gene expression profiles were mainly
divided into four groups: the first group was Rorα, Timeless, Npas2,
Bmal1 (Arntl), Id2, and Cry2; the second group Per1, Per2, Per3,
Dec1 (Bhlhe40), Tef, and Dbp; the third group Bmal2 (Arntl2),

Table 4 | Representative genes altered with fold change as revealed by DNA microarray.

Category Accession No. Representative genes (gene symbols) Direction of change*

Growth factors NM_080771 Inhibinβ-B (Inhβb) Up

NM_024375 Growth differentiation factor 10 (Gdf10) Up

NM_019216 Growth differentiation factor 15 (Gdf15 ) Up

NM_012561 Follistatin (Fst ) Down

NM_178866 Insulin-like growth factor 1 (Igf1) Down

Transcription factors NM_001108393 Zinc finger, MIZ-type containing 1 (Zmiz1) Down

NM_012543 D site of albumin promoter binding protein (Dbp) Up

NM_001011998 F-box protein 9 (Fbxo9) Down

Receptors NM_001025680 G-protein-coupled receptor 4 (Gpr4) Up

NM_133306 Oxidized low density lipoprotein receptor 1 (Olr1) Up

Channels NM_012778 Aquaporin-1 (Aqp1) Up

G-protein signaling NM_053453 Regulator of G-protein signaling 2 (Rgs2) Down

NM_019341 Regulator of G-protein signaling 5 (Rgs5 ) Down

Enzymes NM_133530 Matrix metallopeptidase 13 (Mmp13) Up

NM_001108344 Ubiquitin-conjugating enzyme E2T(Ube2t ) Up

NM_001029904 Ribonuclease1 (Rnase1) Up

NM_017000 Quinone 1 (Nqo1) Up

*Compared at 30 versus 48 h or 36 versus 48 h.
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Table 5 | Pathway analysis of DNA microarray using DAVID online

annotation software.

Pathways (gene No.) Representative genes

contained within each pathway

p-Value

Cell cycle (38) Cdc23, Cdc45, Bub1, Bub3, Ccna2,

Ccnb1, Ccnd3, Cdkn1b, Cdkn1c,

Gadd45a, Plk1, Bmyc, Mdm2

<0.00001

Glutathione metabolism

(19)

Gsta3, Gsta5, Gstk1, Gstm1, Gsto1,

Gstm5, Gstt2, Idh1, Mgst1, Mgst2,

Srm

<0.0001

MAPK signaling (55) Mknk2, Rasa1, Chp, Cacna2d1,

Cacna1i, Cacna1g, Cacna1i,

Cacna1c, Dusp5, Dusp6, Gadd45g,

Gnb4, Map3k7, Mapk8ip1, Map3k6,

Map4k4, Pla2g6, Ppm1a, Ppm1b

0.00411

Fatty acid metabolism

(14)

Adh1, Aldh3a2, Aldh9a1 0.00452

Ubiquitin mediated

proteolysis (30)

Cul5, Pias4, Ttc27, Tceb2, Ube3c,

Ube2j1, Ube2b, Ube2cbp, Ube2d3,

Ube2k, Ube2s, Ube2z, Uba1, Ube4a

0.00559

Focal adhesion (42) Col1a1, Col1a2, Col5a1, Col6a1,

Itfg1, Itgb1bp1, Itga11, Itgb5,

Lamb2

0.00631

PPAR signaling (19) Fads2, Lpl, Me1, Olr1, Pltp, Scd,

Scd1

0.00968

mTOR signaling (15) Ddit4l, Cab39l, Eif4ebp2, Eif4ebp1,

Rptor, Rps6ka1, Pdpk1

0.0148

Neurotrophin signaling

(28)

Irak3, Ngf, Ngfrap1, Plcg1, Psen1,

Pdk1, Nras, Rac1, Raf1

0.0189

Endocytosis (40) Arfgap1, Atg2a, Asap1, Acap2,

Ehd4, Git2, Rt1aa, Rab22a,

Sh3glb1, Sh3kbp1, Dab2, Lrp11

0.0272

Gap junction (19) Csnk1d, Gnai2, Tjp1, Tubb2a, Tubb3,

Tubb4a, Gnas, Lpar1

0.0356

SNARE interactions in

vesicular transport (11)

Snap23, Stx12, Stx1a, Vamp2,

Vamp3, Vamp4, Vamp7, Vamp8

0.0375

Cry1, E4bp4 (Nfil3), Rorβ, and Clock; the fourth group Rev-erbα
(Nr1d1) (Figure S1 in Supplementary Material). The Per2 intensity
profile was consistent with Per2 circadian oscillation (Figure 2).
Profiles of Bmal1 and Rev-erbα expression were obviously anti-
phase in the UESCs, because Bmal1 promotes Rev-erbα transcrip-
tion with Clock and in turn Rev-erbα inhibits Bmal1 transcription
through its binding to the RORE in the promoter region. The Per2
and Dbp expression profiles were also out-of-phase with the Bmal1
rhythm. The protein kinase genes such as Csnk1ε and Csnk1δ also
displayed the weak rhythmic expression (Figure 2). The expression
profiles of core clock genes such as Bmal1, Clock, Per1, Per2, and
Rev-erbα were further confirmed by RT-qPCR. As the results are

shown in Figure 3, their profiles were very similar to the microar-
ray results. The Cosinor analysis method was used to determine
the rhythmic expression of examined genes. Bmal1, Per1, Per2, and
Rev-erbα displayed rhythmic expression (p < 0.05).

SIGNIFICANT ALTERATIONS OF GENES RELATED TO EITHER
IMPLANTATION OR PLACENTA FORMATION
In order to determine whether genes involved in implantation or
placenta formation displayed significant alteration, we performed
gene clustering on the microarray results. As the gene cluster-
ing is shown in Figure S2 in Supplementary Material, 11 genes
of 33 implantation-related genes displayed significant alterations
(p < 0.05). Of 11 significantly altered genes, three genes such as
Bsg, Pcsk5, and Klf9 were up-regulated, whereas Tgfβr2, Pparδ,
Ptgs2, Grn, and Fkbp4 were significantly down-regulated.

The results of gene clustering for placenta formation are shown
in Figure S3 in Supplementary Material. Twenty-four genes of 107
placenta formation-related genes displayed significant alterations
(p < 0.05). Of 24 significantly altered genes, nine genes Txnrd1,
Pgf, Pkd2, Hif1a, Ccnf, Plac9, Prdx3, Adm, and Pbrm1 were up-
regulated, whereas Plac8, Prdm1, Rspo3, Tmed2, Dcn, Epas1, and
Stk3 were significantly down-regulated. These results indicate that
these genes involved in implantation and placenta formation may
be controlled under circadian clock.

UP-REGULATION AND DOWN-REGULATION OF GENES RELATED TO
CELL GROWTH AND APOPTOSIS
Of fold-changed genes (Table 4), we focused on Inhβb and Igf1
that were regulated with opposite directionality. Both Inhβa and
Inhβb were high in signal intensity, whereas Inha was low, indi-
cating that activin, but not inhibin, is highly produced in the
UESCs. The Fst gene coding the activin-binding protein follis-
tatin was down-regulated. In contrast to Inhβa and Inhβb, Igf1 was
down-regulated, whereas its binding proteins Igfbp3 and Ifgbp4
were rather increased (Figure 4). Consequently, the activities of
activin and IGF1 may be differentially regulated during circadian
rhythms. During active oscillation of circadian clock, however, the
apoptosis-related genes Fas and Caspase3 remained no significant
changes (Figure 4).

EFFECT OF Bmal1 KNOCKDOWN ON THE EXPRESSION OF GENES
RELATED TO CELL GROWTH AND APOPTOSIS IN THE RAT UESCs
In order to suppress the cellular clock in the UESCs, Per2-dLuc
oscillations were investigated using Bmal1 siRNA (siRNA) or no
silencing RNA (CONT). The UESCs transfected with either RNA
displayed several Per2-dLuc oscillations. A decline of Per2-dLuc
bioluminescence oscillation and significantly decreased amplitude
(p < 0.01, versus CONT) were observed in Bmal1 siRNA treated
cells (Figure 5A). There was not a significant effect of Bmal1
siRNA treatment on the peak time of the first phase and the cycle
time (data not shown). The transcript levels of core clock genes
were estimated at the peak time of the first phase. The results
are shown in Figure 5B. Bmal1 mRNA expression was inhib-
ited after transfection with Bmal1 siRNA, the Bmal1 transcript
level being reduced by 60% compared with that in the CONT
group. Rev-erbα and Dbp are regarded as core circadian oscillator
genes that fall under the regulation of Bmal1-Clock heterodimer
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FIGURE 2 | Expression profiles of clock genes and protein kinase genes in the uterus endometrial stromal cells of pregnant rats after dexamethasone
synchronization. Each value represents the means±SEM (n=3) of signal intensity from the microarray results.

through E-box elements located in their promoter regions. Thus
Rev-erbα and Dbp were significantly down-regulated in Bmal1
siRNA cells.

In addition, we observed that the mRNA expression of sev-
eral uterus genes (Igf1, Inhβa, Fas, and Caspase3) was differen-
tially affected by the Bmal1 siRNA treatment. The expression
of Igf1 gene was significantly down-regulated by Bmal1 silenc-
ing (p < 0.05), whereas the Inhβa was up-regulated approximately
sevenfold (p < 0.001) (Figure 5C). Although Fas, and Caspase3
did not exhibit cellular circadian rhythms as described above,
these genes were significantly up-regulated by Bmal1 silencing
(p < 0.01).

DISCUSSION
The present analysis of circadian genes regulated by clockwork
system significantly contributes to our understanding of the rela-
tionship of cellular circadian clock with implantation and decidu-
alization. Our present study on cultured UESCs of pregnant rats is
the first to analyze the global gene expression profiles using DNA
microarray technology. We found the specific expression profiles

of 18 clock genes and two protein kinase genes. Bmal1 (Arntl)
and Rev-erbα (Nr1d1) displayed typically anti-phase expression
patterns, showing that the proper range of clock gene oscilla-
tion was successfully covered. We identified 7,235 significantly
altered genes in the UESCs and 559-fold-changed genes with
up or down directionality. The biological pathway analysis using
the DAVID online annotation software revealed that many genes
involved in cell cycle (38 genes), glutathione metabolism (19
genes), MAPK signaling pathway (55 genes), and so on were
significantly expressed with circadian regulation. In addition,
some genes involved in implantation or placenta formation dis-
played significant alteration with up or down directionality: 11
genes involved in implantation and 24 genes involved in placenta
formation.

Many genes were listed as the up-regulated genes compared
to the RNA sample at 30 h, including Inhβb, Gdf10 (BMP-
3), Gdf15 (MIC-1), Dbp, Gpr4, and Olr1. Of 559-fold-changed
genes, Gdf10, a member of TGFβ superfamily related to BMP-
3 (32), is required for normal decidual development during
the post-implantation period (33). Gdf15 (MIC-1) is expressed
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FIGURE 5 | Effect of Bmal1 siRNA treatment on expression of putative
clock-controlled genes in cultured uterus endometrial stromal cells. (A)
The UESCs were treated with Bmal1 siRNA (siRNA) or no silencing RNA
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were performed using their specific primers. (C) Transcript levels of Igf1,
Inhβa, Fas, and Caspase3 were measured in the UESCs treated with siRNA
or no silencing RNA. Each value represents the means±SEM (n=3).

in the decidual stromal cells and trophoblasts (34). GPR4, a
proton-sensing G-protein-coupled receptor, is also expressed in
human umbilical vein endothelial cells (35). GPR4 signaling reg-
ulates endothelial cell adhesion through the cAMP pathway. It
is known that the oxidized low density lipoprotein receptor 1
(Olr1) regulates growth of a variety of cells and is important
in inflammation, oxidative stress, and tissue remodeling (36).
However, the expression and regulation of Olr1 remain unclear
in the uterus. Aquaporin-1 (Aqp1) is proposed as a mediator of
estrogen-induced angiogenesis in breast cancer and endometrial
cancer (37). The expression of Aqp1 was reported in the preg-
nant rat uterus (38, 39). Although more than 10 Aqp1 have been
identified up to date, only Aqp1 was expressed in the cultured
UESCs.

In contrast, the down-regulated representative genes with
fold change were also listed, including Fst, Igf1, Zmiz1, Fbxo9,
Rgs2, Rgs5, Mt1a, and Mt2A. IGF family genes including Igf1
are differentially expressed throughout gestation, and especially
the IGF system contributes phenotypic and functional changes
of myometrium smooth muscle cells (40). The overexpression
of Zmiz1, recently identified as a candidate oncogene, was
reported in human breast, ovarian, and colon cancers (41).

Zmiz1 was also reported to function in regulating the activ-
ity of the androgen receptor as a co-activator (42). How-
ever, the expression and function of Zmiz1 are unclear in the
uterus. Fbxo9 was reported to contribute survival of myeloma
cells (43). Rgs2 and Rgs5, regulators of G-protein signal-
ing proteins, are abundantly expressed in pregnant human
myometrium (44). Rgs2 was reported to up-regulate in response
to stress (45). The expression of Mt1a and Mt2A, typical metal
response parameters, was reported in the proliferative phase of
endometrium (46).

Of up-regulated and down-regulated genes, we focused on
the expression of Inhβb, Inhβa, and Igf1 that displayed fold
change with up or down directionality. Both the Inhβa and
Inhβb genes showed high signal intensities of DNA microarray,
whereas Inhα was low. This result indicates the expression of
activin. The binding protein of activin, follistatin (Fst ), was down-
regulated, indicating the relative action of activin is increased.
Expression of activin A was increased with reduced stromal cell
mitosis, tissue growth, and mitogenic signaling in the decidual
endometrium (47). We analyzed using Bmal1 siRNA whether
the expression of Inhβa and Igf1 was controlled under circa-
dian clock. Transfection of Bmal1 siRNA into the UESCs induced
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a significant decline of Per2-dLuc bioluminescence oscillation.
However, the transfection did not alter other parameters in the
oscillation. The core clock genes Rev-erbα and Dbp as well as
Bmal1 were down-regulated. The expression of Igf1 was signif-
icantly decreased after Bmal1 silencing, suggesting that Igf1 is
positively regulated by circadian clock. Conversely, the expres-
sion of Inhβa was enhanced approximately sevenfold after Bmal1
silencing, suggesting that Inhβa is negatively regulated by circa-
dian clock. Although both Inhβa and Igf1 are clock-controlled
genes, thus, the two gene are differentially regulated. Rev-erbα is
a critical component of circadian clock (48). It acts as a domain
clock-controlled gene under the regulation of Bmal1-Clock het-
erodimer; in turn it has been shown to suppress Bmal1 tran-
scription through binding to RORα response elements (RORE)
presenting in Bmal1 promoters (49). Recent studies have shown
that Rev-erbα is a transcriptional silencer (49, 50). However, Rev-
erbα increases the transcription of Star by binding to its agonist
heme (51).

In the uterus endometrial cells of pregnant rats, the early prolif-
erative phase is characterized by tissue remodeling, angiogenesis,
and modulation of inflammation; the mid-proliferative phase is
characterized not only by proliferation but also marks the onset
of expression of genes required for endometrial receptivity. Thus,
cell growth and apoptosis support the process of tissue remodeling
and implantation. The death receptor Fas/ligand system is a key
regulator of apoptotic cell death and irregularity of this signaling
pathway has been shown to participate in immune-mediated β-
cell apoptosis (52, 53). It is also known that the expression level
of the Fas gene is down-regulated in a variety of malignancies

including malignant melanoma, adenocarcinoma, and squamous
cell carcinoma (54, 55). In the cultured UESCs, however, the
expression of Fas and Caspase3 displayed no or small changes.
Interestingly, these genes were significantly up-regulated after
Bmal1 silencing, similar to Inhβa, suggesting that these apoptosis-
related genes are suppressed during active circadian rhythms of
clock genes. It is possible that dysfunction of the circadian clock-
work during the stage of decidualization is necessary to increase
or decrease expression of clock-controlled genes for formation of
the placenta.
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Figure S1 | Clustering of clock genes on the microarray results. The
expression profiles of clock genes (closed circle) were divided into four groups
(1−4). Red, relatively high expression; green, relatively low expression.

Figure S2 | Clustering of implantation-related genes on the microarray
results. Genes showing with significant alterations (p < 0.05) are listed. Red,
relatively high expression; green, relatively low expression.

Figure S3 | Clustering of placenta formation-related genes on the
microarray results. Genes showing with significant alterations (p < 0.05) are
listed. Red, relatively high expression; green, relatively low expression.
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