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Accumulating evidence shows that H2S has physiological functions in various tissues and
organs. It includes regulation of neuronal activity, vascular tension, a release of insulin, and
protection of the heart, kidney, and brain from ischemic insult. H2S is produced by enzymes
from L-cysteine; cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate
sulfurtransferase (3MST) along with cysteine aminotransferase. We recently discovered
an additional pathway for the production of H2S from D-cysteine. D-Amino acid oxidase
provides 3-mercaptopyruvate for 3MST to produce H2S. D-Cysteine protects cerebellar
neurons from oxidative stress and attenuates ischemia-reperfusion injury caused in the
kidney more effectively than L-cysteine. This review focuses on a novel pathway for the
production of H2S and its therapeutic application especially to the renal diseases.

Keywords: hydrogen sulfide, bound sulfane sulfur, L-cysteine, D-cysteine, 3MST, DAO, ischemia-reperfusion injury

INTRODUCTION
The discovery of endogenous sulfide in the brain urged us to study
the function of hydrogen sulfide (H2S) in the brain (1–3). The
recent re-evaluation showed that the endogenous levels of H2S
are much lower than those initially evaluated, but this finding
confirmed the existence of sulfide in tissues (4–6).

H2S facilitates the induction of hippocampal long-term poten-
tiation, a synaptic model of learning and memory, by enhancing
the activity of n-methyl-d-aspartate (NMDA) receptors in neu-
rons, and it induces Ca2+ waves in astrocytes (7, 8). It relaxes
vascular smooth muscle by activating K+ channels, regulates
the release of insulin and induces angiogenesis (9–14). It pro-
tects neurons from oxidative stress by enhancing the activity
of glutathione synthesis, scavenging reactive oxygen species, and
suppressing the excessive increase in the intracellular Ca2+ (15–
17). In cardiovascular system, H2S protects cardiomyocytes from
ischemia-reperfusion injury by preserving mitochondrial func-
tion (18). A similar protective effect was also observed in the
kidney (19). H2S is produced from l-cysteine by two pyridoxal 5′-
phosphate (PLP)-dependent enzymes, cystathionine β-synthase
(CBS), and cystathionine γ-lyase (CSE) and PLP-independent
3-mercaptopyruvate sulfurtransferase (3MST) (Figure 1) (7, 9,
20–23). 3MST produces H2S from 3-mercaptopyruvate (3MP), an
achiral α-keto acid, which is generated by PLP-dependent cysteine
aminotransferase (CAT) from l-cysteine and α-ketoglutarate (α-
KG) (24–26). Thioredoxin (Trx) and dihydrolipoic acid (DHLA)
are endogenous reducing cofactors that facilitate H2S release
from 3MST (23). We recently discovered a novel pathway with
d-cysteine as a substrate (27).

PRODUCTION OF H2S FROM D-CYSTEINE
When we examined the production of H2S from brain
homogenates, we found that H2S was produced from d-cysteine,
originally used as a negative control for l-cysteine (27). H2S-
producing pathway from d-cysteine is distinct from the pathways

involving l-cysteine. There are critical differences between the two
pathways; (i) the optimal pH, (ii) the dependency on PLP, and (iii)
the stability against the freeze and thaw procedure. The production
of H2S from d-cysteine is optimal at pH 7.4, whereas produc-
tion from l-cysteine is maximal under the alkaline condition. H2S
production from d-cysteine is PLP-independent, while that from
l-cysteine is PLP-dependent. A single freeze-thaw cycle greatly
increases the H2S production from d-cysteine. d-Amino acid oxi-
dase (DAO) that produces 3MP from d-cysteine is localized to
peroxisomes, while 3MST is mainly found in mitochondria (21,
28). Mitochondria and peroxisomes exchange various metabolites
via a specific form of vesicular trafficking, and are usually in close
proximity to each other or have physical contact (29). 3MST and
DAO can produce H2S by the interaction of both organelles.

LOCALIZATION OF H2S-PRODUCING ENZYMES
Enzymes producing H2S from l-cysteine are expressed in many
tissues (7, 9, 17, 20, 21, 23, 30, 31). 3MST is found in neurons in
the cerebral cortex, cerebellum, olfactory bulb, pons, and retina,
while CBS is preferentially expressed in cerebellar Bergmann glia
and in astrocytes throughout the brain (21, 32). CSE activity in
the brain is only 1% of the hepatic activity (33). CBS, CSE and
3MST, and CAT are expressed in the liver and kidney (20). Vascular
endothelium co-expresses 3MST and CAT (31). The localization
of CSE in vascular endothelium is controversial (31, 34). Unlike
the l-cysteine pathways, the d-cysteine pathway operates predomi-
nantly in the cerebellum and the kidney (27, 35). In the cerebellum,
DAO is expressed in astrocytes, Bergmann glia, and several types
of neurons including the Golgi and Purkinje cells (35, 36). In the
kidney, DAO and 3MST are expressed in the proximal convoluted
tubules of the cortex similarly to CBS and CSE (30, 37–39).

REGULATION OF H2S-PRODUCING ENZYMES BY CA2+

3MST/CAT is regulated by Ca2+; the activity is maximal in
the absence of Ca2+ and is completely suppressed at 2.9 µM
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Shibuya and Kimura H2S production from D-cysteine

FIGURE 1 | Schematic representation of H2S-producing pathways.
Cystathionine β-synthase (CBS) catalyzes β-replacement of L-cysteine to
produce H2S and L-cystathionine. Cystathionine γ-lyase (CSE) catalyzes the
hydrolysis of L-cysteine. 3-Mercaptopyruvate sulfurtransferase (3MST)
produces H2S from 3-mercaptopyruvate (3MP), which is generated by
cysteine aminotransferase (CAT) and D-amino acid oxidase (DAO) from

L-cysteine and D-cysteine, respectively. Thioredoxin (Trx) and dihydrolipoic
acid (DHLA) are endogenous reducing cofactors that facilitate the release
of H2S from 3MST. H2S is stored as bound sulfane sulfur, which is divalent
sulfur bound only to other sulfur, such as outer sulfur atoms of persulfides
and innerchain atoms of polysulfides. Red asterisks show bound sulfane
sulfur.

Ca2+ (17). A similar regulation by Ca2+ is observed in CSE
activity (40). H2S is produced by CSE at the steady-state low
Ca2+ concentrations and that the production is suppressed by
increased Ca2+ (40). Calmodulin is not involved in the reg-
ulation of CSE activity. It was previously reported that CSE
activity is regulated by Ca2+/calmodulin in the presence of 1–
2 mM Ca2+ (34). Because the intracellular Ca2+ concentrations
are between 100 nM and 3 µM in endothelium, Ca2+ concen-
trations used in the previous study are not in the physiological
range (41).

SOURCE OF D-CYSTEINE
Relatively large amounts of d-serine are found in mammalian
tissues, and the content of d-serine is up to 15∼ 30% of the
l-form in the brain (42, 43). d-Serine is thought to be pro-
duced by PLP-dependent serine racemase, but the Michaelis-
constant value of serine racemase is higher than the endoge-
nous levels of l-serine (42, 44–46). Although cysteine is struc-
turally similar to serine with an OH replaced by an SH, ser-
ine racemase does not change l-cysteine to d-cysteine (27).
Aspartate racemase is homologous to CAT and has an affinity
for both aspartate and cysteine (24, 47), but does not produce
d-cysteine.

A possible source of d-cysteine is absorption from food. l-
Amino acids are non-enzymatically racemized by heat and alkaline
treatment applied during food processing. l-Cysteine is one of
the fastest racemizing amino acid, and 21–44% of l-cysteine is
changed to d-cysteine by alkaline treatment (48, 49). Although d-
cysteine is easily absorbed through the gastrointestinal tract and
enters the blood stream (50), d-cysteine is not detected either in
the cerebellum or the kidney after the oral administration. Con-
sidering the fact that the levels of bound sulfane sulfur, a storage
form of H2S (Figure 1), are increased after oral administration of
d-cysteine (5, 27), d-cysteine may be immediately metabolized to
produce bound sulfane sulfur in tissues.

CYTOPROTECTIVE EFFECT OF D-CYSTEINE
The most characteristic feature of the d-cysteine pathway is the
greater H2S-producing activity in the cerebellum and the kid-
ney compared to the l-cysteine pathway; 7- and 80-fold greater
in the cerebellum and the kidney, respectively. Although both d-
cysteine and l-cysteine protect cerebellar neurons from hydrogen
peroxide-induced oxidative stress (27), d-cysteine protected neu-
rons more greatly than l-cysteine, probably because the transport
activity for d-cysteine is greater than that for l-cysteine (51).
d-Cysteine may have a potential to improve the developmental
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neuronal diseases in the cerebellum like autism in which oxidative
stress may be involved (52, 53).

Ischemia-reperfusion injury is observed after cardiovascular
surgery, transplantation, or septic as well as hemorrhagic shock.
Renal ischemia-reperfusion injury reduces the filtering capacity
of the glomerulus and causes acute renal failure (54). Endothe-
lin antagonists, atrial natriuretic peptides, prostaglandins, nitric
oxide inhibitors, thyroxine, and human insulin-like growth factor
1 have been studied for the prophylaxis and treatment of acute
tubular necrosis without clinical benefit (55–58). We found that
the oral administration of d-cysteine attenuates renal ischemia-
reperfusion injury (27). The structure of glomeruli, which is
disintegrated after ischemia-reperfusion, is well preserved by d-
cysteine. In contrast, the glomeruli are shrunk and a wide space
is observed between glomerulus and the surrounding capsule
after ischemia-reperfusion when l-cysteine is applied. d-Cysteine
increases the levels of bound sulfane sulfur and protects the renal
cortex from the ischemia-reperfusion injury more efficiently than
l-cysteine.

D-CYSTEINE: ITS THERAPEUTIC POTENTIAL
l-Cysteine is metabolized to produce (i) cysteinyl-tRNA
by cysteinyl-tRNA synthetase (59), (ii) γ-glutamylcysteine, a

precursor of glutathione, by γ-glutamylcysteine synthetase, (iii)
taurine or pyruvate by cysteine dioxygenase (60), and (iv) pro-
pionyl CoA by α-keto acid dehydrogenase. Because d-cysteine is
not metabolized by these enzymes, d-cysteine must efficiently be
utilized to produce H2S in the cerebellum and the kidney.

l-Cysteine is an excitotoxin comparable in potency to other
excitatory amino acids and increases the blood pressure and heart
rate (61, 62). In contrast, d-cysteine neither causes excitotoxic
damage to the brain nor disturbs heart function (63, 64). There-
fore,d-cysteine can be systemically and repeatedly applied with less
toxicity compared to l-cysteine. The administration of d-cysteine
may provide a new therapeutic approach to protect specific tissues
from oxidative stress or ischemia-reperfusion injury through its
conversion to H2S via a novel pathway with 3MST and DAO.

ACKNOWLEDGMENTS
This work was supported by a grant from the National
Institute of Neuroscience, a KAKENHI (23659089) Grant-in-
Aid for Challenging Exploratory Research to Hideo Kimura,
a KAKENHI (23700434) Grant-in-Aid for Young Scien-
tists (B), a Health Labour Sciences Research Grant from
the Ministry of Health Labour and Welfare to Norihiro
Shibuya.

REFERENCES
1. Goodwin LR, Francom D, Dieken

FP, Taylor JD, Warenycia MW,
Reiffenstein RJ, et al. Determi-
nation of sulfide in brain tis-
sue by gas dialysis/ion chro-
matography: postmortem stud-
ies and two case reports. J
Anal Toxicol (1989) 13:105–9.
doi:10.1093/jat/13.2.105

2. Warenycia MW, Goodwin LR,
Benishin CG, Reiffenstein RJ,
Francom DM, Taylor JD, et al.
Acute hydrogen sulfide poisoning.
Demonstration of selective uptake
of sulfide by the brainstem by
measurement of brain sulfide
levels. Biochem Pharmacol (1989)
38:973–81. doi:10.1016/0006-
2952(89)90288-8

3. Savage JC, Gould DH. Determina-
tion of sulfide in brain tissue and
rumen fluid by ion-interaction
reversed-phase high-performance
liquid chromatography. J Chro-
matogr (1990) 526:540–5.

4. Furne J, Saeed A, Levitt MD.
Whole tissue hydrogen sul-
fide concentrations are orders
of magnitude lower than
presently accepted values.
Am J Physiol Regul Integr Comp
Physiol (2008) 295:R1479–85.
doi:10.1152/ajpregu.90566.2008

5. Ishigami M, Hiraki K, Umemura
K, Ogasawara Y, Ishii K, Kimura
H. A source of hydrogen sul-
fide and a mechanism of its
release in the brain. Antioxid
Redox Signal (2009) 11:

205–14. doi:10.1089/ARS.2008.
2132

6. Wintner EA, Deckwerth TL,
Langston W, Bengtsson A,
Leviten D, Hill P, et al. A
monobromobimane-based assay
to measure the pharmacokinetic
profile of reactive sulphide species
in blood. Br J Pharmacol (2010)
160:941–57. doi:10.1111/j.1476-
5381.2010.00704.x

7. Abe K, Kimura H. The possi-
ble role of hydrogen sulfide as
an endogenous neuromodulator. J
Neurosci (1996) 16:1066–71.

8. Nagai Y, Tsugane M, Oka J, Kimura
H. Hydrogen sulfide induces cal-
cium waves in astrocytes. FASEB J
(2004) 18:557–9.

9. Hosoki R, Matsuki N, Kimura
H. The possible role of hydro-
gen sulfide as an endogenous
smooth muscle relaxant in synergy
with nitric oxide. Biochem Biophys
Res Commun (1997) 237:527–31.
doi:10.1006/bbrc.1997.6878

10. Zhao W, Zhang J, Lu Y, Wang
R. The vasorelaxant effect of
H2S as a novel endogenous
gaseous KATP channel opener.
EMBO J (2001) 20:6008–16.
doi:10.1093/emboj/20.21.6008

11. Yang W, Yang G, Jia X, Wu L, Wang
R. Activation of KATP channels by
H2S in rat insulin-secreting cells
and the underlying mechanisms.
J Physiol (2005) 569:519–31.
doi:10.1113/jphysiol.2005.097642

12. Kaneko Y, Kimura Y, Kimura
H, Niki I. l-Cysteine inhibits

insulin release from the pancreatic
beta-cell: possible involvement of
metabolic production of hydro-
gen sulfide, a novel gasotransmit-
ter. Diabetes (2006) 55:1391–7.
doi:10.2337/db05-1082

13. Papapetropoulos A, Pyriochou A,
Altaany Z, Yang G, Marazioti A,
Zhou Z, et al. Hydrogen sul-
fide is an endogenous stimulator
of angiogenesis. Proc Natl Acad
Sci U S A (2009) 106:21972–7.
doi:10.1073/pnas.0908047106

14. Mustafa AK, Sikka G, Gazi SK,
Steppan J, Jung SM, Bhunia
AK, et al. Hydrogen sulfide as
endothelium-derived hyper-
polarizing factor sulfhydrates
potassium channels. Circ Res
(2011) 109:1259–68. doi:10.
1161/CIRCRESAHA.111.240242

15. Kimura Y, Kimura H. Hydro-
gen sulfide protects neurons from
oxidative stress. FASEB J (2004)
18:1165–7.

16. Kimura Y, Goto Y, Kimura
H. Hydrogen sulfide increases
glutathione production and
suppresses oxidative stress
in mitochondria. Antioxid
Redox Signal (2010) 12:1–13.
doi:10.1089/ars.2008.2282

17. Mikami Y, Shibuya N, Kimura
Y, Nagahara N, Yamada M,
Kimura H. Hydrogen sulfide
protects the retina from light-
induced degeneration by the
modulation of Ca2+ influx. J
Biol Chem (2011) 286:39379–86.
doi:10.1074/jbc.M111.298208

18. Elrod JW, Calvert JW, Morrison
J, Doeller JE, Kraus DW, Tao L,
et al. Hydrogen sulfide attenuates
myocardial ischemia-reperfusion
injury by preservation of mito-
chondrial function. Proc Natl Acad
Sci U S A (2007) 104:15560–5.
doi:10.1073/pnas.0705891104

19. Tripatara P, Patel NS, Collino
M, Gallicchio M, Kieswich J,
Castiglia S, et al. Generation of
endogenous hydrogen sulfide
by cystathionine gamma-lyase
limits renal ischemia/reperfusion
injury and dysfunction. Lab
Invest (2008) 88:1038–48.
doi:10.1038/labinvest.2008.73

20. Stipanuk MH, Beck PW. Charac-
terization of the enzymic capac-
ity for cysteine desulphhydra-
tion in liver and kidney of
the rat. Biochem J (1982) 206:
267–77.

21. Shibuya N, Tanaka M, Yoshida
M, Ogasawara Y, Togawa T, Ishii
K, et al. 3-Mercaptopyruvate sul-
furtransferase produces hydro-
gen sulfide and bound sulfane
sulfur in the brain. Antioxid
Redox Signal (2009) 11:703–14.
doi:10.1089/ARS.2008.2253

22. Singh S, Padovani D, Leslie
RA, Chiku T, Banerjee R.
Relative contributions of cys-
tathionine beta-synthase and
gamma-cystathionase to H2S
biogenesis via alternative trans-
sulfuration reactions. J Biol
Chem (2009) 284:22457–66.
doi:10.1074/jbc.M109.010868

www.frontiersin.org July 2013 | Volume 4 | Article 87 | 3

http://dx.doi.org/10.1093/jat/13.2.105
http://dx.doi.org/10.1016/0006-2952(89)90288-8
http://dx.doi.org/10.1016/0006-2952(89)90288-8
http://dx.doi.org/10.1152/ajpregu.90566.2008
http://dx.doi.org/10.1089/ARS.2008.{\penalty -\@M }2132
http://dx.doi.org/10.1089/ARS.2008.{\penalty -\@M }2132
http://dx.doi.org/10.1111/j.1476-5381.2010.00704.x
http://dx.doi.org/10.1111/j.1476-5381.2010.00704.x
http://dx.doi.org/10.1006/bbrc.1997.6878
http://dx.doi.org/10.1093/emboj/20.21.6008
http://dx.doi.org/10.1113/jphysiol.2005.097642
http://dx.doi.org/10.2337/db05-1082
http://dx.doi.org/10.1073/pnas.0908047106
http://dx.doi.org/10.{\penalty -\@M }1161/CIRCRESAHA.111.240242
http://dx.doi.org/10.{\penalty -\@M }1161/CIRCRESAHA.111.240242
http://dx.doi.org/10.1089/ars.2008.2282
http://dx.doi.org/10.1074/jbc.M111.298208
http://dx.doi.org/10.1073/pnas.0705891104
http://dx.doi.org/10.1038/labinvest.2008.73
http://dx.doi.org/10.1089/ARS.2008.2253
http://dx.doi.org/10.1074/jbc.M109.010868
http://www.frontiersin.org
http://www.frontiersin.org/Experimental_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shibuya and Kimura H2S production from D-cysteine

23. Mikami Y, Shibuya N, Kimura
Y, Nagahara N, Ogasawara
Y, Kimura H. Thioredoxin
and dihydrolipoic acid are
required for 3-mercaptopyruvate
sulfurtransferase to produce
hydrogen sulfide. Biochem J
(2011) 439:479–85. doi:10.1042/
BJ20110841

24. Ubuka T, Umemura S, Yuasa S,
Kinuta M, Watanabe K. Purifica-
tion and characterization of mito-
chondrial cysteine aminotrans-
ferase from rat liver. Physiol Chem
Phys (1978) 10:483–500.

25. Akagi R. Purification and char-
acterization of cysteine amino-
transferase from rat liver cytosol.
Acta Med Okayama (1982)
36:187–97.

26. Cooper AJ. Biochemistry of
sulfur-containing amino acids.
Annu Rev Biochem (1983)
52:187–222. doi:10.1146/annurev.
bi.52.070183.001155

27. Shibuya N, Koike S, Tanaka
M, Ishigami-Yuasa M, Kimura
Y, Ogasawara Y, et al. A novel
pathway for the production
of hydrogen sulfide from d-
cysteine in mammalian cells.
Nat Commun (2013) 4:1366.
doi:10.1038/ncomms2371

28. Gould SJ, Keller GA, Subramani
S. Identification of peroxiso-
mal targeting signals located
at the carboxy terminus of
four peroxisomal proteins. J
Cell Biol (1988) 107:897–905.
doi:10.1083/jcb.107.3.897

29. Schumann U, Subramani S.
Special delivery from mitochon-
dria to peroxisomes. Trends
Cell Biol (2008) 18:253–6.
doi:10.1016/j.tcb.2008.04.002

30. Ishii I, Akahoshi N, Yu XN,
Kobayashi Y, Namekata K, Komaki
G, et al. Murine cystathion-
ine gamma-lyase: complete cDNA
and genomic sequences, pro-
moter activity, tissue distribu-
tion and developmental expres-
sion. Biochem J (2004) 381:113–
23. doi:10.1042/BJ20040243

31. Shibuya N, Mikami Y, Kimura
Y, Nagahara N, Kimura H.
Vascular endothelium expresses
3-mercaptopyruvate sulfurtrans-
ferase and produces hydrogen sul-
fide. J Biochem (2009) 146:623–6.
doi:10.1093/jb/mvp111

32. Enokido Y, Suzuki E, Iwasawa
K, Namekata K, Okazawa H,
Kimura H. Cystathionine beta-
synthase, a key enzyme for
homocysteine metabolism, is
preferentially expressed in the
radial glia/astrocyte lineage of

developing mouse CNS. FASEB J
(2005) 19:1854–6.

33. Diwakar L, Ravindranath V. Inhi-
bition of cystathionine-gamma-
lyase leads to loss of glutathione
and aggravation of mitochondr-
ial dysfunction mediated by exci-
tatory amino acid in the CNS.
Neurochem Int (2007) 50:418–26.
doi:10.1016/j.neuint.2006.09.014

34. Yang G, Wu L, Jiang B, Yang
W, Qi J, Cao K, et al. H2S
as a physiologic vasorelaxant:
hypertension in mice with dele-
tion of cystathionine gamma-
lyase. Science (2008) 322:587–90.
doi:10.1126/science.1162667

35. Mitchell J, Paul P, Chen HJ, Mor-
ris A, Payling M, Falchi M, et al.
Familial amyotrophic lateral scle-
rosis is associated with a mutation
in d-amino acid oxidase. Proc Natl
Acad Sci U S A (2010) 107:7556–
61. doi:10.1073/pnas.0914128107

36. Moreno S, Nardacci R, Cimini
A, Cerù MP. Immunocytochem-
ical localization of d-amino
acid oxidase in rat brain. J
Neurocytol (1999) 28:169–85.
doi:10.1023/A:1007064504007

37. Perotti ME, Gavazzi E, Trussardo
L, Malgaretti N, Curti B. Immuno-
electron microscopic localization
of d-amino acid oxidase in
rat kidney and liver. His-
tochem J (1987) 19:157–69.
doi:10.1007/BF01695140

38. House JD, Brosnan ME, Brosnan
JT. Characterization of homocys-
teine metabolism in the rat kidney.
Biochem J (1997) 328:287–92.

39. Nagahara N, Ito T, Kitamura
H, Nishino T. Tissue and sub-
cellular distribution of mercap-
topyruvate sulfurtransferase in
the rat: confocal laser fluo-
rescence and immunoelectron
microscopic studies combined
with biochemical analysis. His-
tochem Cell Biol (1998) 110:243–
50. doi:10.1007/s004180050286

40. Mikami Y, Shibuya N, Ogasawara
Y, Kimura H. Hydrogen sulfide
is produced by cystathionine
γ-lyase at the steady-state low
intracellular Ca2+ concentra-
tions. Biochem Biophys Res
Commun (2013) 431:131–5.
doi:10.1016/j.bbrc.2013.01.010

41. Rutter GA, Rizzuto R. Reg-
ulation of mitochondrial
metabolism by ER Ca2+

release: an intimate connec-
tion. Trends Biochem Sci (2000)
25:215–21. doi:10.1016/S0968-
0004(00)01585-1

42. Mothet JP, Parent AT, Wolosker
H, Brady RO Jr, Linden DJ,

Ferris CD, et al. d-serine is
an endogenous ligand for the
glycine site of the N-methyl-d-
aspartate receptor. Proc Natl Acad
Sci U S A (2000) 97:4926–31.
doi:10.1073/pnas.97.9.4926

43. Hamase K, Konno R, Morikawa A,
Zaitsu K. Sensitive determination
of d-amino acids in mammals and
the effect of d-amino-acid oxidase
activity on their amounts. Biol
Pharm Bull (2005) 28:1578–84.
doi:10.1248/bpb.28.1578

44. Wolosker H, Sheth KN, Takahashi
M, Mothet JP, Brady RO Jr, Ferris
CD, et al. Purification of serine
racemase: biosynthesis of the neu-
romodulator d-serine. Proc Natl
Acad Sci U S A (1999) 96:721–5.
doi:10.1073/pnas.96.2.721

45. Strísovský K, Jirásková J, Barinka
C, Majer P, Rojas C, Slusher
BS, et al. Mouse brain ser-
ine racemase catalyzes specific
elimination of l-serine to
pyruvate. FEBS Lett (2003)
535:44–8. doi:10.1016/S0014-
5793(02)03855-3

46. Miyoshi Y, Konno R, Sasabe J,
Ueno K, Tojo Y, Mita M, et al.
Alteration of intrinsic amounts
of d-serine in the mice lack-
ing serine racemase and d-amino
acid oxidase. Amino Acids (2012)
43:1919–31. doi:10.1007/s00726-
012-1398-4

47. Kim PM, Duan X, Huang AS,
Liu CY, Ming GL, Song H, et
al. Aspartate racemase, generat-
ing neuronal d-aspartate, regu-
lates adult neurogenesis. Proc Natl
Acad Sci U S A (2010) 107:3175–9.
doi:10.1073/pnas.0914706107

48. Liardon R, Ledermann S. Racem-
ization kinetics of free and
protein-bound amino acids under
moderate alkaline treatment. J
Agric Food Chem (1986) 34:557–
65. doi:10.1021/jf00069a047

49. Friedman M. Origin, microbiol-
ogy, nutrition, and pharmacology
of d-amino acids. Chem Bio-
divers (2010) 7:1491–530.
doi:10.1002/cbdv.200900225

50. Krijgsheld KR, Glazenburg
EJ, Scholtens E, Mulder GJ.
The oxidation of l- and
d-cysteine to inorganic sul-
fate and taurine in the rat.
Biochim Biophys Acta (1981)
677:7–12. doi:10.1016/0304-
4165(81)90139-2

51. Fukasawa Y, Segawa H, Kim
JY, Chairoungdua A, Kim DK,
Matsuo H, et al. Identification
and characterization of a Na+-
independent neutral amino acid
transporter that associates with

the 4F2 heavy chain and exhibits
substrate selectivity for small
neutral d- and l-amino acids.
J Biol Chem (2000) 275:9690–8.
doi:10.1074/jbc.275.13.9690

52. Fonnum F, Lock EA. Cerebellum
as a target for toxic substances.
Toxicol Lett (2000) 112–
113:9–16. doi:10.1016/S0378-
4274(99)00246-5

53. Sajdel-Sulkowska EM, Xu M,
Koibuchi N. Increase in cerebellar
neurotrophin-3 and oxida-
tive stress markers in autism.
Cerebellum (2009) 8:366–72.
doi:10.1007/s12311-009-0105-9

54. Thadhani R, Pascual M, Bon-
ventre JV. Acute renal failure.
N Engl J Med (1996) 334:
1448–60. doi:10.1056/NEJM1996
05303342207

55. Allgren RL, Marbury TC, Rah-
man SN, Weisberg LS, Fenves
AZ, Lafayette RA, et al. Anari-
tide in acute tubular necrosis.
Auriculin Anaritide Acute Renal
Failure Study Group. N Engl J
Med (1997) 336:828–34. doi:10.
1056/NEJM199703203361203

56. Hirschberg R, Kopple J, Lipsett P,
Benjamin E, Minei J, Albertson
T, et al. Multicenter clinical
trial of recombinant human
insulin-like growth factor I
in patients with acute renal
failure. Kidney Int (1999)
55:2423–32. doi:10.1046/j.1523-
1755.1999.00463.x

57. Acker CG, Singh AR, Flick RP,
Bernardini J, Greenberg A, John-
son JP. A trial of thyroxine in acute
renal failure. Kidney Int (2000)
57:293–8. doi:10.1046/j.1523-
1755.2000.00827.x

58. Wang A, Holcslaw T, Bashore
TM, Freed MI, Miller D, Rud-
nick MR, et al. Exacerbation
of radiocontrast nephrotox-
icity by endothelin receptor
antagonism. Kidney Int (2000)
57:1675–80. doi:10.1046/j.1523-
1755.2000.00012.x

59. Ibba M, Söll D. Quality control
mechanisms during transla-
tion. Science (1999) 286:1893–7.
doi:10.1126/science.286.5446.1893

60. Yamaguchi K, Hosokawa Y,
Kohashi N, Kori Y, Sakakibara S,
Ueda I. Rat liver cysteine dioxy-
genase (cysteine oxidase). Further
purification, characterization,
and analysis of the activation and
inactivation. J Biochem (1978)
83:479–91.

61. Olney JW, Zorumski C, Price
MT, Labruyere J. l-cysteine, a
bicarbonate-sensitive endoge-
nous excitotoxin. Science (1990)

Frontiers in Endocrinology | Experimental Endocrinology July 2013 | Volume 4 | Article 87 | 4

http://dx.doi.org/10.1042/{\penalty -\@M }BJ20110841
http://dx.doi.org/10.1042/{\penalty -\@M }BJ20110841
http://dx.doi.org/10.1146/annurev.{\penalty -\@M }bi.52.070183.001155
http://dx.doi.org/10.1146/annurev.{\penalty -\@M }bi.52.070183.001155
http://dx.doi.org/10.1038/ncomms2371
http://dx.doi.org/10.1083/jcb.107.3.897
http://dx.doi.org/10.1016/j.tcb.2008.04.002
http://dx.doi.org/10.1042/BJ20040243
http://dx.doi.org/10.1093/jb/mvp111
http://dx.doi.org/10.1016/j.neuint.2006.09.014
http://dx.doi.org/10.1126/science.1162667
http://dx.doi.org/10.1073/pnas.0914128107
http://dx.doi.org/10.1023/A:1007064504007
http://dx.doi.org/10.1007/BF01695140
http://dx.doi.org/10.1007/s004180050286
http://dx.doi.org/10.1016/j.bbrc.2013.01.010
http://dx.doi.org/10.1016/S0968-0004(00)01585-1
http://dx.doi.org/10.1016/S0968-0004(00)01585-1
http://dx.doi.org/10.1073/pnas.97.9.4926
http://dx.doi.org/10.1248/bpb.28.1578
http://dx.doi.org/10.1073/pnas.96.2.721
http://dx.doi.org/10.1016/S0014-5793(02)03855-3
http://dx.doi.org/10.1016/S0014-5793(02)03855-3
http://dx.doi.org/10.1007/s00726-012-1398-4
http://dx.doi.org/10.1007/s00726-012-1398-4
http://dx.doi.org/10.1073/pnas.0914706107
http://dx.doi.org/10.1021/jf00069a047
http://dx.doi.org/10.1002/cbdv.200900225
http://dx.doi.org/10.1016/0304-4165(81)90139-2
http://dx.doi.org/10.1016/0304-4165(81)90139-2
http://dx.doi.org/10.1074/jbc.275.13.9690
http://dx.doi.org/10.1016/S0378-4274(99)00246-5
http://dx.doi.org/10.1016/S0378-4274(99)00246-5
http://dx.doi.org/10.1007/s12311-009-0105-9
http://dx.doi.org/10.1056/NEJM1996{\penalty -\@M }05303342207
http://dx.doi.org/10.1056/NEJM1996{\penalty -\@M }05303342207
http://dx.doi.org/10.{\penalty -\@M }1056/NEJM199703203361203
http://dx.doi.org/10.{\penalty -\@M }1056/NEJM199703203361203
http://dx.doi.org/10.1046/j.1523-1755.1999.00463.x
http://dx.doi.org/10.1046/j.1523-1755.1999.00463.x
http://dx.doi.org/10.1046/j.1523-1755.2000.00827.x
http://dx.doi.org/10.1046/j.1523-1755.2000.00827.x
http://dx.doi.org/10.1046/j.1523-1755.2000.00012.x
http://dx.doi.org/10.1046/j.1523-1755.2000.00012.x
http://dx.doi.org/10.1126/science.286.5446.1893
http://www.frontiersin.org/Experimental_Endocrinology
http://www.frontiersin.org/Experimental_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shibuya and Kimura H2S production from D-cysteine

248:596–9. doi:10.1126/science.
2185543

62. Janáky R, Varga V, Hermann A,
Saransaari P, Oja SS. Mechanisms
of l-cysteine neurotoxicity. Neu-
rochem Res (2000) 25:1397–405.
doi:10.1023/A:1007616817499

63. Misra CH. Is a certain amount
of cysteine prerequisite to produce
brain damage in neonatal rats?
Neurochem Res (1989) 14:253–7.
doi:10.1007/BF00971320

64. Takemoto Y. Pressor response to
l-cysteine injected into the cis-
terna magna of conscious rats
involves recruitment of hypothal-
amic vasopressinergic neurons.
Amino Acids (2012) 44:1053–60.
doi:10.1007/s00726-012-1440-6

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any

commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 28 May 2013; paper pending
published: 26 June 2013; accepted: 01 July
2013; published online: 16 July 2013.
Citation: Shibuya N and Kimura H
(2013) Production of hydrogen sul-
fide from D-cysteine and its therapeu-
tic potential. Front. Endocrinol. 4:87.
doi:10.3389/fendo.2013.00087

This article was submitted to Frontiers in
Experimental Endocrinology, a specialty
of Frontiers in Endocrinology.
Copyright © 2013 Shibuya and Kimura.
This is an open-access article distributed
under the terms of the Creative Com-
mons Attribution License, which per-
mits use, distribution and reproduction
in other forums, provided the original
authors and source are credited and sub-
ject to any copyright notices concerning
any third-party graphics etc.

www.frontiersin.org July 2013 | Volume 4 | Article 87 | 5

http://dx.doi.org/10.1126/science.{\penalty -\@M }2185543
http://dx.doi.org/10.1126/science.{\penalty -\@M }2185543
http://dx.doi.org/10.1023/A:1007616817499
http://dx.doi.org/10.1007/BF00971320
http://dx.doi.org/10.1007/s00726-012-1440-6
http://dx.doi.org/10.3389/fendo.2013.00087
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Experimental_Endocrinology/archive

	Production of hydrogen sulfide from D-cysteine and its therapeutic potential
	Introduction
	Production of H2S from D-cysteine
	Localization of H2S-producing enzymes
	Regulation of H2S-producing enzymes by Ca2+
	Source of D-cysteine
	Cytoprotective effect of D-cysteine
	D-cysteine: its therapeutic potential
	Acknowledgments
	References


