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The vertebrate hypothalamo–pituitary–gonadal axis is the anatomical framework respon-
sible for reproductive competence and species propagation. Essential to the coordinated
actions of this three-tiered biological system is the fact that the regulatory inputs ulti-
mately converge on the gonadotropin-releasing hormone (GnRH) neuronal system, which
in rodents primarily resides in the preoptic/hypothalamic region. In this short review we
will focus on: (1) the general embryonic temporal and spatial development of the rodent
GnRH neuronal system, (2) the origin(s) of GnRH neurons, and (3) which transcription – and
growth factors have been found to be critical for GnRH neuronal ontogenesis and cellular
fate-specification. Moreover, we ask the question whether the molecular and cellular mech-
anisms involved in GnRH neuronal development may also play a role in the development
of other hypophyseal secreting neuroendocrine cells in the hypothalamus.

Keywords: GnRH, hypothalamus, fibroblast growth factor 8, embryonic and fetal development, neuroendocrine
cells

INTRODUCTION
The ability of an organism to reproduce is of critical impor-
tance to the survival of not only the individual, but also of
the species at large. In mammals, reproduction is under the
tight regulation of a three-tiered body axis that consists of the
neurons found in the preoptic area and hypothalamus, pitu-
itary cells, and gonadal tissues, and therefore has been called
the hypothalamo–pituitary–gonadal (HPG) axis. Functionally,
gonadotropin-releasing hormone (GnRH) neurons are viewed as
the most upstream regulatory component of the HPG axis. Most
GnRH neurons are found around the very anterior tip of the
third ventricle called the organum vasculosum lamina terminalis
(OVLT) and their axons project to the external zone of the median
eminence (ME) in order to release the decapeptide, GnRH, into the
portal vein system. This in turn stimulates gonadotropin produc-
tion and release from the gonadotrophs of the anterior pituitary
into systemic circulation, ultimately causing steroidogenesis and
gametogenesis in the gonads.

Key publications in the late 80s described in detail the neu-
roanatomical embryonic development of GnRH neurons in the
rodent (1, 2). Based on the results of these landmark studies, a
compelling argument has been made favoring that GnRH neu-
rons originate (i.e., born) in the nasal compartment, at the level
of the olfactory placode (OP), and migrate along the nasal septum
to the preoptic region and hypothalamus by following the olfac-
tory, vomeronasal, and terminal nerves (1, 3). Currently, the best
estimates based on measurable GnRH peptide and mRNA levels
suggest that this developmental process begins around embryonic
day (E) 9.5, and is completed around E16.5 (1, 3).

Numerous studies have shown that the number of GnRH neu-
rons in the mammalian brain is very limited. Indeed, the adult
mouse and rat brain has a total of about 800–1000 GnRH neurons

(4–7). Interestingly, there are studies reporting that those adult
GnRH neurons are what remain from a larger pool of approx-
imately 1900–2000 embryonic GnRH neurons found around
E12.75 (7). These studies suggest that in addition to GnRH neuron
path-finding, there is also an inherent selection process that takes
place while GnRH neurons are migrating, which pares down the
number of GnRH neurons in the adult rodent brain to 800–1000
total.

In this review, we will primarily focus on the central por-
tion of the HPG axis; specifically, we will discuss in detail the
mechanisms involved in GnRH neuronal ontogenesis and fate-
specification. Moreover, we will discuss how this knowledge may
be useful for understanding the embryonic development of other
neuroendocrine cell types that have been found in the preoptic
region and the hypothalamus.

PRESUMPTIVE ORIGINS GnRH NEURONS
OLFACTORY PLACODE
As previously alluded to, GnRH neurons are first found outside the
central nervous system (CNS), even though the CNS is their final
residence. Using immunocytochemistry and in situ hybridization,
two landmark studies showed that GnRH expressing cells could
be found only in a specific part of the nasal compartment, the OP,
on E11.5 from which they migrate to the forebrain (1, 3).

Interestingly, proliferation studies showed that the vast major-
ity (∼80%) of mouse GnRH neurons undergo their last division
in the medial–ventral OP between E9.5 and E10.5 (2). These data
suggest that the anatomical localization of GnRH progenitor cell
ontogenesis is localized in the embryonic medial–ventral OP. Inter-
estingly, these post-mitotic GnRH progenitor cells do not express
detectable levels of GnRH mRNA or peptide prior to E11.5 (1,
2). In this sense, one can define the period of GnRH neuronal
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fate-specification to occur between E9.5 and E11.5. The absence
of measurable GnRH peptide prior to E11.5 is a major hurdle for
studying the molecular processes that regulate GnRH neuronal
fate-specification because, at present, the only marker for GnRH
neurons is the ability to express the GnRH peptide itself. There-
fore, post-mitotic OP progenitor cells that are destined to become
GnRH neurons cannot be identified during a large portion of
fate-specification, before they express measurable GnRH peptide
levels. Taken together, these studies make a strong case supporting
the central hypothesis that GnRH progenitor cells are born, and
become post-mitotic in the medial–ventral OP.

Further support for this hypothesis comes from the observa-
tion that humans who are deficient in GnRH signaling not only
exhibit hypogonadotropic hypogonadism, which causes infertility,
but are also completely or partially lacking the ability to smell (i.e.,
anosmia or hyposmia) (8–11). One such reproductive disorder in
humans is known as Kallmann syndrome (KS) (12–16). The pres-
ence of olfactory function defects in KS patients is in line with the
observation that the presumably “newly” born GnRH progenitor
cells are first detected in the medial–ventral OP.

The OP is an ectodermal region that gives rise to both non-
sensory respiratory epithelium and sensory olfactory epithelium.
The olfactory epithelium eventually develops into the main olfac-
tory and vomeronasal systems (17, 18). Ablation studies have
provided supporting evidence for the OP being the birthplace
of GnRH neurons, albeit sometimes ambiguously. For example,
amphibians that undergo OP removal ultimately lack the olfac-
tory epithelium, nerve, and bulb, as well as, GnRH neurons of the
forebrain (19, 20). Interestingly, when the OP is removed in rat and
chick embryos it does not result in total loss of forebrain GnRH
neurons. Rather, small populations of GnRH neurons are found in
the septum of rats, suggesting that these did not arise from the OP
(21, 22). However, it has been argued that the method of ablation
may have allowed some of the OP cells to survive, consequently
allowing the emergence of a limited population of GnRH neurons
to migrate to the septum.

Studies in chicks further pinpointed that forebrain GnRH
neurons are eliminated only when the respiratory epithelium is
ablated, and not the olfactory epithelium (23). Conversely, abla-
tion of the olfactory epithelium does not affect the development of
the GnRH neuronal system in chicks (24, 25). Nonetheless, only
a small percentage of GnRH neurons have been found migrat-
ing from the respiratory epithelium of normal chicks, whilst the
majority of GnRH neurons are from the olfactory epithelium (26).
Studies in mice have shown that GnRH neurons are not exclusively
localized in the olfactory epithelium, but can also be found in the
respiratory epithelium (27) as delineated using the transcription
factor marker activator protein 2α (AP2α). Moreover, AP2α is
reported to be co-localized in some of these newly formed GnRH
neurons (27). In the same study, a number of GnRH neurons were
found to be positive for nestin, which is another marker of the
respiratory epithelium. In contrast, some GnRH neurons do not
express olfactory epithelium markers, such as Mash-1, Math4A,
Math4C/neurogenin1, and NeuroD (27). Taken together, these data
demonstrate that both the respiratory and olfactory epithelium
may contribute significantly to the OP’s ability to generate GnRH
neurons. This conclusion, along with the inability to directly follow

GnRH progenitor cells from their birth (due to lack of a marker
for GnRH neurons other than the GnRH peptide itself) has led to
a proposed alternative birth place of GnRH neurons other than
the olfactory epithelium in the OP (see below).

NEURAL CREST
Studies of the GnRH neuronal system in zebrafish have cast
increasing doubt on the accepted paradigm that GnRH neu-
rons originate solely from within the olfactory epithelium in
the medial–ventral OP. For example, analysis of two knockout
zebrafish strains, you-too and detour, showed that not only is
the pituitary lacking or reduced, but there is also a concomi-
tant loss of hypothalamic GnRH neurons (28, 29). Interestingly,
these animals have normal olfactory organ development suggest-
ing that the loss of GnRH neurons cannot be due to the loss of
the OP. This inconsistency in GnRH neuronal origin may be due
to species differences. Indeed, mouse homologs of the aforemen-
tioned zebrafish pituitary knockouts do not show a loss of GnRH
neurons (30–33). Therefore, we can infer that GnRH progenitor
cells are not likely to originate from the developmental tissues that
give rise to the anterior pituitary in mammals.

In several vertebrate species the neural crest has been implicated
as a possible contributor to the formation of the OP (34–36). This
region arises from the edge of the neural plate and shares a bor-
der with the region that eventually becomes the OP. Neural crest
cells have been shown to migrate toward the presumptive OP,
and therefore, are likely to have contributed specific cell popula-
tions to the developing OP (37). Conclusive evidence supporting
this inference comes from zebrafish studies where premigratory
neural crest cells were labeled with lysinated rhodamine dex-
tran in vivo (38, 39). Subsequent double-labeling studies showed
that a subset of the tagged neural crest cells expressed GnRH
mRNA and peptide during the migratory phase of GnRH neuronal
development (29).

These original data have been recently replicated in mice.
Indeed, a small proportion (i.e., ∼30%) of the GnRH neurons
found in the OP had a genetic lineage similar to cells that arise
in the neural crest (35, 40). However, the other 70% of the total
population of GnRH neurons originated from placodal ectoderm
progenitors. In contrast, recent cell fate tracing studies in chicks
determined that all GnRH progenitors originate from ectoder-
mal placodes, suggesting that the developing neural crest does not
contribute to the emergence of GnRH progenitors in this species
(41). In short, GnRH neurons are likely to originate from both the
neural crest and OP. However, the degree to which each of these
two proliferative zones contributes to the GnRH neuronal system
may be species-dependent.

GENES REGULATING NEUROENDOCRINE CELL
DEVELOPMENT
The anatomical development of hypothalamic neuroendocrine
cells has been studied in much detail since the late 70s. For instance,
Altman and Bayer showed that hypothalamic cells are primarily
born during the second half of rat gestation, and originate from
the neuroepithelium of the fetal third ventricle (42). Since then,
many studies have contributed to the elucidation of the underlying
molecular mechanisms of hypothalamic morphogenesis.
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Unlike other hypothalamic neuroendocrine cells, the origins
of GnRH neurons are extra-hypothalamic; however, the devel-
opment of the GnRH neuronal system is arguably one of the
best-studied neuroendocrine cell systems within the hypothala-
mus. Consequently, it is possible that some of the molecular factors
that have been found to regulate GnRH neuronal development in
the nasal and forebrain compartments may also be relevant, and
involved in the embryonic development of non-GnRH hypothal-
amic neuroendocrine cells, such as those that express vasopressin
and oxytocin.

Due to major advances in molecular techniques over the last
couple of decades it has become possible to genetically screen
individuals with GnRH deficiencies. For example, KS patients
have been extensively screened in order to study whether they
harbor specific gene mutation(s) that may have led to their infer-
tility and olfactory deficits. These studies have identified many
factors regulating fate-specification and migration of GnRH neu-
rons [as reviewed in (43–47)]. Some of these factors and their
contributions are described below.

The first mutated gene to be found in KS patients was anosmin-
1 (as described below) (48–50). Following genetic screening, stud-
ies found further evidence supporting the idea that KS may be the
result of a myriad of mutated genes. Indeed, KS patients have been
shown to harbor hemizygous mutations for fibroblast growth fac-
tor receptor-1 (Fgfr1) (13, 51, 52), fibroblast growth factor 8 (Fgf8)
(14, 15, 53), prokineticin 2 (Prok2) (54) and its receptor (Prokr2)
(55), and chromodomain helicase-DNA-binding 7 (Chd7 ) (56–
58). These studies have been instrumental in providing possible
candidate genes that may play a role in GnRH progenitor cell fate-
specification, and possibly provide further insight into the origin
of GnRH neurons.

ANOSMIN-1
Studies in humans revealed that KAL-1 mutations underlie the
X-linked form of KS in humans (13, 48, 49, 59, 60). KAL-1 (also
known as Anosmin-1) encodes an extracellular matrix protein that
is secreted by the cranial neural crest, a developmental region
in mice from which approximately 30% of the GnRH progeni-
tors originate, and provides autocrine regulation of neural crest
formation in chicks (61). Anosmin-1 plays a role in the reg-
ulation of GnRH neuronal migration in rats and humans by
promoting the formation of the lateral olfactory tract and the
collateral branches of the mitral and tufted cells toward the olfac-
tory cortex (13, 62–65). It does this, in part, by promoting FGF
signaling (66).

There is evidence that anosmin-1 expressing cells are read-
ily found within the hypothalamus in rats and zebrafish (67,
68). Interestingly, recent studies have identified the presence of
anosmin-1 protein within bipolar cells in the most rostral hypo-
thalamic neuroepithelium that lines the third ventricle in rat
embryos (67), which has been shown to be the proliferative zone
that gives rise to many, if not all, hypothalamic neurons (42).
Furthermore, it has been reported that these hypothalamic neu-
roepithelia anosmin-1 positive cells are not detected in the same
region in postnatal rats. Currently, the identity and the function of
these anosmin-1 positive cells are unknown. Based on its function
during GnRH neuron migration, it may be speculated that these

anosmin-1 cells facilitate radial or tangential neuroendocrine cell
migration from the proliferative zone of the third ventricle.

FIBROBLAST GROWTH FACTOR RECEPTOR-1 AND FIBROBLAST
GROWTH FACTOR 8
Studies in humans and rodents have cemented the concept that
FGF signaling is critically important for GnRH progenitor cell
birth and proliferation (15, 16, 69, 70). Moreover, loss-of-function
mutations in both Fgfr1 and Fgf8 have been detected in KS patients
(15, 51). Our basic studies using homozygous Fgfr1 and Fgf8 hypo-
morphic newborn mice showed that the GnRH neuronal system
was reduced (i.e., ∼90%) or completely absent, respectively (14,
15). Moreover, the GnRH neuronal population in the heterozy-
gous Fgfr1 and Fgf8 hypomorphs was also significantly reduced
as compared to the wildtype newborns (14, 15). Following stud-
ies furthermore found evidence that the reduced GnRH neuronal
system in these hypomorphic mice causes abnormal reproduc-
tive function (71). Together, these results provided a fundamental
explanation for the reproductive defects found in KS patients who
harbor Fgfr1 and/or Fgf8 mutations.

The elimination of GnRH neurons likely occurred during the
emergence phase of GnRH neuronal development (i.e., ∼E9.5–
E11.5). In contrast to wildtype E11.5 embryos, no GnRH neurons
were detected in the medial–ventral OP of homozygous Fgf8
hypomorphs (14). Currently, it is unknown whether the elimi-
nation of the GnRH progenitor cells is the cause of abrogated
FGF8-dependent proliferation or cell survival. However, circum-
stantial evidence favors the second option given that the presence
of increased apoptosis has been reported for the E10.5 OP (70).

Subsequent studies in non-GnRH neuroendocrine systems
in the mouse hypothalamus showed that FGF signaling is also
involved in the development of hypothalamic neuroendocrine
cells that express kisspeptin, vasopressin, and oxytocin (70–73).
Specifically, the number of kisspeptin neurons in the adult het-
erozygous hypomorphic Fgfr1 and Fgf8 compound mice was
significantly higher than wildtype mice (71). Currently, it is
unknown whether the increase in kisspeptin neurons in these
compound Fgfr1/Fgf8 mice is the result of increased prolifera-
tion or survival of kisspeptin neurons during embryonic devel-
opment. Alternatively, a more parsimonious explanation could
be that the kisspeptin system has been “ramped” up as a com-
pensatory mechanism to counter the reduction in the number
of GnRH neurons in these compound Fgfr1/Fgf8 hypomor-
phic mice.

It should be noted that FGF signaling may play a role in main-
taining neurochemical phenotype/identity. Indeed, Brooks and
colleagues recently reported a major reduction in the number
of oxytocin neurons in the paraventricular nucleus (PVN) and
supraoptic nucleus (SON) of the hypothalamus (72). Upon further
examination, an interesting divergent role of FGF8 signaling dur-
ing oxytocin neuronal development was detected. Indeed, while
the loss of oxytocin neurons in the SON was correlated with a loss
in the oxyphysin–prohormone levels, this was not the case for the
PVN oxytocin neurons (72). These data indicate that FGF8 signal-
ing plays a role in shaping the hypothalamic oxytocin system on
two levels: anatomy (i.e., cell number) and cellular neuropeptide
processing.
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The hypothalamic vasopressinergic system was also highly
compromised in heterozygous and homozygous Fgf8 hypomor-
phic newborn mice (73). Specifically, the number of vasopressin
neurons was found to be reduced in the PVN, SON, and suprachi-
asmatic nucleus (SCN) (73). Interestingly, the percentage of vaso-
pressin neuronal loss was much higher in the SCN than in the
PVN suggesting a ventral–dorsal gradient in FGF8-dependence.
These results are in line with previous studies showing that Fgf8
mRNA expression in the E13.5 mouse embryo is highest in the
ventral zone of the developing hypothalamus, which diminishes
dorsally (Allen Developing Mouse Brain Atlas). Taken together,
these studies support the proposition that the ventral hypothala-
mic neuroendocrine cells (i.e., vasopressin or oxytocin) are more
dependent, and hence, vulnerable to disruptions in FGF8 signaling
during embryonic development.

PROKINETICIN 2/PROKINETICIN RECEPTOR 2
In contrast to the FGF signaling system, Prok2 (74) and its G-
protein coupled receptor (Prokr2) (75–77) were shown to primar-
ily regulate GnRH neuron migration and neuroendocrine function
in Prok2 and Prokr2 null mutant mouse studies (78–80), which
may underlie the abnormal or absent pubertal onset found in
humans (54, 80).

Prokineticin 2 null animals display a greatly reduced number
of GnRH neurons in the medial preoptic area, and 50% of them
show asymmetric olfactory bulb neurogenesis (78, 80). The loss of
medial preoptic GnRH neurons is likely due to the malformation
of the olfactory vomeronasal axonal pathways (79). Humans with
mutations in Prok2 or Prokr2 present with either KS or normosmic
hypogonadotropic hypogonadism (54,55,81). Interestingly,Prok2
and Prokr2 are not localized in GnRH neurons (80). Due to this
fact, it has been suggested that Prok2/Prokr2 impact GnRH migra-
tion by acting on the fibers that guide GnRH neurons into the
forebrain (82).

Both Prok2 and Prokr2 expression has been localized within
several nuclei of the hypothalamus, most notably in the mouse
SCN and PVN (83). Indeed, Prokr2 null mice have disruptions
in circadian activity and thermoregulation, which are two major
functions of the hypothalamus (84). Thus far, it is unknown
whether the loss of Prokr2 expression causes developmental defects
within the embryonic organization of the SCN. However, it is
known that Prokr2 null mice exhibit defective neuronal progenitor
proliferation and migration from the subventricular zone, which
is likely to underlie the decreased volume of the olfactory bulbs
(85). This defect was further compounded by the increased levels
of olfactory bulb apoptosis (85). Taken together, these data favor
the possibility that Prok2 and Prokr2 may also be involved in the
embryonic organization of hypothalamic neuroendocrine cells.

CHROMODOMAIN HELICASE-DNA-BINDING 7
Chromodomain helicase-DNA-binding 7 mutations have been
causally linked to the main cause of CHARGE syndrome, a disor-
der that is characterized by a number of symptoms, including heart
defects, ocular coloboma, genital hypoplasia, and KS (86). Mouse
studies have shown that Chd7 expression is present in the OP
from E10.5 onward, which could explain why CHARGE syndrome
patients manifest anosmia and hypogonadotropin hypogonadism

(56). In line with these clinical observations, Chd7 null mice have
compromised reproductive fitness and significantly less GnRH
neurons (87). The reduction of GnRH neurons may be linked
to the lower levels of cellular proliferation in the E10.5 OP
(87). Currently, there are no studies implicating that Chd7 might
also play a role in the development of non-GnRH hypothalamic
neuroendocrine cells.

PAX
The PAX family of transcription factors contains a unique DNA
binding sequence known as the paired-box, a DNA binding
homeo-domain (88, 89). To date, there have been 9 Pax genes
isolated and all but PAX-1 have been localized in the developing
CNS (89). This family has been described to be involved in early
animal development and tissue specification.

Pax-6 is of special interest because of its importance during the
development of the eye, olfactory system, and forebrain. Mice with
a semi-dominant point mutation in the Pax-6 gene are known as
small-eye (Sey) (90, 91). Sey homozygotes do not develop eyes or
an OP, and do not survive to birth (92, 93). In mice, Pax-6 expres-
sion can be detected in mice on E8.5 in the eye, olfactory system,
pituitary, brain, and spinal cord (94–96). Furthermore, PAX-6 is
localized in the neocortex, lateral ganglionic eminence, thalamus,
and hypothalamus (97).

Sey heterozygotes survive to postpartum, but suffer varying
degrees of eye malformations (92, 98, 99). Since Sey mice do not
form OPs they have been useful models for examining the ori-
gins of GnRH neurons. Indeed, Sey homozygotes completely lack
GnRH neurons in all regions of the brain (100), which provides
further evidence supporting the medial–ventral OP as the birth
place of GnRH progenitor cells. Of course, the absence of OP
development may also have been detrimental to GnRH progenitor
cells that are of neural crest origin (35).

No direct evidence has been reported about the role of PAX-6
during the hypothalamic neuroendocrine development. However,
mapping studies have shown that Pax-6 expression can be found
in the subventricular neuroepithelium cells of the third ventricle in
the E14.5 mouse hypothalamus (97, 101). Furthermore, anatom-
ical studies in Sey mice have reported that the compartmental-
ization of the embryonic hypothalamus is disrupted causing it to
expand beyond its normal boundaries (101). Furthermore, tracing
studies have shown that the mammillothalamic tract is abnormal
in Sey null mouse hypothalamus (102). Therefore, it is possible
that Pax-6 may be important for the emergence of non-GnRH
hypothalamic neuroendocrine cells, although this has not yet been
studied in great detail.

SOX
The Sox gene family belongs to the high mobility group (HMG)
superfamily (103). These proteins bind to the minor groove of
DNA in a highly sequence-specific manner (104–106). There have
been at least 20 Sox genes identified, which are categorized into
eight classes (A–H). Although the Class B Sox genes are known
to be involved in embryonic neuronal development (107) and
differentiation of the neuroepithelium (108), it is the Class C
Sox genes that provide evidence of a role in the regulation of
GnRH expression. There are two SOX-binding sites located on the
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intron A region of GnRH, which possesses a putative transcrip-
tional enhancer. When tested, only SOX-4 and SOX-11 (members
of Class C) dramatically increased luciferase reporter activity
(109). Both SOX-4 and SOX-11 were localized within ∼80% of
GnRH neurons and found in significantly lower abundance in
non-GnRH hypothalamic cells (109). To our knowledge, there are
no data available describing the role of SOX-4 or SOX-11 during
hypothalamic neuroendocrine cell development.

CONCLUSION
In this short, and by no means exhaustive review we argue that
the molecular mechanisms involved during GnRH neuronal fetal
development may also provide some insights into the develop-
ment of non-GnRH hypothalamic neuroendocrine cells. In gen-
eral this approach has been fruitful in elucidating some aspects

of the molecular underpinning of neuroendocrine cells during
their fetal development. As such, a promising and well-described
candidate seems to be FGF8. Indeed, mice that are hypomorphic
for Fgf8 exhibit dramatic GnRH and non-GnRH hypothalamic
neuroendocrine cell defects (see above). However, there are still
many questions that arise from these observations. For instance,
do these factors affect the proliferation, fate-specification, migra-
tion, and/or survival of hypothalamic neuroepithelium that are
destined to become part of the various neuroendocrine sys-
tems in the hypothalamus? Moreover, do other members of
the reviewed signaling systems also play a role in the devel-
opment of the hypothalamus? The direct examination of these
types of questions will be beneficial in order to better under-
stand the fetal organization of the hypothalamic neuroendocrine
systems.

REFERENCES
1. Schwanzel-Fukuda M, Pfaff DW.

Origin of luteinizing hormone-
releasing hormone neurons.
Nature (1989) 338:161–4.
doi:10.1038/338161a0

2. Wray S, Grant P, Gainer H.
Evidence that cells expressing
luteinizing hormone-releasing
hormone mRNA in the mouse
are derived from progen-
itor cells in the olfactory
placode. Proc Natl Acad Sci
U S A (1989) 86:8132–6.
doi:10.1073/pnas.86.20.8132

3. Wray S, Nieburgs A, Elkabes S.
Spatiotemporal cell expression
of luteinizing hormone-releasing
hormone in the prenatal mouse:
evidence for an embryonic
origin in the olfactory placode.
Brain Res Dev Brain Res (1989)
46:309–18. doi:10.1016/0165-
3806(89)90295-2

4. Shivers BD, Harlan RE, Mor-
rell JI, Pfaff DW. Immunocyto-
chemical localization of luteiniz-
ing hormone-releasing hormone
in male and female rat brains.
Quantitative studies on the
effect of gonadal steroids. Neu-
roendocrinology (1983) 36:1–12.
doi:10.1159/000123522

5. King JC, Anthony EL. LHRH
neurons and their projec-
tions in humans and other
mammals: species compar-
isons. Peptides (1984) 5(Suppl
1):195–207. doi:10.1016/0196-
9781(84)90277-8

6. Wray S, Hoffman G. A develop-
mental study of the quantitative
distribution of LHRH neurons
within the central nervous
system of postnatal male
and female rats. J Comp
Neurol (1986) 252:522–31.
doi:10.1002/cne.902520408

7. Wu TJ, Gibson MJ, Rogers
MC, Silverman AJ. New

observations on the development
of the gonadotropin-releasing
hormone system in the mouse.
J Neurobiol (1997) 33:983–98.
doi:10.1002/(SICI)1097-
4695(199712)33:7<983::AID-
NEU9>3.0.CO;2-4

8. Cariboni A, Maggi R. Kall-
mann’s syndrome, a neuronal
migration defect. Cell Mol
Life Sci (2006) 63:2512–26.
doi:10.1007/s00018-005-5604-3

9. Chan YM, Broder-Fingert S,
Seminara SB. Reproductive
functions of kisspeptin and
Gpr54 across the life cycle
of mice and men. Peptides
(2009) 30:42–8. doi:10.1016/
j.peptides.2008.06.015

10. Trarbach EB, Teles MG, Costa
EM, Abreu AP, Garmes HM,
Guerra G Jr., et al. Screening
of autosomal gene deletions in
patients with hypogonadotropic
hypogonadism using multi-
plex ligation-dependent probe
amplification: detection of a
hemizygosis for the fibrob-
last growth factor receptor 1.
Clin Endocrinol (Oxf) (2010)
72:371–6. doi:10.1111/j.1365-
2265.2009.03642.x

11. Wray S. From nose to brain:
development of gonadotrophin-
releasing hormone-1 neurones.
J Neuroendocrinol (2010)
22:743–53. doi:10.1111/j.1365-
2826.2010.02034.x

12. Kallmann F. The genetic aspects
of primary eunuchoidism.
Am J Ment Defic (1944)
48:203–36.

13. Schwanzel-Fukuda M, Bick
D, Pfaff DW. Luteinizing
hormone-releasing hormone
(LHRH)-expressing cells do
not migrate normally in
an inherited hypogonadal
(Kallmann) syndrome. Brain
Res Mol Brain Res (1989)

6:311–26. doi:10.1016/0169-
328X(89)90076-4

14. Chung WCJ, Moyle SS, Tsai
PS. Fibroblast growth factor
8 signaling through fibroblast
growth factor receptor 1 is
required for the emergence
of gonadotropin-releasing
hormone neurons. Endocrinol-
ogy (2008) 149:4997–5003.
doi:10.1210/en.2007-1634

15. Falardeau J, Chung WCJ,
Beenken A, Raivio T, Plummer
L, Sidis Y, et al. Decreased
FGF8 signaling causes deficiency
of gonadotropin-releasing
hormone in humans and mice. J
Clin Invest (2008) 118:2822–31.
doi:10.1172/JCI34538

16. Chung WCJ, Tsai PS. Role
of fibroblast growth factor
signaling in gonadotropin-
releasing hormone neuronal
system development. Front
Horm Res (2010) 39:37–50.
doi:10.1159/000312692

17. Halpern M. The organization
and function of the vomeronasal
system. Annu Rev Neurosci
(1987) 10:325–62. doi:10.1146/
annurev.ne.10.030187.001545

18. Farbman AI, Buchholz JA.
Growth of olfactory epithe-
lial tissue in vitro: lectin
staining of axons. Microsc
Res Tech (1992) 23:173–80.
doi:10.1002/jemt.1070230207

19. Murakami S, Kikuyama S, Arai
Y. The origin of the luteinizing
hormone-releasing hormone
(LHRH) neurons in newts
(Cynops pyrrhogaster): the effect
of olfactory placode ablation.
Cell Tissue Res (1992) 269:21–7.
doi:10.1007/BF00384722

20. Northcutt RG, Muske LE.
Multiple embryonic origins
of gonadotropin-releasing
hormone (GnRH) immunore-
active neurons. Brain Res

Dev Brain Res (1994)
78:279–90. doi:10.1016/0165-
3806(94)90037-X

21. Daikoku-Ishido H, Okamura Y,
Yanaihara N, Daikoku S. Devel-
opment of the hypothalamic
luteinizing hormone-releasing
hormone-containing neu-
ron system in the rat:
in vivo and in transplanta-
tion studies. Dev Biol (1990)
140:374–87. doi:10.1016/0012-
1606(90)90087-Y

22. Daikoku S, Koide I. Spatiotem-
poral appearance of developing
LHRH neurons in the rat brain. J
Comp Neurol (1998) 393:34–47.
doi:10.1002/(SICI)1096-
9861(19980330)393:1<34::AID-
CNE4>3.0.CO;2-R

23. el Amraoui A, Dubois PM.
Experimental evidence
for an early commitment
of gonadotropin-releasing
hormone neurons, with special
regard to their origin from
the ectoderm of nasal cavity
presumptive territory. Neuroen-
docrinology (1993) 57:991–1002.
doi:10.1159/000126490

24. Akutsu S, Takada M, Ohki-
Hamazaki H, Murakami S,AraiY.
Origin of luteinizing hormone-
releasing hormone (LHRH)
neurons in the chick embryo:
effect of the olfactory placode
ablation. Neurosci Lett (1992)
142:241–4. doi:10.1016/0304-
3940(92)90382-H

25. Arai Y, Murakami S, Seki T.
Removal of olfactory placode
prevents the development of
LHRH neurons in the fore-
brain of the chick embryo: possi-
ble interaction between migrat-
ing LHRH neurons and highly
polysialylated form of neural
cell adhesion molecule (NCAM-
H). Acta Biol Hung (1994)
45:155–68.

www.frontiersin.org July 2013 | Volume 4 | Article 89 | 5

http://dx.doi.org/10.1038/338161a0
http://dx.doi.org/10.1073/pnas.86.20.8132
http://dx.doi.org/10.1016/0165-3806(89)90295-2
http://dx.doi.org/10.1016/0165-3806(89)90295-2
http://dx.doi.org/10.1159/000123522
http://dx.doi.org/10.1016/0196-9781(84)90277-8
http://dx.doi.org/10.1016/0196-9781(84)90277-8
http://dx.doi.org/10.1002/cne.902520408
http://dx.doi.org/10.1002/(SICI)1097-4695(199712)33:7%3C983::AID-NEU9%3E3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1097-4695(199712)33:7%3C983::AID-NEU9%3E3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1097-4695(199712)33:7%3C983::AID-NEU9%3E3.0.CO;2-4
http://dx.doi.org/10.1007/s00018-005-5604-3
http://dx.doi.org/10.1016/{\penalty -\@M }j.peptides.2008.06.015
http://dx.doi.org/10.1016/{\penalty -\@M }j.peptides.2008.06.015
http://dx.doi.org/10.1111/j.1365-2265.2009.03642.x
http://dx.doi.org/10.1111/j.1365-2265.2009.03642.x
http://dx.doi.org/10.1111/j.1365-2826.2010.02034.x
http://dx.doi.org/10.1111/j.1365-2826.2010.02034.x
http://dx.doi.org/10.1016/0169-328X(89)90076-4
http://dx.doi.org/10.1016/0169-328X(89)90076-4
http://dx.doi.org/10.1210/en.2007-1634
http://dx.doi.org/10.1172/JCI34538
http://dx.doi.org/10.1159/000312692
http://dx.doi.org/10.1146/{\penalty -\@M }annurev.ne.10.030187.001545
http://dx.doi.org/10.1146/{\penalty -\@M }annurev.ne.10.030187.001545
http://dx.doi.org/10.1002/jemt.1070230207
http://dx.doi.org/10.1007/BF00384722
http://dx.doi.org/10.1016/0165-3806(94)90037-X
http://dx.doi.org/10.1016/0165-3806(94)90037-X
http://dx.doi.org/10.1016/0012-1606(90)90087-Y
http://dx.doi.org/10.1016/0012-1606(90)90087-Y
http://dx.doi.org/10.1002/(SICI)1096-9861(19980330)393:1%3C34::AID-CNE4%3E3.0.CO;2-R
http://dx.doi.org/10.1002/(SICI)1096-9861(19980330)393:1%3C34::AID-CNE4%3E3.0.CO;2-R
http://dx.doi.org/10.1002/(SICI)1096-9861(19980330)393:1%3C34::AID-CNE4%3E3.0.CO;2-R
http://dx.doi.org/10.1159/000126490
http://dx.doi.org/10.1016/0304-3940(92)90382-H
http://dx.doi.org/10.1016/0304-3940(92)90382-H
http://www.frontiersin.org
http://www.frontiersin.org/Experimental_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stevenson et al. GnRH development and hypothalamic neuroendocrine cells

26. Hilal EM, Chen JH, Silver-
man AJ. Joint migration
of gonadotropin-releasing
hormone (GnRH) and neu-
ropeptide Y (NPY) neurons
from olfactory placode to
central nervous system. J Neu-
robiol (1996) 31:487–502.
doi:10.1002/(SICI)1097-
4695(199612)31:4<487::AID-
NEU8>3.0.CO;2-5

27. Kramer PR, Wray S. Mid-
line nasal tissue influences
nestin expression in nasal-
placode-derived luteinizing
hormone-releasing hormone
neurons during development.
Dev Biol (2000) 227:343–57.
doi:10.1006/dbio.2000.9896

28. Karlstrom RO, Talbot WS, Schier
AF. Comparative synteny cloning
of zebrafish you-too: mutations
in the Hedgehog target gli2
affect ventral forebrain pattern-
ing. Genes Dev (1999) 13:388–93.
doi:10.1101/gad.13.4.388

29. Whitlock KE, Wolf CD, Boyce
ML. Gonadotropin-releasing
hormone (GnRH) cells arise
from cranial neural crest and
adenohypophyseal regions of
the neural plate in the zebrafish,
Danio rerio. Dev Biol (2003)
257:140–52. doi:10.1016/S0012-
1606(03)00039-3

30. Sheng HZ, Zhadanov AB,
Mosinger B Jr., Fujii T, Bertuzzi
S, Grinberg A, et al. Specification
of pituitary cell lineages by
the LIM homeobox gene Lhx3.
Science (1996) 272:1004–7.
doi:10.1126/science.272.5264.1004

31. Mo R, Freer AM, Zinyk DL,
Crackower MA, Michaud J, Heng
HH, et al. Specific and redundant
functions of Gli2 and Gli3 zinc
finger genes in skeletal patterning
and development. Development
(1997) 124:113–23.

32. Park HL, Bai C, Platt KA, Matise
MP, Beeghly A, Hui CC, et al.
Mouse Gli1 mutants are viable
but have defects in SHH signal-
ing in combination with a Gli2
mutation. Development (2000)
127:1593–605.

33. Metz H, Wray S. Use of mutant
mouse lines to investigate ori-
gin of gonadotropin-releasing
hormone-1 neurons: lin-
eage independent of the
adenohypophysis. Endocrinol-
ogy (2010) 151:766–73.
doi:10.1210/en.2009-0875

34. Whitlock KE, Westerfield M.
The olfactory placodes of the
zebrafish form by convergence of
cellular fields at the edge of the

neural plate. Development (2000)
127:3645–53.

35. Forni PE, Taylor-Burds C, Melvin
VS, Williams T, Wray S. Neural
crest and ectodermal cells inter-
mix in the nasal placode to
give rise to GnRH-1 neurons,
sensory neurons, and olfactory
ensheathing cells. J Neurosci
(2011) 31:6915–27. doi:10.1523/
JNEUROSCI.6087-10.2011

36. Katoh H, Shibata S, Fukuda K,
Sato M, Satoh E, Nagoshi N,
et al. The dual origin of the
peripheral olfactory system: pla-
code and neural crest. Mol Brain
(2011) 4:34. doi:10.1186/1756-
6606-4-34

37. Schilling TF, Kimmel CB. Seg-
ment and cell type lineage
restrictions during pharyn-
geal arch development in the
zebrafish embryo. Development
(1994) 120:483–94.

38. Raible DW, Wood A, Hods-
don W, Henion PD, Weston
JA, Eisen JS. Segregation and
early dispersal of neural crest
cells in the embryonic zebrafish.
Dev Dyn (1992) 195:29–42.
doi:10.1002/aja.1001950104

39. Raible DW, Eisen JS. Restric-
tion of neural crest cell fate
in the trunk of the embryonic
zebrafish. Development (1994)
120:495–503.

40. Forni PE, Wray S. Neural
crest and olfactory system:
new prospective. Mol Neu-
robiol (2012) 46:349–60.
doi:10.1007/s12035-012-8286-5

41. Sabado V, Barraud P, Baker
CV, Streit A. Specification of
GnRH-1 neurons by antagonis-
tic FGF and retinoic acid signal-
ing. Dev Biol (2012) 362:254–62.
doi:10.1016/j.ydbio.2011.12.016

42. Altman J, Bayer SA. Develop-
ment of the diencephalon in
the rat. VI. Re-evaluation of
the embryonic development of
the thalamus on the basis of
thymidine-radiographic datings.
J Comp Neurol (1979) 188:501–
24. doi:10.1002/cne.901880310

43. Tobet SA, Bless EP, Schwart-
ing GA. Developmental
aspect of the gonadotropin-
releasing hormone system.
Mol Cell Endocrinol (2001)
185:173–84. doi:10.1016/S0303-
7207(01)00616-5

44. Wierman ME, Pawlowski JE,
Allen MP, Xu M, Linseman
DA, Nielsen-Preiss S. Molecular
mechanisms of gonadotropin-
releasing hormone neuronal
migration. Trends Endocrinol

Metab (2004) 15:96–102.
doi:10.1016/j.tem.2004.02.003

45. Tobet SA, Schwarting
GA. Minireview: recent
progress in gonadotropin-
releasing hormone neuronal
migration. Endocrinol-
ogy (2006) 147:1159–65.
doi:10.1210/en.2005-1275

46. Cariboni A, Maggi R, Parnavelas
JG. From nose to fertility:
the long migratory journey
of gonadotropin-releasing
hormone neurons. Trends
Neurosci (2007) 30:638–44.
doi:10.1016/j.tins.2007.09.002

47. Silveira LF, Trarbach EB, Latron-
ico AC. Genetics basis for
GnRH-dependent pubertal
disorders in humans. Mol Cell
Endocrinol (2010) 324:30–8.
doi:10.1016/j.mce.2010.02.023

48. Franco B, Guioli S, Pragliola A,
Incerti B, Bardoni B, Tonlorenzi
R, et al. A gene deleted in Kall-
mann’s syndrome shares homol-
ogy with neural cell adhesion
and axonal path-finding mole-
cules. Nature (1991) 353:529–36.
doi:10.1038/353529a0

49. Legouis R, Hardelin JP, Levilliers
J, Claverie JM, Compain S,
Wunderle V, et al. The can-
didate gene for the X-linked
Kallmann syndrome encodes
a protein related to adhe-
sion molecules. Cell (1991)
67:423–35. doi:10.1016/0092-
8674(91)90193-3

50. Hardelin JP, Levilliers J, del
Castillo I, Cohen-Salmon M,
Legouis R, Blanchard S, et al.
X chromosome-linked Kallmann
syndrome: stop mutations vali-
date the candidate gene. Proc Natl
Acad Sci U S A (1992) 89:8190–4.
doi:10.1073/pnas.89.17.8190

51. Dode C, Levilliers J, Dupont
JM, De Paepe A, Le Du N,
Soussi-Yanicostas N, et al.
Loss-of-function mutations
in FGFR1 cause autosomal
dominant Kallmann syndrome.
Nat Genet (2003) 33:463–5.
doi:10.1038/ng1122

52. Sato N, Katsumata N, Kagami M,
Hasegawa T, Hori N, Kawakita
S, et al. Clinical assessment
and mutation analysis of Kall-
mann syndrome 1 (KAL1)
and fibroblast growth factor
receptor 1 (FGFR1, or KAL2)
in five families and 18 sporadic
patients. J Clin Endocrinol
Metab (2004) 89:1079–88.
doi:10.1210/jc.2003-030476

53. Trarbach EB, Abreu AP, Sil-
veira LF, Garmes HM, Baptista

MT, Teles MG, et al. Non-
sense mutations in FGF8 gene
causing different degrees of
human gonadotropin-releasing
deficiency. J Clin Endocrinol
Metab (2010) 95:3491–6.
doi:10.1210/jc.2010-0176

54. Dode C, Teixeira L, Levilliers J,
Fouveaut C, Bouchard P, Kottler
ML, et al. Kallmann syndrome:
mutations in the genes encoding
prokineticin-2 and proki-
neticin receptor-2. PLoS Genet
(2006) 2:e175. doi:10.1371/
journal.pgen.0020175

55. Cole LW, Sidis Y, Zhang C,
Quinton R, Plummer L, Pig-
natelli D, et al. Mutations
in prokineticin 2 and proki-
neticin receptor 2 genes in
human gonadotrophin-releasing
hormone deficiency: molecular
genetics and clinical spectrum.
J Clin Endocrinol Metab (2008)
93:3551–9. doi:10.1210/jc.2007-
2654

56. Kim HG, Kurth I, Lan F, Meli-
ciani I, Wenzel W, Eom SH, et
al. Mutations in CHD7, encod-
ing a chromatin-remodeling
protein, cause idiopathic hypog-
onadotropic hypogonadism
and Kallmann syndrome. Am
J Hum Genet (2008) 83:511–9.
doi:10.1016/j.ajhg.2008.09.005

57. Jongmans MC, van
Ravenswaaij-Arts CM, Pit-
teloud N, Ogata T, Sato N,
Claahsen-van der Grinten
HL, et al. CHD7 mutations
in patients initially diagnosed
with Kallmann syndrome – the
clinical overlap with CHARGE
syndrome. Clin Genet (2009)
75:65–71. doi:10.1111/j.1399-
0004.2008.01107.x

58. Bergman JE, Janssen N, Hoef-
sloot LH, Jongmans MC,
Hofstra RM, van Ravenswaaij-
Arts CM. CHD7 mutations
and CHARGE syndrome:
the clinical implications of
an expanding phenotype. J
Med Genet (2011) 48:334–42.
doi:10.1136/jmg.2010.087106

59. Ballabio A, Camerino G.
The gene for X-linked Kall-
mann syndrome: a human
neuronal migration defect.
Curr Opin Genet Dev (1992)
2:417–21. doi:10.1016/S0959-
437X(05)80152-2

60. Hardelin JP, Dode C. The
complex genetics of Kallmann
syndrome: KAL1, FGFR1,
FGF8, PROKR2, PROK2, et
al. Sex Dev (2008) 2:181–93.
doi:10.1159/000152034

Frontiers in Endocrinology | Experimental Endocrinology July 2013 | Volume 4 | Article 89 | 6

http://dx.doi.org/10.1002/(SICI)1097-4695(199612)31:4%3C487::AID-NEU8%3E3.0.CO;2-5
http://dx.doi.org/10.1002/(SICI)1097-4695(199612)31:4%3C487::AID-NEU8%3E3.0.CO;2-5
http://dx.doi.org/10.1002/(SICI)1097-4695(199612)31:4%3C487::AID-NEU8%3E3.0.CO;2-5
http://dx.doi.org/10.1006/dbio.2000.9896
http://dx.doi.org/10.1101/gad.13.4.388
http://dx.doi.org/10.1016/S0012-1606(03)00039-3
http://dx.doi.org/10.1016/S0012-1606(03)00039-3
http://dx.doi.org/10.1126/science.272.5264.1004
http://dx.doi.org/10.1210/en.2009-0875
http://dx.doi.org/10.1523/{\penalty -\@M }JNEUROSCI.6087-10.2011
http://dx.doi.org/10.1523/{\penalty -\@M }JNEUROSCI.6087-10.2011
http://dx.doi.org/10.1186/1756-6606-4-34
http://dx.doi.org/10.1186/1756-6606-4-34
http://dx.doi.org/10.1002/aja.1001950104
http://dx.doi.org/10.1007/s12035-012-8286-5
http://dx.doi.org/10.1016/j.ydbio.2011.12.016
http://dx.doi.org/10.1002/cne.901880310
http://dx.doi.org/10.1016/S0303-7207(01)00616-5
http://dx.doi.org/10.1016/S0303-7207(01)00616-5
http://dx.doi.org/10.1016/j.tem.2004.02.003
http://dx.doi.org/10.1210/en.2005-1275
http://dx.doi.org/10.1016/j.tins.2007.09.002
http://dx.doi.org/10.1016/j.mce.2010.02.023
http://dx.doi.org/10.1038/353529a0
http://dx.doi.org/10.1016/0092-8674(91)90193-3
http://dx.doi.org/10.1016/0092-8674(91)90193-3
http://dx.doi.org/10.1073/pnas.89.17.8190
http://dx.doi.org/10.1038/ng1122
http://dx.doi.org/10.1210/jc.2003-030476
http://dx.doi.org/10.1210/jc.2010-0176
http://dx.doi.org/10.1371/{\penalty -\@M }journal.pgen.0020175
http://dx.doi.org/10.1371/{\penalty -\@M }journal.pgen.0020175
http://dx.doi.org/10.1210/jc.2007-2654
http://dx.doi.org/10.1210/jc.2007-2654
http://dx.doi.org/10.1016/j.ajhg.2008.09.005
http://dx.doi.org/10.1111/j.1399-0004.2008.01107.x
http://dx.doi.org/10.1111/j.1399-0004.2008.01107.x
http://dx.doi.org/10.1136/jmg.2010.087106
http://dx.doi.org/10.1016/S0959-437X(05)80152-2
http://dx.doi.org/10.1016/S0959-437X(05)80152-2
http://dx.doi.org/10.1159/000152034
http://www.frontiersin.org/Experimental_Endocrinology
http://www.frontiersin.org/Experimental_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stevenson et al. GnRH development and hypothalamic neuroendocrine cells

61. Endo Y, Ishiwata-Endo H,
Yamada KM. Extracellu-
lar matrix protein anosmin
promotes neural crest for-
mation and regulates FGF,
BMP, and WNT activities.
Dev Cell (2012) 23:305–16.
doi:10.1016/j.devcel.2012.07.006

62. Hardelin JP, Julliard AK, Moniot
B, Soussi-Yanicostas N, Verney
C, Schwanzel-Fukuda M, et
al. Anosmin-1 is a region-
ally restricted component of
basement membranes and
interstitial matrices during
organogenesis: implica-
tions for the developmental
anomalies of X chromosome-
linked Kallmann syndrome.
Dev Dyn (1999) 215:26–44.
doi:10.1002/(SICI)1097-
0177(199905)215:1<26::AID-
DVDY4>3.0.CO;2-D

63. Soussi-Yanicostas N, de Cas-
tro F, Julliard AK, Perfettini I,
Chedotal A, Petit C. Anosmin-
1, defective in the X-linked
form of Kallmann syndrome,
promotes axonal branch for-
mation from olfactory bulb
output neurons. Cell (2002)
109:217–28. doi:10.1016/S0092-
8674(02)00713-4

64. Hu Y, Guimond SE, Travers P,
Cadman S, Hohenester E, Turn-
bull JE, et al. Novel mechanisms
of fibroblast growth factor recep-
tor 1 regulation by extracellu-
lar matrix protein anosmin-1. J
Biol Chem (2009) 284:29905–20.
doi:10.1074/jbc.M109.049155

65. Hu Y, Poopalasundaram S,
Graham A, Bouloux PM. GnRH
neuronal migration and olfac-
tory bulb neurite outgrowth
are dependent on FGF receptor
1 signaling, specifically via the
PI3K p110alpha isoform in
chick embryo. Endocrinol-
ogy (2013) 154:388–99.
doi:10.1210/en.2012-1555

66. Gonzalez-Martinez D, Kim SH,
Hu Y, Guimond S, Schofield J,
Winyard P, et al. Anosmin-1
modulates fibroblast growth
factor receptor 1 signaling
in human gonadotropin-
releasing hormone olfactory
neuroblasts through a heparan
sulfate-dependent mechanism.
J Neurosci (2004) 24:10384–92.
doi:10.1523/JNEUROSCI.3400-
04.2004

67. Clemente D,Esteban PF,DelValle
I, Bribian A, Soussi-Yanicostas N,
Silva A, et al. Expression pattern
of Anosmin-1 during pre- and
postnatal rat brain development.

Dev Dyn (2008) 237:2518–28.
doi:10.1002/dvdy.21659

68. Ayari B, Landoulsi A, Soussi-
Yanicostas N. Localization and
characterization of kal 1.a and
kal 1.b in the brain of adult
zebrafish (Danio rerio). Brain
Res Bull (2012) 88:345–53.
doi:10.1016/j.brainresbull.2012.
03.006

69. Chung WCJ, Matthews TA, Tata
BK, Tsai PS. Compound defi-
ciencies in multiple fibroblast
growth factor signalling compo-
nents differentially impact the
murine gonadotrophin-releasing
hormone system. J Neuroen-
docrinol (2010) 22:944–50.

70. Tsai PS, Brooks LR, Rochester
JR, Kavanaugh SI, Chung
WCJ. Fibroblast growth factor
signaling in the developing
neuroendocrine hypothalamus.
Front Neuroendocrinol (2011)
32:95–107. doi:10.1016/j.yfrne.
2010.11.002

71. Tata BK, Chung WCJ, Brooks
LR, Kavanaugh SI, Tsai PS.
Fibroblast growth factor signal-
ing deficiencies impact female
reproduction and kisspeptin
neurons in mice. Biol Reprod
(2012) 86:119. doi:10.1095/
biolreprod.111.095992

72. Brooks LR, Chung WCJ, Tsai
PS. Abnormal hypothalamic
oxytocin system in fibroblast
growth factor 8-deficient mice.
Endocrine (2010) 38:174–80.
doi:10.1007/s12020-010-9366-9

73. McCabe MJ, Gaston-Massuet
C, Tziaferi V, Gregory LC, Alat-
zoglou KS, Signore M, et al. Novel
FGF8 mutations associated
with recessive holoprosen-
cephaly, craniofacial defects,
and hypothalamo-pituitary
dysfunction. J Clin Endocrinol
Metab (2011) 96:E1709–18.
doi:10.1210/jc.2011-0454

74. Li M, Bullock CM, Knauer DJ,
Ehlert FJ, Zhou QY. Identifica-
tion of two prokineticin cDNAs:
recombinant proteins potently
contract gastrointestinal smooth
muscle. Mol Pharmacol (2001)
59:692–8.

75. Lin DC, Bullock CM, Ehlert
FJ, Chen JL, Tian H, Zhou QY.
Identification and molecular
characterization of two closely
related G protein-coupled
receptors activated by pro-
kineticins/endocrine gland
vascular endothelial growth
factor. J Biol Chem (2002)
277:19276–80. doi:10.1074/
jbc.M202139200

76. Masuda Y, Takatsu Y, Terao Y,
Kumano S, Ishibashi Y, Suenaga
M, et al. Isolation and identifica-
tion of EG-VEGF/prokineticins
as cognate ligands for two
orphan G-protein-coupled
receptors. Biochem Biophys Res
Commun (2002) 293:396–
402. doi:10.1016/S0006-
291X(02)00239-5

77. Soga T, Matsumoto S, Oda T,
Saito T, Hiyama H, Takasaki J, et
al. Molecular cloning and charac-
terization of prokineticin recep-
tors. Biochim Biophys Acta (2002)
1579:173–9. doi:10.1016/S0167-
4781(02)00546-8

78. Ng KL, Li JD, Cheng MY, Leslie
FM, Lee AG, Zhou QY. Depen-
dence of olfactory bulb neuro-
genesis on prokineticin 2 signal-
ing. Science (2005) 308:1923–7.
doi:10.1126/science.1112103

79. Matsumoto S, Yamazaki C,
Masumoto KH, Nagano M,
Naito M, Soga T, et al. Abnormal
development of the olfactory
bulb and reproductive system
in mice lacking prokineticin
receptor PKR2. Proc Natl Acad
Sci U S A (2006) 103:4140–5.
doi:10.1073/pnas.0508881103

80. Pitteloud N, Zhang C, Pig-
natelli D, Li JD, Raivio T,
Cole LW, et al. Loss-of-function
mutation in the prokineticin
2 gene causes Kallmann syn-
drome and normosmic idio-
pathic hypogonadotropic hypog-
onadism. Proc Natl Acad Sci
U S A (2007) 104:17447–52.
doi:10.1073/pnas.0707173104

81. Monnier C, Dode C, Fabre
L, Teixeira L, Labesse G, Pin
JP, et al. PROKR2 missense
mutations associated with Kall-
mann syndrome impair recep-
tor signalling activity. Hum
Mol Genet (2009) 18:75–81.
doi:10.1093/hmg/ddn318

82. Wierman ME, Kiseljak-Vassil
iades K, Tobet S. Gonadotropin-
releasing hormone (GnRH) neu-
ron migration: initiation, main-
tenance and cessation as critical
steps to ensure normal repro-
ductive function. Front Neu-
roendocrinol (2011) 32:43–52.
doi:10.1016/j.yfrne.2010.07.005

83. Cheng MY, Leslie FM, Zhou
QY. Expression of prokineticins
and their receptors in the
adult mouse brain. J Comp
Neurol (2006) 498:796–809.
doi:10.1002/cne.21087

84. Prosser HM, Bradley A, Che-
sham JE, Ebling FJ, Hastings
MH, Maywood ES. Prokineticin

receptor 2 (Prokr2) is essen-
tial for the regulation of circa-
dian behavior by the suprachi-
asmatic nuclei. Proc Natl Acad
Sci U S A (2007) 104:648–53.
doi:10.1073/pnas.0606884104

85. Prosser HM, Bradley A, Caldwell
MA. Olfactory bulb hypopla-
sia in Prokr2 null mice stems
from defective neuronal prog-
enitor migration and differen-
tiation. Eur J Neurosci (2007)
26:3339–44. doi:10.1111/j.1460-
9568.2007.05958.x

86. Kim HG, Layman LC. The
role of CHD7 and the newly
identified WDR11 gene in
patients with idiopathic hypog-
onadotropic hypogonadism and
Kallmann syndrome. Mol Cell
Endocrinol (2011) 346:74–83.
doi:10.1016/j.mce.2011.07.013

87. Layman WS, Hurd EA, Mar-
tin DM. Reproductive dysfunc-
tion and decreased GnRH neu-
rogenesis in a mouse model
of CHARGE syndrome. Hum
Mol Genet (2011) 20:3138–50.
doi:10.1093/hmg/ddr216

88. Gruss P, Walther C. Pax in
development. Cell (1992)
69:719–22. doi:10.1016/0092-
8674(92)90281-G

89. Hill RE, Hanson IM. Molecular
genetics of the Pax gene family.
Curr Opin Cell Biol (1992)
4:967–72. doi:10.1016/0955-
0674(92)90126-W

90. Roberts RC. Small-eyes: a
new dominant eye muta-
tion in the mouse. Genet Res
(1967) 9:121–2. doi:10.1017/
S0016672300010387

91. Grindley JC, Davidson DR, Hill
RE. The role of Pax-6 in eye and
nasal development. Development
(1995) 121:1433–42.

92. Hogan BL, Horsburgh G, Cohen
J, Hetherington CM, Fisher G,
Lyon MF. Small eyes (Sey): a
homozygous lethal mutation on
chromosome 2 which affects the
differentiation of both lens and
nasal placodes in the mouse.
J Embryol Exp Morphol (1986)
97:95–110.

93. Hill RE, Favor J, Hogan BL, Ton
CC, Saunders GF, Hanson IM,
et al. Mouse small eye results
from mutations in a paired-like
homeobox-containing gene.
Nature (1991) 354:522–5.
doi:10.1038/354522a0

94. Walther C, Gruss P. Pax-6,
a murine paired box gene,
is expressed in the develop-
ing CNS. Development (1991)
113:1435–49.

www.frontiersin.org July 2013 | Volume 4 | Article 89 | 7

http://dx.doi.org/10.1016/j.devcel.2012.07.006
http://dx.doi.org/10.1002/(SICI)1097-0177(199905)215:1%3C26::AID-DVDY4%3E3.0.CO;2-D
http://dx.doi.org/10.1002/(SICI)1097-0177(199905)215:1%3C26::AID-DVDY4%3E3.0.CO;2-D
http://dx.doi.org/10.1002/(SICI)1097-0177(199905)215:1%3C26::AID-DVDY4%3E3.0.CO;2-D
http://dx.doi.org/10.1016/S0092-8674(02)00713-4
http://dx.doi.org/10.1016/S0092-8674(02)00713-4
http://dx.doi.org/10.1074/jbc.M109.049155
http://dx.doi.org/10.1210/en.2012-1555
http://dx.doi.org/10.1523/JNEUROSCI.3400-04.2004
http://dx.doi.org/10.1523/JNEUROSCI.3400-04.2004
http://dx.doi.org/10.1002/dvdy.21659
http://dx.doi.org/10.1016/j.brainresbull.2012.{\penalty -\@M }03.006
http://dx.doi.org/10.1016/j.brainresbull.2012.{\penalty -\@M }03.006
http://dx.doi.org/10.1016/j.yfrne.{\penalty -\@M }2010.11.002
http://dx.doi.org/10.1016/j.yfrne.{\penalty -\@M }2010.11.002
http://dx.doi.org/10.1095/{\penalty -\@M }biolreprod.111.095992
http://dx.doi.org/10.1095/{\penalty -\@M }biolreprod.111.095992
http://dx.doi.org/10.1007/s12020-010-9366-9
http://dx.doi.org/10.1210/jc.2011-0454
http://dx.doi.org/10.1074/{\penalty -\@M }jbc.M202139200
http://dx.doi.org/10.1074/{\penalty -\@M }jbc.M202139200
http://dx.doi.org/10.1016/S0006-291X(02)00239-5
http://dx.doi.org/10.1016/S0006-291X(02)00239-5
http://dx.doi.org/10.1016/S0167-4781(02)00546-8
http://dx.doi.org/10.1016/S0167-4781(02)00546-8
http://dx.doi.org/10.1126/science.1112103
http://dx.doi.org/10.1073/pnas.0508881103
http://dx.doi.org/10.1073/pnas.0707173104
http://dx.doi.org/10.1093/hmg/ddn318
http://dx.doi.org/10.1016/j.yfrne.2010.07.005
http://dx.doi.org/10.1002/cne.21087
http://dx.doi.org/10.1073/pnas.0606884104
http://dx.doi.org/10.1111/j.1460-9568.2007.05958.x
http://dx.doi.org/10.1111/j.1460-9568.2007.05958.x
http://dx.doi.org/10.1016/j.mce.2011.07.013
http://dx.doi.org/10.1093/hmg/ddr216
http://dx.doi.org/10.1016/0092-8674(92)90281-G
http://dx.doi.org/10.1016/0092-8674(92)90281-G
http://dx.doi.org/10.1016/0955-0674(92)90126-W
http://dx.doi.org/10.1016/0955-0674(92)90126-W
http://dx.doi.org/10.1017/{\penalty -\@M }S0016672300010387
http://dx.doi.org/10.1017/{\penalty -\@M }S0016672300010387
http://dx.doi.org/10.1038/354522a0
http://www.frontiersin.org
http://www.frontiersin.org/Experimental_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stevenson et al. GnRH development and hypothalamic neuroendocrine cells

95. Schwanzel-Fukuda M, Rein-
hard GR, Abraham S, Crossin
KL, Edelman GM, Pfaff DW.
Antibody to neural cell adhe-
sion molecule can disrupt
the migration of luteinizing
hormone-releasing hormone
neurons into the mouse brain. J
Comp Neurol (1994) 342:174–85.
doi:10.1002/cne.903420203

96. Quinn JC, West JD, Hill RE. Mul-
tiple functions for Pax6 in mouse
eye and nasal development.
Genes Dev (1996) 10:435–46.
doi:10.1101/gad.10.4.435

97. Englund C, Fink A, Lau C,
Pham D, Daza RA, Bulfone A,
et al. Pax6, Tbr2, and Tbr1 are
expressed sequentially by radial
glia, intermediate progenitor
cells, and postmitotic neurons
in developing neocortex. J
Neurosci (2005) 25:247–51.
doi:10.1523/JNEUROSCI.2899-
04.2005

98. Hogan BL, Hirst EM, Hors-
burgh G, Hetherington CM.
Small eye (Sey): a mouse
model for the genetic analysis
of craniofacial abnormal-
ities. Development (1988)
103(Suppl):115–9.

99. Hanson I, Van Heyningen
V. Pax6: more than meets
the eye. Trends Genet (1995)

11:268–72. doi:10.1016/S0168-
9525(00)89073-3

100. Dellovade TL, Pfaff DW,
Schwanzel-Fukuda M. The
gonadotropin-releasing hor-
mone system does not develop
in Small-Eye (Sey) mouse
phenotype. Brain Res Dev
Brain Res (1998) 107:233–40.
doi:10.1016/S0165-3806(98)
00007-8

101. Stoykova A, Fritsch R, Walther
C, Gruss P. Forebrain pattern-
ing defects in small eye mutant
mice. Development (1996) 122:
3453–65.

102. Valverde F, Garcia C, Lopez-
Mascaraque L, De Carlos JA.
Development of the mammil-
lothalamic tract in normal and
Pax-6 mutant mice. J Comp
Neurol (2000) 419:485–504.
doi:10.1002/(SICI)1096-
9861(20000417)419:4<485::AID-
CNE6>3.3.CO;2-T

103. Laudet V, Stehelin D, Clevers H.
Ancestry and diversity of the
HMG box superfamily. Nucleic
Acids Res (1993) 21:2493–501.
doi:10.1093/nar/21.10.2493

104. van de Wetering M, Clevers H.
Sequence-specific interaction of
the HMG box proteins TCF-
1 and SRY occurs within the
minor groove of a Watson-Crick

double helix. EMBO J (1992) 11:
3039–44.

105. Connor F, Cary PD, Read
CM, Preston NS, Driscoll PC,
Denny P, et al. DNA binding
and bending properties of the
post-meiotically expressed Sry-
related protein Sox-5. Nucleic
Acids Res (1994) 22:3339–46.
doi:10.1093/nar/22.16.3339

106. Harley VR, Lovell-Badge R,
Goodfellow PN. Definition
of a consensus DNA bind-
ing site for SRY. Nucleic
Acids Res (1994) 22:1500–1.
doi:10.1093/nar/22.8.1500

107. Collignon J, Sockanathan S,
Hacker A, Cohen-Tannoudji M,
Norris D, Rastan S, et al. A com-
parison of the properties of Sox-3
with Sry and two related genes,
Sox-1 and Sox-2. Development
(1996) 122:509–20.

108. Uwanogho D, Rex M, Cartwright
EJ, Pearl G, Healy C, Scotting
PJ, et al. Embryonic expres-
sion of the chicken Sox2, Sox3
and Sox11 genes suggests an
interactive role in neuronal
development. Mech Dev (1995)
49:23–36. doi:10.1016/0925-
4773(94)00299-3

109. Kim HD, Choe HK, Chung S,
Kim M, Seong JY, Son GH, et
al. Class-C SOX transcription

factors control GnRH gene
expression via the intronic
transcriptional enhancer. Mol
Endocrinol (2011) 25:1184–96.
doi:10.1210/me.2010-0332

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 26 April 2013; accepted: 02 July
2013; published online: 16 July 2013.
Citation: Stevenson EL, Corella KM
and Chung WCJ (2013) Ontoge-
nesis of gonadotropin-releasing
hormone neurons: a model for
hypothalamic neuroendocrine cell
development. Front. Endocrinol. 4:89.
doi: 10.3389/fendo.2013.00089
This article was submitted to Frontiers in
Experimental Endocrinology, a specialty
of Frontiers in Endocrinology.
Copyright © 2013 Stevenson, Corella and
Chung . This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License, which
permits use, distribution and reproduc-
tion in other forums, provided the original
authors and source are credited and sub-
ject to any copyright notices concerning
any third-party graphics etc.

Frontiers in Endocrinology | Experimental Endocrinology July 2013 | Volume 4 | Article 89 | 8

http://dx.doi.org/10.1002/cne.903420203
http://dx.doi.org/10.1101/gad.10.4.435
http://dx.doi.org/10.1523/JNEUROSCI.2899-04.2005
http://dx.doi.org/10.1523/JNEUROSCI.2899-04.2005
http://dx.doi.org/10.1016/S0168-9525(00)89073-3
http://dx.doi.org/10.1016/S0168-9525(00)89073-3
http://dx.doi.org/10.1016/S0165-3806(98){\penalty -\@M }00007-8
http://dx.doi.org/10.1016/S0165-3806(98){\penalty -\@M }00007-8
http://dx.doi.org/10.1002/(SICI)1096-9861(20000417)419:4%3C485::AID-CNE6%3E3.3.CO;2-T
http://dx.doi.org/10.1002/(SICI)1096-9861(20000417)419:4%3C485::AID-CNE6%3E3.3.CO;2-T
http://dx.doi.org/10.1002/(SICI)1096-9861(20000417)419:4%3C485::AID-CNE6%3E3.3.CO;2-T
http://dx.doi.org/10.1093/nar/21.10.2493
http://dx.doi.org/10.1093/nar/22.16.3339
http://dx.doi.org/10.1093/nar/22.8.1500
http://dx.doi.org/10.1016/0925-4773(94)00299-3
http://dx.doi.org/10.1016/0925-4773(94)00299-3
http://dx.doi.org/10.1210/me.2010-0332
http://dx.doi.org/10.3389/fendo.2013.00089
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Experimental_Endocrinology
http://www.frontiersin.org/Experimental_Endocrinology/archive

	Ontogenesis of gonadotropin-releasing hormone neurons: a model for hypothalamic neuroendocrine cell development
	Introduction
	Presumptive origins GnRH neurons
	Olfactory placode
	Neural crest

	Genes regulating neuroendocrine cell development
	Anosmin-1
	Fibroblast growth factor receptor-1 and Fibroblast growth factor 8
	Prokineticin 2/Prokineticin receptor 2
	Chromodomain helicase-DNA-binding 7
	Pax
	Sox

	Conclusion
	References


