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Adipose tissue is known to secrete hormones actively and produces many biologically
active proteins called adipocytokines.Typically, obesity is followed by low-grade inflamma-
tion, which is characterized by increased circulating levels of pro-inflammatory cytokines.
Macrophages play a role in the inflammatory process by secreting many cytokines such
as tumor necrosis factor alpha, interleukin-6, resistin, and retinol binding protein-4. These
cytokines and chemokines participate in low-grade pro-inflammatory processes leading
to insulin resistance, metabolic impairment, and cardiovascular diseases. More metabolic
regulators, such as fibroblast growth factor (FGF)21, FGF19, FGF1, vaspin, and visfatin have
now been discovered but their exact roles in human diseases are still unclear. This review
focuses on recent research regarding the role of adipokines and new metabolic factors in
metabolic derangement or cardiovascular disease.
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INTRODUCTION
The prevalence of obesity is increasing throughout the world.
Obesity is associated with a broad spectrum of cardiometabolic
disorders, including hypertension, dyslipidemia, diabetes, and car-
diovascular disease (CVD) (1). Obesity is a heterogeneous disorder
characterized by multifactorial etiology, which is characterized by
various processes: changes in adipocytokines, activation of low-
grade inflammation, and production of reactive oxygen species.
These factors are linked to endothelial dysfunction, oxidative
stress, and inflammatory processes and finally lead to the develop-
ment of atherosclerosis by multiple interactive pathways (2, 3).

Adipose tissue deposition shows distinct differences between
different body areas. These include anatomical, cellular, molecular,
physiological, clinical, and prognostic differences. Many studies
have suggested that when compared with subcutaneous adipose
tissue, visceral adipose tissue and other ectopic fats are more cellu-
lar,vascular, and innervated,with a larger number of inflammatory
and immune cells, less pre-adipocyte differentiation, and a greater
percentage of large adipocytes (4, 5).

As adiposity increases in visceral and ectopic areas,
macrophages may increase infiltration (6). This cross-talk between
adipose tissue and macrophages is a source of many cytokines
such as tumor necrosis factor alpha (TNFα), interleukin (IL)-6,
resistin, retinol binding protein-4 (RBP4), which are suspected
to participate in low-grade pro-inflammatory processes leading
to metabolic disorders, insulin resistance, and CVDs (7). Other
adipokines, such as visfatin and vaspin, have been discovered but
their exact roles are still unknown. Emerging metabolic regulators

such as fibroblast growth factor 21 (FGF21), other FGFs and
myonectin appear to play roles in obesity and insulin resistance,
from our experience. This review focuses on recent updates regard-
ing the contribution of adipokines and newly discovered metabolic
regulators to obesity and insulin resistance.

ADIPONECTIN
Adiponectin has attracted considerable attention among the many
adipocytokines secreted from adipose tissue because of its insulin-
sensitizing property. Early studies showed that adiponectin levels
were low in patients with impaired glucose homeostasis or type
2 diabetes (8, 9). Since then, many studies have demonstrated a
significant inverse association between adiponectin and insulin
resistance (9). Prospective studies have proved that low levels of
adiponectin are associated with an increased incidence of type
2 diabetes (10, 11). Based on this finding, intervention studies
focusing on exercise have been tried. A lifestyle intervention study
with overweight/obese children for 1 year increased circulating
adiponectin levels and insulin sensitivity significantly (12). Our
group also proved that adiponectin levels increased significantly
after a 10-week aerobic training program in healthy young and
middle-aged women, and this was associated with improvements
in insulin sensitivity (13).

Adiponectin is closely associated with atherogenesis and the
development of CVDs. Low plasma adiponectin level was a predic-
tor of CVD outcome such as myocardial infarction in the general
population and among patients with diabetes or end-stage renal
disease (14–17). Interestingly, several studies suggested that the
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high molecular weight form of adiponectin is a more accurate
independent risk factor for CVD than the whole adiponectin level
(17–19). However, no significant association between adiponectin
and the risk of CVD was found after adjustment for potential
confounders (11).

From mechanistic studies in endothelial cells, it was proved
that adiponectin strongly inhibits the production of inflammatory
cytokines and adhesion molecules, including ICAM-1, VCAM-
1, and E-selectin (19). Those results suggest that high levels of
adiponectin play a role against the development of atherosclerosis
and this has been confirmed in human studies (20, 21).

Thus, many basic and some population-based studies suggest
that adiponectin might have a beneficial role in metabolic dis-
eases and atherosclerosis, but some reports are less consistent. This
might arise from differences between studies such as variations in
populations, confounding factors (or lack thereof) and different
isoforms of adiponectin (total vs. the high molecular weight form).

RESISTIN
Initially, resistin was discovered as an adipocytokine in animal
models. It was suspected to link obesity with diabetes because it
was produced mainly by adipocytes (22). By contrast, adipocytes
seem to contribute only a small fraction of the resistin pro-
duction in humans (23). Instead, inflammatory cells such as
macrophages are considered the predominant source of circulating
resistin (24).

Some studies have reported that resistin levels are increased
in obese individuals (25, 26) while others have not (27, 28).
Population-based studies have shown that resistin levels are asso-
ciated with metabolic impairments and insulin resistance (27, 29,
30) but the association between resistin levels and insulin sensitiv-
ity has been inconsistent in humans (25, 31). Resistin levels have
also been associated with coronary heart diseases (32) and were
correlated with calcification deposition in coronary arteries (28,
33). In contrast, other studies have not shown a significant associ-
ation between resistin and coronary artery diseases (18, 34). Thus,
the evidence linking resistin with decreased insulin sensitivity or
increased cardiovascular risk remains inconsistent.

Of note, the secretions of TNFα, IL-6, and other cell adhe-
sion molecules are increased by resistin (35). An in vitro study
demonstrated that resistin treatment increased the proliferation
and migration of vascular smooth muscle and endothelial cells
(36). In summary, resistin may participate in cardiovascular phys-
iopathology in humans via the action of macrophages implicated
in the inflammatory response related to obesity.

RETINOL BINDING PROTEIN-4
Decades ago, RBP4 was discovered as an adipocytokine that binds
specifically to vitamin A (37). RBP4 is produced mainly by the
liver and adipose tissue (38). RBP4 levels are closely associated
with obesity, particularly visceral adiposity in mice and humans
(38, 39). Elevated RBP4 levels were associated with a cluster-
ing of components of metabolic syndrome in insulin-resistant
subjects (39). In population-based studies, RBP4 levels were pos-
itively associated with the obesity index, high blood pressure,
and unfavorable lipid profiles (40). RBP4 levels were increased in
naive hypertensive women and were correlated with the degree

of intima-media thickness, suggesting a participation of this
adipocytokine in modulation of the atherosclerotic process and
cardio- and cerebrovascular diseases (41, 42). Our group pub-
lished data showing that regular exercise intervention with a
10-week, moderate-intensity regimen improved cardiorespiratory
fitness and adipocytokines including RBP4 levels (13). Weight loss
induced by bariatric surgery also decreased RBP4 concentrations
(43). In addition, our group also reported that plasma RBP4 levels
were significantly higher among patients converting to full dia-
betes mellitus (DM) from previous gestational DM compared
with non-DM converters (44) and plasma RBP4 levels showed
significant correlation with cardiovascular risks in patients with
subclinical hypothyroidism (45). A recent study with dyslipidemia
subjects found that circulating RBP4 concentrations were associ-
ated with small dense low-density lipoprotein (LDL) cholesterol
and oxidized LDL levels (46).

Although there was robust evidence suggesting role of RBP4
in abnormal glucose metabolism and development of atheroscle-
rosis in mice, several human studies reported that the serum
level of RBP4 was not associated with obesity or insulin sen-
sitivity (47, 48). Janke et al. reported discrepancy of relation-
ship of RBP4 with glucose homeostasis between rodents and
human (47). Promintzer et al. also demonstrated no increase of
plasma RBP4 levels and no correlation with insulin sensitivity in
insulin-resistant humans (48).

Since evidence showing relationship of RBP4 with cardiometa-
bolic risk in human is inconsistent, there is still argument on
whether elevated RBP4 levels contribute to the pathogenesis of
abnormal glucose homeostasis or insulin resistance. More data are
needed to clarify the potential role of RBP4 in abnormal metabolic
consequences.

C1q TUMOR NECROSIS FACTOR-α-RELATED PROTEIN
ISOFORM 5
The C1q TNF-α-related proteins or myonectins have drawn recent
attention and C1q TNF-α-related protein isoform 5 (C1QTNF5)
has been a focus of research because of its possible association with
cardiometabolic risk (49). Structurally, C1QTNF5 is similar to
adiponectin in its domain structure. C1QTNF5 belongs to a family
of proteins characterized by an N-terminal signal peptide, a col-
lagen repeat domain, and a C-terminal C1q-like globular domain
(50). C1QTNFs are expressed in many tissues and have more struc-
tural or extracellular matrix-related functions than adiponectin
(51). Recently, it was found that the C1QTNF5 level increased in
mitochondrial (mt) DNA-depleted myocytes and this was asso-
ciated with elevated adenosine monophosphate-activated protein
kinase (AMPK) activity. In addition, the serum level of C1QTNF5
increased significantly in obese/diabetic animals (52). C1QTNF5
gene was upregulated from the microarray result of subcutaneous
fat in obese Pima Indians, suggesting its possible role in develop-
ing obesity (53). Our group found that a 10-week exercise training
program performed at moderate-intensity decreased C1QTNF5
levels and insulin resistance parameters and increased cardiores-
piratory fitness, mtDNA density, and adiponectin level in both
young and older groups of women (54). These findings suggest
that C1QTNF5 might be an important factor linking mitochondr-
ial dysfunction with insulin resistance. Further research is needed
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FIGURE 1 | New emerging adipokine from inflamed fat and its association with insulin resistance and cardiovascular health.

to identify the role and molecular mechanism of C1QTNF5 in
the development of insulin resistance. Integrated schematic figure
from adiponectin to C1QTNF is in Figure 1.

FIBROBLAST GROWTH FACTOR 21
Fibroblast Growth Factor (FGF)21, FGF19, and FGF23 belong to
the FGF19 family that acts in hormone-like manners unlike other
FGF species (55). FGF21 has been highlighted as a new drug can-
didate for enhancing insulin sensitivity, inducing lipolysis, and
preventing diet-induced obesity in many in vitro and in vivo stud-
ies (56–58). FGF21 is mainly produced in the liver but acts on
adipose tissue due to its preference for binding to FGF recep-
tor 1 (55, 59). In humans, serum FGF21 levels are paradoxically
increased in metabolic diseases such as obesity, diabetes, and CVD
(60–62),which infer FGF21 resistance in humans. There are several
lines of evidence from animal studies to explain FGF21 resistance
in the receptor and in the post-receptor signaling pathway but
there is no clear mechanism in humans so far. Including the results
of our group, FGF21 excretion in humans is dependent on resid-
ual renal function based on data from patients in end-stage renal
disease undergoing peritoneal dialysis and hemodialysis (63, 64).
We reported that serum FGF21 concentration was significantly
associated with altered lipid profiles, especially with hypertriglyc-
eridaemia, insulin resistance, metabolic syndrome, and ectopic fat
deposition when adjusted for the body mass index (65). Recently,
many interesting features about the role of FGF21 in metabo-
lism have been published. FGF21 regulates PGC1-α protein levels
and enhances white adipose tissue browning with upregulation
of UCP1 and other thermogenic genes in a cold-exposure mouse
model (66). Kim et al. reported that muscle-specific deletion of

the Atg7 (autophagy-related 7) gene in mice produced mitochon-
drial dysfunction and promoted FGF21 expression, showing a
phenotype of being insulin-sensitive and resistant to diet-induced
obesity (67). FGF21 enhanced peroxisome proliferator-activated
receptor gamma (PPARγ) desumoylation in fat cells to increase
its action and showed association with lower bone mass caused by
PPARγ activation in vivo (68, 69). There are still many unknown
aspects of FGF21, especially its role in human metabolism. How-
ever, clinical trials of this molecule are ongoing and the results will
help explain its effect on glucose, obesity, and lipid metabolism in
humans more clearly.

OTHER FGFs
FGF19 in humans and its mouse ortholog FGF15 have been stud-
ied for their roles in controlling bile acid synthesis. Recent data
showed that activation of the farnesoid X receptor (FXR) by bile
acids induced FGF19 and FGF receptor 4-mediated JNK/ERK
pathways and inhibited the CY7A1 gene encoding cholesterol 7α

hydroxylase (70). In other study, transintestinal flux of bile acids
with diurnal variation to control FGF19 formation in the intestine
(71). The peak FGF19 formation was made 90–120 min after post-
prandial rise of serum bile acids. FGF19 is also a member of the
FGF19 family, like FGF21 and FGF23, and acts in a hormone-like
manner with a possible role in cholesterol metabolism through
bile acid synthesis. In addition, FGF1 has a role in adipose tis-
sue remodeling in mice fed a high-fat diet, being regulated by
PPARγ activation. Mice lacking FGF1 showed abnormal adipose
tissue with aberrant vasculature and a severe diabetic phenotype
in high-fat dietary conditions (72). FGF1 is known for its role in
wound healing and development (73), but it is now seen to have a
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FIGURE 2 | Fibroblast growth factors: as metabolic regulators in human.

role in adipose tissue remodeling and a possible link with obesity.
The possible role of FGF 19 family in human is in Figure 2.

VASPIN
Vaspin is an adipocytokine isolated from visceral adipose tis-
sue of an animal model of abdominal obesity with type 2 dia-
betes (OLETF rat). It is increased in the prediabetic stage and
decreases when the OLETF rats develop overt diabetes. In ani-
mals, vaspin treatment ameliorates insulin sensitivity in high-fat-
or high sucrose-induced diabetes models (74) and protects against
endothelial cell damage caused by free fatty acids through the PI3
kinase/Akt pathway (75). It has been suggested to be a “good”
adipocytokine, such as adiponectin. However, serum vaspin lev-
els were paradoxically elevated in human subjects with diabetes
and obesity (76). We also reported that the serum vaspin level was
higher in women than in men and it was correlated with the meta-
bolic syndrome in men and coronary atherosclerosis in women.
However, men with longer duration of diabetes and microvascu-
lar complications showed significantly lower levels of vaspin (77).
More data are needed to understand the role of vaspin in human
diseases such as atherosclerosis, diabetes, and obesity.

VISFATIN
Visfatin was first isolated from the visceral fat of humans and mice
and showed insulin-like action by binding to the insulin receptor
(78). In carotid artery atheromatous plaques, immunohistochem-
istry for visfatin showed much higher expression in unstable,
symptomatic patients compared with asymptomatic patients, sug-
gesting a role in generating macrophage foam cells in atheromata
(79). The serum visfatin level was significantly reduced after gastric
bypass surgery in morbidly obese subjects (80). Because visfatin

is a pre B cell colony-enhancing factor, it has been studied in
modulating systemic inflammation. In CD14+ monocytes, vis-
fatin induced the expression of IL-1β, TNF-α, IL-6, and other CD
molecules (81). In addition, the serum visfatin level was higher
in patients with diabetes and diabetic nephropathy (82). Visfatin
is now regarded as an extracellular nicotinamide phosphoribo-
syltransferase (eNampt) enzyme and plays an important role in
insulin secretion from pancreatic β cell by systemic nicotinamide
adenine dinucleotide (NAD) biosynthesis (83). In vitro and in vivo,
visfatin mimics insulin action, but in human studies, it is paradox-
ically increased in disease conditions and shows correlation with
systemic inflammation, vascular complications, and insulin secre-
tion. However,more studies are needed to clarify the role of visfatin
in humans.

CONCLUSION
In summary, adipose and muscle tissues are now recognized as
important and active endocrine organs. More adipocytokines and
metabolic regulators are being discovered continuously and the
clinical implications of these molecules are important in under-
standing the pathophysiology of human obesity, insulin resistance,
and CVD. The “classic” adipocytokines such as adiponectin, TNF-
α, and IL-6 have been regarded as consistent surrogate markers to
reflect cardiovascular risk and other metabolic abnormalities in
subjects with insulin resistance. Adiponectin was considered as a
good biomarker to protect atherosclerosis and to reduce systemic
inflammation from many studies that we mentioned in this review.
However, recent studies suggested so called “adiponectin paradox”
in many studies, which showed increased adiponectin levels were
correlated with higher cardiovascular or all-cause mortality in epi-
demiological data (84–86). The underlying mechanism behind
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this paradox is still unclear, but we can assume that there could
some compensatory elevation of adiponectin in patients with
metabolic abnormalities resulted in the association with higher
mortality in the future.

Some evidence provides linking resistin and RBP4 with insulin
resistance or cardiovascular risk. However, there are inconsistent
results suggesting no or weak relationship of these factors with
obesity and insulin sensitivity. For example, RBP4 was discovered
from adipose tissue specific GLUT4 knockout mouse to explain
strong insulin resistance in this animal model. However, the incon-
sistent association with insulin resistance parameters in different
clinical settings of various studies which included patients with
obesity, DM, different ethnicity, and CVD, it could not convince
us to believe the role of RBP4 would be a causality of insulin
resistance in metabolic diseases.

As for the emerging metabolic regulators such as FGFs (FGF21,
FGF19, and FGF1), adipokines from visceral fat (vaspin and vis-
fatin) and myokines, we need more studies to clarify their role
in human diseases. FGF21 has been developed as a new drug for

antidiabetic medication and human trial is on-going based on its
favorable results from in vitro and in vivo. We have to wait and
see the result of human trials that we could fully understand the
mechanism of antidiabetic or any metabolic effects on human
body. The possible role of FGF21 through PPAR α and γ in the
liver and in fat tissues can be expected to have beneficial effects on
insulin signaling pathway to ameliorate metabolic abnormalities.
It is still a question whether these new metabolic regulators are
just surrogate markers or might be causes of obesity and insulin
resistance.

From this perspective, it is too early yet to apply these
adipocytokines or metabolic regulators as predictors for car-
diometabolic risk in the clinical practice. Up to date, it could be
used as a surrogate biomarker to reflect metabolic abnormali-
ties in many metabolic diseases. More mechanistic experiments
and long-term outcome studies are warranted to elucidate the
active role of these factors in the physiopathology of cardiometa-
bolic disorders to identify their clinical implications at bedside
level.
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