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Bone marrow is a highly heterogeneous and vascularized tissue.The various cell types pop-
ulating the bone marrow extensively communicate with each other, and cell-to-cell cross
talk is likely to be essential for proper bone development and homeostasis. In particular,
the existence of osteogenesis and angiogenesis coupling has been recently proposed.
Despite its high degree of vascularization, a gradient of oxygenation is present in the bone
marrow, and the endosteal surface of cortical bone appears to be among the most hypoxic
areas in the body. Oxygen (O2) is both an essential metabolic substrate and a regulatory
signal that is in charge of a specific genetic program. An important component of this pro-
gram is the family of transcription factors known as hypoxia-inducible factors (HIFs). In this
Perspective, we will summarize our current knowledge about the role of the HIF signaling
pathway in controlling bone development and homeostasis, and especially in regulating
the crosstalk between osteoblasts, progenitor cells, and bone marrow blood vessels.

Keywords: hypoxia-inducible factor, vascular endothelial growth factor, prolyl hydroxylases, erythropoietin,
osteoblasts

BONE MARROW: A HIGHLY VASCULARIZED TISSUE WITH A
GRADIENT OF OXYGENATION
Skeletal development is dependent on two mechanisms:
intramembranous ossification and endochondral replacement
(1, 2). Intramembranous ossification is a process in which mes-
enchymal cells differentiate directly into osteoblasts, is responsible
for the formation of the flat bones of the skull. In contrast, endo-
chondral replacement, which accounts for the development of
most other bones, is a two-step process: mesenchymal cells give
origin to chondrocytes, which build a template known as growth
plate; this template is next replaced by bone.

Bone marrow is a highly heterogeneous and highly vascular-
ized tissue. In addition to endothelial cells, at least two other cell
types populate the adult bone marrow: hematopoietic cells, which
originate from the very well characterized hematopoietic stem
cell (HSC), and mesenchymal cells, which include stromal cells,
osteoblasts, and adipocytes, and are thought to be derived from
a still not fully defined mesenchymal stem cell population (3).
Stromal cells are a meshwork of osteoblast precursors and special-
ized fibroblasts known as reticular or adventitial cells. However,
the relationship between these two types of stromal cells, if any,
remains to be elucidated (4).

It is noteworthy that HSCs can also give rise to osteoclasts,
which are specialized cells that resorb bone (5). Furthermore, it
has been hypothesized that hematopoietic and endothelial cells
probably share a common mesodermal precursor (6).

The clear dichotomy between hematopoietic-endothelial cells
and mesenchymal cells and their distinct embryological origin was

already recognized more than 40 years ago by Le Douarin, who
wrote in one of her seminal papers “The contribution to bone mar-
row histogenesis of cells of vascular and blood origin, on one hand,
and of the elements of the cartilaginous model, on the other hand,
was analyzed. It appeared that osteoblasts, osteocytes, and stromal
cells of marrow are derived from the perichondrium. In contrast, the
endothelium of the vascular buds and the hemopoietic cells which
invade the diaphyseal cartilage during the endochondral ossification
process do not belong to the mesenchymal bone primordium but have
a fully extrinsic origin” (7).

The various cell types populating the bone marrow extensively
communicate with each other, and the cellular cross talk is essen-
tial for proper control of bone and bone marrow development and
homeostasis. For example, endothelial cells, osteoblasts, and stro-
mal cells are components of niches that have an important role in
the maintenance of the HSC pool (8–13), and in the regulation
of the number of B-lymphocytes (14–16) and granulocytes (15,
17). Conversely, hematopoietic cells, in particular mast cells and
megakaryocytes, are known to produce a large set of cytokines and
growth factors that significantly affect bone mass (18, 19).

The capillary bed in the bone marrow is formed by “sinusoidal”
capillaries (20–22). Sinusoids are discontinuous capillaries as their
endothelial cells have both large fenestrations and wide spaces
among them (23). Moreover, their basal membrane is also discon-
tinuous. Their diameter is large (30–40 µm), which considerably
reduces the rate of blood flow (24). These unique anatomical
and functional features allow for maximum exchange of macro-
molecules as well as cell movement between the bone marrow
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and the blood. Sinusoidal capillaries are also found in liver and
spleen (23), namely in the other two major organs that at different
physiological stages and in pathological conditions contribute to
hematopoiesis. Mesenchymal cells known as pericytes intermit-
tently surround the sinusoidal endothelial cells (4), and produce
their own basal membrane, which blends with the basal membrane
produced by the endothelium.

O2, nutrients, and a cornucopia of hormones and growth fac-
tors, which are important for bone and bone marrow development
and homeostasis, are brought to bone by blood vessels (25).

In addition, it has been convincingly proven that blood ves-
sels supply osteoblast precursors either with their flow (26) or as
components of their walls (4, 27). Along these lines, it has been
shown that bone marrow pericytes, which are positive for CD146
contribute to colony forming units in vitro and thus, according
to the model proposed by Friedenstein decades ago (28, 29), are
likely precursors of osteoblasts and bone marrow adipocytes (4).
Moreover, it has been elegantly demonstrated that blood vessels
guide the migration of osteoblast precursors from the perios-
teum to the bone marrow (27). Conversely, fully differentiated
periosteal osteoblasts have apparently lost the ability to migrate
from the periosteum into the bone marrow (27). Lastly, it has been
reported that endothelial cells expressing mutant activin 1 recep-
tors (ACVR1) can trans differentiate into osteoblasts, an event that
may be critical in the pathogenesis of a devastating disease such as
Fibrodysplasia Ossificans Progressiva (FOP) (30–32).

Taken together, the concept that blood vessels regulate the pool
of osteoblasts both in physiological and in pathological states is
progressively gaining strong support by the scientific community
(33). Whether and how cells of the osteoblast lineage control num-
ber and shape of blood vessels in physiological conditions in vivo,
is also an important question that needs to be investigated in more
depth.

Despite its high degree of vascularization, a gradient of oxyge-
nation is present in the bone marrow, and the endosteal surface of
cortical bone is among the most hypoxic areas as revealed by stain-
ing with the marker of hypoxia pimonidazole (34–36). The high
degree of bone marrow cellularity, the high levels of O2 consump-
tion by leukocytes as well as the sluggish blood flow in the sinusoids
are all thought to be all contributing factors to the generation of a
gradient of oxygenation within the bone marrow (36, 37).

In the next sections of this Perspective, we will discuss the
most recent findings about the role of the hypoxia-inducible
factor (HIF) signaling pathway in osteoblast biology and in the
osteoblast-dependent control of bone marrow angiogenesis.

THE HIF SIGNALING PATHWAY
Oxygen is both an essential metabolic substrate in numerous
enzymatic reactions, including mitochondrial respiration, and
a regulatory signal that controls a specific genetic program.
An important component of this program is the transcription
factor HIF-1α (2, 38–43), which is a key-mediator of cellu-
lar adaptation to low O2 tension (hypoxia). In normoxia, a
class of 2-oxoglutarate-dependent and Fe2+-dependent prolyl-4-
hydroxylases (PHDs) hydroxylate specific proline residues of the
HIF-1α protein (44, 45). Hydroxylated HIF-1α is then targeted
to the proteosome for degradation by the E3 ubiquitin ligase von

Hippel Lindau (VHL). Under hypoxic conditions, hydroxylation
of HIF-1α diminishes, HIF-1α protein accumulates, translocates
from the cytoplasm to the nucleus, dimerizes with its constitu-
tively expressed partner HIF-1β, binds in a sequence dependent
manner to hypoxia-responsive elements, recruits transcriptional
co-activators, and increases the transcription of an ever grow-
ing number of hypoxia-responsive genes (44–49). The protein
products of these HIF target genes regulate a variety of biolog-
ical processes, including angiogenesis, non-oxidative glycolysis,
and matrix formation (2). While the mRNA encoding HIF-1α

is widely expressed (50), the regulation of HIF-1α is largely post-
transcriptional. In tissues where oxygen tension is higher than
5%, HIF-1α protein is barely detectable, but when oxygen tension
drops below 5% HIF-1α protein progressively accumulates. Mouse
embryos lacking HIF-1α die in utero by E11 (51–53), indicating
that HIF-1α is critical for embryonic development.

Two other members of the family, HIF-2α and HIF-3α, have
been cloned and characterized. Hypoxia controls stability of HIF-
2α in a similar fashion as HIF-1α (54). HIF-2α and HIF-1α have
common targets as well as specific ones (54–58). Moreover, they
exhibit different tissue expression patterns (59). Lastly, in some
genetic backgrounds mice lacking HIF-2α survive postnatally (60),
where lack of HIF-1α causes early embryonic lethality. In contrast
to HIF-1α and HIF-2α, the biological role of the HIF-3α isoform
is still largely unknown, though it has been proposed that this
protein could have a dominant negative function, since it lacks
transactivation domains (61).

The E3 ubiquitin ligase VHL is expressed in most tissues and
cell types, and is critical for HIF-1α degradation. Heterozygous
missense mutations of the VHL gene have been identified in the
VHL syndrome (62). This syndrome is characterized by a dom-
inantly inherited predisposition to develop pheochromocytoma,
clear cell renal carcinoma, and hemangioblastomas in the central
nervous system and in the retina (62). As discussed above, VHL
has E3 ubiquitin ligase activity, and the HIFs are among its main
targets. The importance of VHL for proteolysis of HIF-1α and
HIF-2α is highlighted by the finding that cells lacking a functional
VHL are unable to degrade these transcription factors, ultimately
resulting in an accumulation of HIFs (45, 49, 63, 64). However,
VHL has also a variety of biological activities including control of
the cell cycle, critical interaction with the cytoskeleton and with
the primary cilia, and regulation of matrix proteins that have been
reported to be HIF-independent (62).

THE HIF SIGNALING PATHWAY IN OSTEOBLASTS AND ITS
IMPACT ON BONE AND BLOOD VESSELS
Loss of VHL in fully differentiated osteoblasts, resulting in the sta-
bilization of HIF-1α and HIF-2α, and increased activity of HIF
signaling in these cells, leads to a high bone mass phenotype in
the bones that are formed through the endochondral replacement
process. In contrast, the flat bones of the skull, which develop
through an intramembranous program, appear to be largely unaf-
fected (36, 65). Strikingly, this increased accumulation of trabecu-
lar bone in the long bones is associated with an augmented surface
and volume of blood vessels in the bone marrow cavity (16, 65).
Therefore, activation of the HIF signaling pathway in osteoblasts
is sufficient to modulate bone marrow angiogenesis.
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More recently, these findings were confirmed and expanded in
another mouse model lacking VHL in osteoprogenitors. Loss of
VHL in osteoprogenitors (OSX-VHL) caused a dramatic increase
of trabecular bone mass (16). In particular, OSX-VHL mutant
mice exhibited excessive accumulation of trabecular bone in the
metaphyseal and diaphyseal regions of the long bones (16). Sur-
rounding the numerous trabecule were abundant stromal cells
and strikingly dilated blood vessels (angiectasis) (Figure 1) (16).
In agreement with previous findings, the frequency of HSCs was
increased in the bone marrow of OSX-VHL mutant mice (16).
Although it is still uncertain whether this apparent expansion of
the HSC pool is a consequence of either the expanded osteoblas-
tic niche, or the augmented blood vessel surface, or both. Dilated
blood vessels and expansion of stromal cells are two histologi-
cal hallmarks of the hemangioblastoma lesions identified in VHL
syndrome (66). Loss of HIF-1α and HIF-2α in VHL-deficient
osteoprogenitors fully corrects the high bone mass phenotype,
the increased number of HSCs, the angiectasis, and the aberrant
expansion of the bone marrow stroma secondary (16).

Taken together, these data demonstrate that augmented HIF
activity in osteoprogenitors augments trabecular bone volume,
increases the bone marrow stromal population, and expands the
HSC pool (16). Moreover, loss of VHL in osteoprogenitor cells
demonstrates that stabilization of HIFs in osteoblasts is sufficient
to increase number and/or size of blood vessels in the bone mar-
row. However, it remains unresolved whether osteoblastic HIFs are
necessary for regulation of bone marrow angiogenesis in a more
physiological setting.

VEGF AND EPO: POTENTIAL CANDIDATES MEDIATING THE
OSTEOBLASTS-BLOOD VESSELS CROSS TALK IN THE BONE
MARROW
Numerous proangiogenic factors are transcriptionally regulated by
HIFs, and each of them could be responsible for the modulation
of blood vessel number and/or size by osteoblasts when the
HIF transcriptional pathway is activated in these cells. Among
them, vascular endothelial growth factor-A (VEGF) is one of the
best-characterized downstream targets of HIFs.

Vascular endothelial growth factor is a glycoprotein that belongs
to the dimeric cysteine-knot growth factor super-family (67, 68).
The mouse VEGF gene encodes at least three isoforms (VEGF120,
VEGF164, and VEGF188) that arise through alternative splicing
(69, 70). While VEGF164 and VEGF188 bind the extracellular
matrix component heparan sulfate, VEGF120 lacks the binding
motif necessary for this interaction (71, 72). VEGF is a principal
regulator of blood vessel formation, and it is also a survival factor
for HSCs in vivo and in vitro, through an internal autocrine loop
mechanism (73). In endochondral bones,VEGF is a survival factor
for chondrocytes in vivo, at least in part by regulating angiogene-
sis in the surrounding soft tissue (74). Moreover, in hypertrophic
chondrocytes it controls blood vessel invasion and thus replace-
ment of cartilage by bone in vivo (75). Furthermore, it promotes
osteogenesis in vitro (68), and when overexpressed in cells of the
osteoblast lineage in vivo it leads to a high bone mass phenotype
associated to marrow fibrosis and increased number of blood ves-
sels (76). These effects appear to be secondary, at least in part, to
activation of beta catenin in osteoblasts (76). Conversely, mice that

FIGURE 1 | Loss of VHL in cells of the osteoblast lineage increases
trabecular bone mass. H and E of histological sections of tibia isolated
from 4-month-old control (CNTRL) and OSX-VHL mutant (VHL) mice;
bottom panels are blows up of a and b, respectively. For details, see Text.

FIGURE 2 | Osteoblastic HIFs control bone marrow angiogenesis.
Gradients of oxygenation are present in the bone marrow with osteoblasts
at the endosteal surface of bone being among the most hypoxic areas.
Osteoblasts express HIFs, which regulate osteoblast activity and
angiogenesis. Some of the HIF effects on angiogenesis could be mediated
by VEGF, EPO, and/or other proangiogenic factors. It has yet to be defined
whether increased angiogenesis is a necessary pre-requisite for the high
bone mass phenotype observed upon activation of HIFs in cells of the
osteoblast lineage. OB, osteoblast; EC, endothelial cell.

lack VEGF in osteoprogenitors display a reduced bone mass phe-
notype with increased bone marrow fat. Even more intriguing in
this mouse model,VEGF regulates the balance between osteoblasts
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and adipocytes by a novel, intracrine mechanism (77).VEGF is also
a positive modulator of osteoclastogenesis as well, both in vivo and
in vitro (76, 78, 79).

Vascular endothelial growth factor expression, as expected, is
increased in mutant bones lacking VHL in cells of the osteoblast
lineage (16, 65). Therefore, it is reasonable to hypothesize that
VEGF could be responsible for the increased number and/or size
of blood vessels in these mutants (25), although this possibility
has still to be experimentally tested.

Notably, mutant mice lacking VHL in cells of the osteoblast
lineage develop severe polycythemia, which is due to HIF-2α

dependent overproduction of erythropoietin (EPO) by osteoblasts
(16). This study provided the first demonstration that cells of the
osteoblast lineage are capable of producing and secreting EPO
upon activation of the HIF signaling pathway in vivo (16). The
HIF-2, rather than the HIF-1, dependence of EPO production
is consistent with what has been reported in other experimental
models (80, 81). EPO is a hormone that stimulates erythropoiesis
through binding and activation of its receptor (EpoR) in ery-
throid progenitor cells (82–84). In adults, more than 90% of EPO
is produced in the kidney by a subset of peritubular interstitial
fibroblasts (84). The key regulatory mechanism of EPO expression
is hypoxia through the activation of the HIF pathway (84). Ane-
mia stimulates EPO production by inducing local hypoxia (84).
Unlike EPO, EpoR expression is not affected by hypoxia or anemia
(83). In the cell membrane, EpoR forms a homodimer that, upon

EPO binding, recruits JAK2, which in turns leads to activation
of STAT5, PI3 Kinase (PI3K), and Ras-MAPK signaling pathways
(83). Both EPO and EpoR are also expressed in a variety of non-
hematopoietic tissues, which implies that EPO may have functions
that go beyond regulation of erythropoiesis. For example, EpoR
has been identified on the surface of endothelial cells (82, 83). Con-
sistent with this finding, the EPO/EpoR complex is thought to be
an important regulator of angiogenesis, particularly in the context
of malignant tumors (82, 83). Interestingly, in addition to its direct
effect on endothelial cells, EPO may control angiogenesis by mod-
ulating the release of other angiogenic factors such as VEGF (83).

Taken together, it is tempting to speculate that both EPO and
VEGF interact to coordinate bone marrow angiogenesis, when the
HIF signaling pathway is activated in osteoblasts (Figure 2).

FUTURE DIRECTIONS
In this Perspective, we have highlighted the critical role of the
HIF signaling pathway in regulating bone mass and bone marrow
angiogenesis. It will be now important to identify the molecu-
lar mechanisms that mediate osteoblasts-blood vessel cross talk,
and to define whether increased angiogenesis is a necessary pre-
requisite for the high bone mass phenotype observed upon activa-
tion of HIFs in cells of the osteoblast lineage (Figure 2). Addressing
these two questions may significantly expand our understanding
of the osteogenesis–angiogenesis coupling in physiological and
pathological states.
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