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Appetite is regulated by a coordinated interplay between gut, adipose tissue, and brain. A
primary site for the regulation of appetite is the hypothalamus where interaction between
orexigenic neurons, expressing Neuropeptide Y/Agouti-related protein, and anorexigenic
neurons, expressing Pro-opiomelanocortin cocaine/Amphetamine-related transcript, con-
trols energy homeostasis. Within the hypothalamus, several peripheral signals have been
shown to modulate the activity of these neurons, including the orexigenic peptide ghrelin
and the anorexigenic hormones insulin and leptin. In addition to the accumulated knowl-
edge on neuropeptide signaling, presence and function of amino acid neurotransmitters in
key hypothalamic neurons brought a new light into appetite regulation. Therefore, the prin-
cipal aim of this review will be to describe the current knowledge of the role of amino acid
neurotransmitters in the mechanism of neuronal activation during appetite regulation and
the associated neuronal-astrocytic metabolic coupling mechanisms. Glutamate and GABA
dominate synaptic transmission in the hypothalamus and administration of their receptors
agonists into hypothalamic nuclei stimulates feeding. By using '3C High-Resolution Magic
Angle Spinning Nuclear Magnetic Resonance spectroscopy based analysis, the Cerdan
group has shown that increased neuronal firing in mice hypothalamus, as triggered by
appetite during the feeding-fasting paradigm, may stimulate the use of lactate as neuronal
fuel leading to increased astrocytic glucose consumption and glycolysis. Moreover, fasted
mice showed increased hypothalamic [2-'3CIGABA content, which may be explained by the
existence of GABAergic neurons in key appetite regulation hypothalamic nuclei. Interest-
ingly, increased [2-13C]GABA concentration in the hypothalamus of fasted animals appears
to result mainly from reduction in GABA metabolizing pathways, rather than increased
GABA synthesis by augmented activity of the glutamate-glutamine-GABA cycle.
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APPETITE REGULATION: FROM THE PERIPHERY TO THE
HYPOTHALAMUS

Appetite is a highly regulated phenomenon, being hunger and sati-
ety crucial factors in controlling food intake. Both food intake and
energy expenditure disturbances lead to obesity, a pandemic syn-
drome frequently associated with the most prevalent and morbid
pathologies in developed countries including heart disease, ather-
osclerosis, diabetes, and cancer (1). Appetite is closely regulated by
a coordinated interplay between peripheral and central nervous
system pathways. Two major groups of peripheral-derived signals
inform the brain about the whole-body energy state: short-term
signals produced by the gastrointestinal system and long-term sig-
nals produced by adipose tissue (Figure 1). There is a vast array
of anorexigenic hormones causing loss of appetite secreted from
the gut; these include: cholecystokinin (CCK) (2), glucagon-like
peptide-1 (GLP-1) (3), peptide YY (PYY) (4), and oxyntomodulin
(OXM) (5). Hormones derived from the pancreas, as pancreatic
polypeptide (PP) (6), glucagon (7), insulin (8), and amylin (9),
also exhibit anorexigenic actions. Finally, adipose tissue-derived
anorexigenic signals, such as leptin (10), adiponectin (11), and
resistin (12) have been described. On the other hand, gut-derived
ghrelin is the only example of a peripheral hormone with orexi-
genic actions (13, 14), thereby increasing appetite upon its release

usually before meals. In spite of intensive research during the
last decades, other unidentified peripheral signals playing a role
in appetite regulation probably exist. An increased knowledge
on peripheral inputs controlling appetite could be relevant for
the development of newly successful therapeutical approaches
targeting obesity.

Studies employing either discrete lesions in the hypothala-
mus (15, 16) or surgical transection (17) of neural pathways
have shown that central integration of peripheral-derived signals
occurs mostly in the hypothalamus. The hypothalamus lies adja-
cent to three circumventricular organs, which are areas that permit
substances to leave the brain without disrupting the blood-brain
barrier (BBB), thereby permitting other substances that do not
cross the BBB to exert their actions in the brain (18). In the last
years, several neurotransmitters involved in hypothalamic appetite
regulation have been identified [see, for example reviews (19-22)].
The cornerstone experiment for the identification of a poten-
tial neurotransmitter consists on the injection of the respective
agent into the hypothalamus or adjacent ventricle of animal mod-
els and detection of a rapid increase or decrease in food intake.
These experiments allowed not only the identification and charac-
terization of several neurotransmitters involved in hypothalamic
appetite regulation, but also to the precise tracking of pathways
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FIGURE 1 | The brain integrates multiple peripheral signals to control
appetite. Peripheral factors indicative of long-term energy whole-body
status are produced by adipose tissue (leptin, adiponectin, and resistin). On
the other hand, acute orexigenic (+) ghrelin signal (produced in the gut) and
anorexigenic (—) signals such as the gut hormones peptide YY (PYY),
oxyntomodulin (OXM), glucagon-like peptide-1 (GLP-1) and cholecystokinin
(CCK), and the pancreatic hormones [insulin, glucagon, amylin, and
pancreatic polypeptide (PP)] indicate long-term energy status.

containing these signal molecules. Usually, neurotransmitters are
classified into peptides, amino acids, and monoamines.

HYPOTHALAMIC PEPTIDERGIC NEUROTRANSMISSION AND
APPETITE REGULATION
In the arcuate nucleus of the hypothalamus, two sets of neu-
ronal populations expressing either orexigenic neuropeptides
[Neuropeptide Y (NPY) and Agouti-related peptide (AgRP)], or
anorexigenic neuropeptides [Pro-opiomelanocortin (POMC) and
Cocaine-amphetamine-related transcript (CART)] co-exist. Neu-
ropeptideY is synthesized in neurons situated in the far ventrome-
dial aspect of the hypothalamic arcuate nucleus. Within the hypo-
thalamus, NPY-expressing fibers project from the arcuate nucleus
to the paraventricular nucleus, where the peptide is released (23).
Thus, the administration of NPY to the hypothalamic paraven-
tricular nucleus results in a robust and sustained increase of food
intake in rodents (24), eventually leading to obesity when given
repeatedly (25). On the other hand, antibody-mediated block-
ade of NPY action results in decreased food intake in starved
animals (26). As neuronal populations expressing NPY are co-
localized with AgRP-releasing neurons, the optogenetic (27) or
pharmaco-genetic (28) stimulation of AgRP-expressing neurons
also drives intense food intake whereas genetic ablation (29, 30) or
pharmaco-genetic inhibition (28) decreases food consumption.
Neurons located mainly in the ventrolateral subdivision of
the hypothalamic arcuate nucleus contain both the anorexi-
genic peptide CART and its precursor, POMC. The optogenetic
stimulation of POMC-containing neurons reduces food intake
(27) whereas genetic ablation of POMC-expressing cells (31,
32) increases appetite and food consumption. The gene encod-
ing POMC gives rise to downstream peptide products, includ-
ing melanocortins [adrenocorticotropic hormone (ACTH), the

a-, B-, and y-melanocyte-stimulating hormones (MSH) and f-
endorphin (33). Release of the a-MSH peptide at the hypothalamic
paraventricular nucleus potentially reduces food intake via activa-
tion of the melanocortin receptors, MC3R and MC4R. On the
contrary, increased food intake and obesity are seen as a result of
deletion of MC3R (34) and MC4R (35). In summary, activation
of the POMC-expressing neurons in the hypothalamic arcuate
nucleus triggers the release of a-MSH, which activates MC4R at
the paraventricular nucleus, leading to suppressed food intake and
increased energy expenditure. On the other hand, stimulation of
AgRP-expressing neurons in the hypothalamic arcuate nucleus
releases AgRP peptide, which antagonizes the effect of a-MSH
on MCA4R thereby increasing food intake.

To date, most effort has been placed on examining direct regu-
lation of hypothalamic NPY/AgRP and POMC/CART-expressing
neurons by various circulating factors whereas the role of upstream
neural inputs has received comparatively less attention. This is sur-
prising considering that both NPY/AgRP and POMC/CART neu-
rons receive abundant excitatory and inhibitory synaptic input.
The two neurotransmitters that account for most of the synaptic
activity in the hypothalamus are the amino acids glutamate and
y-aminobutyric acid (GABA).

HYPOTHALAMIC GLUTAMATERGIC NEUROTRANSMISSION
NEURONAL-ASTROCYTIC GLUTAMATE METABOLISM

Glutamate is the dominant excitatory neurotransmitter in the
central nervous system. In order for a neuron to release gluta-
mate, the neurotransmitter must first be packed at high con-
centrations into synaptic vesicles, by means of specific vesicular
glutamate transporters (VGLUT1, VGLUT2, and VGLUT3) (36).
Upon stimulation, glutamate is released into the synaptic cleft
to bind and elicit its effects on postsynaptic receptors, whether
ionotropic [ N-methyl-p-aspartate (NMDA), p,L-alpha-amino-3-
hydroxy-5-methyl-isoxazole propionic acid (AMPA), kainic acid]
or metabotropic receptors (mGluRs), present both in neurons and
astrocytes.

Despite of its ubiquitous nature, extracellular glutamate lev-
els are tightly regulated. The release of presynaptic glutamate
largely exceeds the amount need for neurotransmission. As high
glutamate concentrations could preclude further transmission
or become associated with neurotoxicity events unless rapidly
cleared, synaptically released glutamate is recycled from the extra-
cellular space by means of excitatory amino acid transporters
expressed predominantly on astrocytes (GLT-1 and GLAST).
Within astrocytes, recycled glutamate can be metabolized to glu-
tamine via glutamine synthetase or can be assimilated into the
tricarboxylic acid (TCA) cycle. Glutamine released from astro-
cytes is further taken up again by neurons, where the mitochon-
drial phosphate-specific enzyme, glutaminase, reconverts inert
glutamine-to-glutamate for subsequent repackaging into synap-
tic vesicles: the glutamate-glutamine cycle. Importantly, due to
the lack of pyruvate carboxylase in neurons making them inca-
pable of de novo synthesis of glutamate from glucose (37), the
glutamate-glutamine cycle assures an adequate replenishment of
glutamate in the central nervous system (38, 39). However, the
glutamate-glutamine cycle faces a drain of compounds by oxida-
tion (40-42), requiring a continuous replenishment of glutamate
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and glutamine in astrocytes. De novo synthesis of glutamate and
glutamine by astrocytes requires an amino group, being that aspar-
tate has been recently suggested as the neuron-born nitrogen
donor (43). According to the astrocyte to neuron lactate shuttle
hypothesis (ANLSH) (44, 45), energy requirements for astrocyte-
mediated glutamate recycling are derived exclusively from the
glycolytic glucose metabolism with the concomitant lactate pro-
duction by astrocytes, the latter becoming the main oxidative fuel
for neurons (44, 46, 47).

GLUTAMATE IN APPETITE REGULATION
The intracerebroventricular injection (48), as well as the lat-
eral hypothalamic injection of glutamate, or its excitatory
amino acid agonists, kainic acid, AMPA, and NMDA (49),
rapidly elicit an intense food intake in rats. Likewise, intracere-
broventricularly injected mGluR5 agonists stimulate feeding in
rodents whereas the mGluRS5 receptor antagonist (R,S)-2-chloro-
5-hydroxyphenylglycine, inhibits food intake (50). Although the
above-mentioned studies implicate glutamate signaling in elicit-
ing a stimulation of food intake, until recently the morphological
examination of the glutamatergic system was difficult due to
the lack of marker molecules specific to glutamatergic neurons.
Two highly homologous transmembrane proteins, VGLUT1 and
VGLUT?2, have been proven to be specific for glutamatergic neu-
rons. On this basis, several studies have identified the presence of
a dense plexus of glutamatergic fibers in key hypothalamic areas
involved in appetite regulation. For example, elevated expression
of mRNA encoding VGLUT2 was found in neurons located in
the ventromedial hypothalamus and from the ventrolateral aspect
of the arcuate nucleus (51, 52). On the other hand, expression
of VGLUT!1 is confined to relatively weak labeling in the lateral
hypothalamic area (51). Furthermore, by using double-labeling
immunohistochemistry, the presence of VGLUT2 immunore-
activity has been shown in appetite-regulating POMC/CART-
expressing neurons located in the arcuate nucleus (53, 54), where
they receive glutamatergic input from neurons in the ventromedial
nucleus of the hypothalamus (55). In addition, Kiss et al. provided
evidences for the existence of glutamatergic innervation of NPY-
expressing neurons in the rat hypothalamic arcuate nucleus (54).

To evaluate the role of glutamatergic input to NPY/AgRP and
POMC/CART-expressing neurons, and more specifically its plas-
ticity as regulated by glutamate NMDA receptors, Liu et al. gen-
erated mice lacking NMDA receptors on either AgRP or POMC
neurons (56). The authors found that NMDA receptors on AgRP
neurons, but not on POMC-expressing neurons, play a critical
role in controlling energy balance indicating that fasting-induced
activation of AgRP-releasing neurons is associated with markedly
increased glutamatergic input (56). Furthermore, through the
combination of cell-type-specific electrophysiological, pharma-
cological, and optogenetic techniques, Yang et al. found that
food deprivation elevates excitatory synaptic input. According to
these authors, gut-derived ghrelin acts at presynaptic receptors
to increase glutamate release and activate NPY/AgRP-expressing
neurons through ionotropic glutamate receptors (57).

In the last decade, astrocytes were reported to participate in
several neuroendocrine processes although only recently their
importance in the control of appetite and energy homeostasis

has been established. Astrocytes express receptors for numer-
ous neuropeptides, neurotransmitters, and growth factors, pro-
duce neuroactive substances, and express key enzymes necessary
for sensing and processing nutritional signals. For example, the
anorexigenic hormone leptin is known to affect astrocyte mor-
phology and synaptic protein levels in the hypothalamus (58).
Thereby, the observed diet-induced increase in leptin receptor
levels in hypothalamic astrocytes is proposed to participate in
the onset of obesity. More recently, Fuente-Martin et al. have
shown that leptin directly modulates glutamate uptake in astro-
cytes in a time-dependent manner, stimulating a rapid increase
that is downregulated with chronic exposure (59). The initial
rapid increase in astrocyte’s glutamate captation indicates that
leptin could reduce the stimulatory effects of glutamate at nearby
synapses, thereby reducing appetite. In addition, when excess glu-
tamate is released to the synaptic cleft, it is eventually recaptured
by surrounding astrocytes, together with sodium ions, through
the astrocytic glutamate cotransporter, GLAST. As a result, the
intracellular sodium ions incorporated have to be extruded to the
extracellular space, through the electrogenic Na™/K+ATPase and
Na™K*2CI™ cotransporter, resulting in the intracellular incor-
poration of potassium ions. Increased intracellular potassium
ions concentrations trigger an osmotically driven, aquaporin 4
(AQP4)-mediated, water transport culminating with astrocytic
swelling (60). By using diffusion weighting imaging, Lizarbe et
al. have recently shown significant increases in the slow diffu-
sion parameters, consistent with astrocyte swelling response, in
the hypothalamus of fasted relative to satiated animals (61,62). On
these grounds, we may hypothesize that, whereas an initial leptin-
driven glutamate uptake in astrocytes shows anorexigenic poten-
tial (by diverting glutamate from neurons and thereby reducing
glutamatergic neurotransmission), an excessive glutamate uptake
by astrocytes, as occurs under orexigenic fasting conditions, causes
astrocyte’s swelling and eventual response by amino release to the
synaptic cleft (63) (augmenting glutamatergic neurotransmission
associated with appetite enhancement).

HYPOTHALAMIC GABAERGIC NEUROTRANSMISSION
NEURONAL-ASTROCYTIC GABAERGIC METABOLISM

y-Aminobutyric acid (GABA) is the main inhibitory neurotrans-
mitter in the central nervous system. The regulation of GABA itself
is achieved by several specialized molecular mechanisms mediat-
ing transport, sequestration, synthesis, and GABA degradation.
GABAergic neurons express both mature isoforms of glutamate
decarboxylase, GAD65 and GAD67, to convert the excitatory
amino acid glutamate into GABA (64). Moreover, glutamine can
be used as an alternative source of GABA. As described in the
earlier section, the amino acid glutamine has long been known
as the immediate precursor for glutamate. There is increasing evi-
dence for a similar role of this glutamate-glutamine cycle in GABA
synthesis [see review (65)]. GABA clearance from the synaptic
cleft is mediated by specific, high-affinity, sodium- and chloride-
dependent transporters, GAT1, GAT2, and GAT3 and the vesic-
ular GABA transporter (VGAT) (66). After release, GABA elicits
a biphasic response via activation of two classes of membrane
receptors; either ionotropic (GABA,) or metabotropic (GABAg)
receptors. Finally, it is estimated that more than 90% of all GABA
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in the mammalian central nervous system is degraded by transam-
ination of GABA and a-ketoglutarate to succinic semialdehyde and
glutamate in the mitochondria of astrocytes and neurons (67).

GABA IN APPETITE REGULATION

A stimulatory role for GABA in the regulation of hypothala-
mic controlled feeding behavior has been evidenced in the last
years. The intracerebroventricular administration of the GABAj
receptor agonist, muscimol, stimulates feeding in satiated pigs,
a response blockable by the specific GABAp receptor antago-
nist, bicuculline (68). Also, systemic and intracerebroventricular
administration of the GABAg receptor agonist, baclofen, causes an
increase in food intake in satiated pigs (69). Moreover, increased
food intake obtained after administration of baclofen can be abol-
ished by pretreatment with the GABAg receptor antagonist, pha-
clofen (69). In agreement, several evidences indicate that neurons
in the hypothalamic arcuate nucleus express to a large extent the
GABA transporter, VGAT (70, 71) as well as the GABA synthesizing
enzymes, GAD65 and GAD67 (70). Using immunohistochem-
istry, GAD65/GAD67 and GABA immunoreactivities have been
demonstrated in the majority of NPY/AgRP neurons located in
the hypothalamic arcuate nucleus (70, 71). On the other hand, in
spite of GAD65/GAD67 mRNA presence has been demonstrated
in approximately one-third of POMC-expressing neurons (72),
VGAT was not detected in hypothalamic POMC cell bodies (53)
suggesting the absence of POMC GABA-releasing neurons.

To further understand the role of GABAergic neurons in
appetite regulation, Tong et al. have shown that while both NPY
and AgRP stimulate food intake when infused into the brain, the
weight loss seen when AgRP-expressing cells are destroyed is reca-
pitulated by targeted deletion of their ability to release GABA,
rather than NPY or AgRP (73). Furthermore, the severe anorec-
tic phenotype induced by the diphtheria-induced acute ablation
of AgRP-expressing neurons in adult mice can be rescued with
chronic infusion of a benzodiazepine, known to enhance GABA
effect at the level of GABA, receptor (74). These evidences indi-
cate that the synaptic release of GABA by AgRP-expressing neurons
in the hypothalamic arcuate nucleus is required for normal reg-
ulation of energy balance. Wu et al. further explored the role
of the GABAergic outputs of AgRP-expressing neurons. These
authors found that in adult mice lacking AgRP-expressing neu-
rons, pharmacological stimulation of GABA, receptors in the
parabrachial nucleus, by means of local injection of bretazenil (a
partial GABA, receptor agonist) is sufficient to maintain feeding.
Wu and colleagues further corroborate these findings by exam-
ining the effects of either infusing a GABA antagonist directly
into the parabrachial nucleus or selectively ablating AgRP inputs
to this area. Both experiments induced a progressive decrease in
food intake in mice, indicating that GABAergic inputs from arcu-
ate nucleus AgRP-expressing neurons to the parabrachial nucleus
are required to maintain a critical level of appetite stimulus
(75). These observations clearly represent a potential shift away
from early explanations of energy metabolism regulation, where
GABA was thought to facilitate the feeding effect of NPY at target
sites in the paraventricular nucleus by blocking opposing POMC
transmission (76-78).

GLUTAMATE AND GABA ACTIONS ON
NEURONAL-ASTROCYTIC METABOLIC COUPLING
MECHANISM UNDERLYING HYPOTHALAMIC APPETITE
REGULATION

To date, glutamate and GABA actions on neuronal-astrocytic
metabolic coupling mechanism underlying hypothalamic appetite
regulation have been largely unexplored mainly due to the absence
of appropriate in vivo methodological approaches. Earlier, a vari-
ety of in vivo Magnetic Resonance Imaging (MRI) and Magnetic
Resonance Spectroscopy (MRS) methods have been shown to pro-
vide comprehensive information on cerebral activation and the
underlying metabolic coupling mechanisms operating between
neurons and astrocytes. However, the relatively large voxel size
used in the acquisition of in vivo '*C Magnetic Resonance spec-
tra precludes its use for studying the relatively reduced appetite
controlling hypothalamic area of small rodents. Alternatively,
High-Resolution '*C Nuclear Magnetic Resonance (NMR) spec-
troscopy investigations of the cerebral metabolism of tracers such
as [1-13C]glucose or [2-!*Clacetate contributed comprehensive
information on the operation of the neuronal and astrocyte TCA
cycles and the transcellular exchanges of glutamate—glutamine or
GABA between neurons and astrocytes of the whole brain [see for
example (79-82)].

Nevertheless, the relatively large amounts of cerebral tissue
needed to prepare brain extracts for high-resolution *C NMR
spectroscopy constitutes an important limitation. To overcome
the above-mentioned limitations, High-Resolution Magic Angle
Spinning (HR-MAS) NMR spectroscopy, a technique yielding high
quality spectra from very small tissue biopsies (5-10 mg, a size
comparable to the size of the mice brain hypothalamus) was sug-
gested to improve the spatial resolution and to investigate directly
hypothalamic metabolism. Whereas 'H HR-MAS NMR has been
used for metabolic profiling of normal and diseased tissues (83),
13C HR-MAS NMR spectroscopy offers the additional advan-
tage of providing information on the operation of the metabolic
pathways.

Recently, Violante et al. used '>C HR-MAS NMR spectroscopy
analysis of mice hypothalamic biopsies, after [1-'*C]glucose injec-
tion, to better understand the mechanisms underlying neurotrans-
mission events and the associated neuronal-astrocytic metabolic
coupling mechanisms underlying hypothalamic appetite regula-
tion (84). Following [1-13C]glucose injection, glycolytic and TCA
cycle intermediates are labeled distinctively, providing informa-
tion on the relative contribution of the corresponding meta-
bolic pathways. Initially [1-'*C]glucose is metabolized to [3-
3C]pyruvate via glycolysis. Labeled pyruvate is then reduced to
[3-13C]lactate by lactate dehydrogenase, or alternatively enters the
TCA cycle, producing [4-'*C]glutamate and [4-!3C]glutamine.
Moreover [4-'3C]glutamate can be converted to [2-'*C]GABA.
On this basis, the authors have shown that appetite stimulation,
during the feeding-fasting paradigm, increases significantly the
13C incorporation in lactate carbons (84). Augmented lactate
labeling most probably indicates a relatively increased glycolytic
activity. Therefore, increased neuronal firing in the hypothalamus
triggered by fasting may stimulate the use of lactate as neu-
ronal fuel leading to increased astrocytic glucose consumption
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and glycolysis. Moreover, fasted mice show increased hypothal-
amic [2-13C]GABA content (84) most probably attributable to
the existence of GABAergic neurons in key appetite regulation
hypothalamic nuclei (70). Increased [2-'*C]GABA concentrations
may be derived either from increased net synthesis or reduced
net degradation. Potential increases in GABA synthesis involve
an augmented activity of the glutamate-glutamine-GABA cycle,
since glutamate and glutamine are considered the main precursors
of GABA. Interestingly, despite the increase in the [2-'*C]GABA
enrichment no increase was detected in [4-13C]glutamate or
[4-13C]glutamine. Thus the increased [2-'>C]GABA concentra-
tion in the hypothalamus of fasted animals appears to result
mainly from reduction in GABA metabolizing pathways, rather
than increased GABA synthesis by augmented activity of the
glutamate-glutamine-GABA cycle.

Using a similar methodology, we have recently studied the
neuronal-astrocytic metabolic coupling mechanism underlying
hypothalamic appetite stimulation in hyperphagic leptin-deficient
ob/ob mice. After a meal, leptin is released from adipose tissue to
bind to the hypothalamic leptin receptor inducing an anorexi-
genic response consisting of a reduction in food intake and an
increase in energy expenditure. On the contrary, in fasting peri-
ods, decreased plasma levels of leptin promote increased food
intake and diminished energy consumption (85). Disruptions
in the leptin signaling systems are often associated with hyper-
phagia and consequently obesity. In the leptin-deficient ob/ob

mice, hypothalamic leptin signaling is drastically reduced and
hyperphagia develops leading to obesity. We have showed that
leptin deficiency in 0b/ob mice resulted in significantly increased
13C incorporation from [1-'*C]glucose in glutamate and glut-
amine carbons of hypothalamic biopsies suggesting that leptin-
dependent hypothalamic activation, contrary to fasting-induced
appetite stimulation, involves mainly increases in neuronal oxi-
dation and glutamatergic neurotransmission together with ele-
vated glutamate-glutamine cycling (86). Figure 2 provides an
illustration on the use of '3C HR-MAS NMR spectroscopy to
investigate appetite regulation in small hypothalamic areas dur-
ing cerebral activation by different feeding activation paradigms.
Unlike sensorial or motor paradigms [see for example (87-90)],
where only glutamatergic or GABAergic terminals are involved
in a simple activation/inhibition mechanisms, both glutamatergic
and GABAergic stimulations on different neuronal populations
may eventually lead to the dominant orexigenic or anorexigenic
response, depending of their relative contributions. Most proba-
bly, the observed presence of both glutamatergic and GABAergic
neurotransmission in association with different feeding activa-
tion paradigms may reflect the existence of complex feedback
loops on the neuroendocrine regulation underlying appetite reg-
ulation. These feedback loops are crucial homeostatic mecha-
nisms for the hypothalamic neuroendocrine regulation involving
the operation of both peripheral signals and intrahypothalamic
neurotransmitters.
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FIGURE 2 | Information on the integrated neuronal-astrocytic
metabolic coupling mechanisms underlying appetite regulation can
be investigated using [1-"*C]glucose injection followed by analysis by
3C High-Resolution Magic Angle Spinning (HR-MAS) Nuclear
Magnetic Resonance (NMR) spectroscopy analysis of mice
hypothalamus biopsies. (A) Fasting-induced changes: Violante et al.
showed that increased neuronal firing in the hypothalamus triggered by
fasting may stimulate the use of lactate as neuronal fuel leading to
increased astrocytic glucose consumption and glycolysis (dark bold
arrows). Moreover, fasted mice showed increased hypothalamic
[2-BCIGABA content most probably attributable to the existence of

GABAergic neurons in the hypothalamus. Despite elevated [2-*CIGABA, no
increase was detected in the main precursors of GABA, glutamate, and
glutamine, suggesting a reduction in GABA metabolizing pathways rather
than increased GABA synthesis by augmented activity of the
glutamate-glutamine-GABA cycle (84). (B) Leptin-deficiency-induced
changes: we have shown that leptin deficiency in hyperphagic ob/ob mice
resulted in significantly increased "C incorporation from [1-Clglucose in
glutamate and glutamine carbons of hypothalamic biopsies suggesting that
leptin-dependent appetite activation involves mainly increases on neuronal
oxidation and glutamatergic neurotransmission together with elevated
glutamate-glutamine cycling (dark bold arrows) (86).
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CONCLUDING REMARKS
Although to date most effort has been placed on examining direct
regulation of hypothalamic appetite by neuropeptide-expressing
neurons, it is evident that hypothalamic neurons further release
and respond to excitatory and inhibitory amino acid neuro-
transmitters, as glutamate and GABA. Neuropeptides and amino
acids neurotransmitters may both function as independent trans-
mitters, or alternatively, neuropeptides may work by modulat-
ing the actions of glutamate and GABA and vice-versa. Herein,
current knowledge on neuronal-astrocytic interactions under-
lying glutamate- and GABA-dependent hypothalamic appetite
stimulation was reviewed. Apparently, different feeding para-
digms associated with appetite stimulation account for different
responses in neuronal-astrocytic metabolic coupling mechanisms.
Whereas the fasting state is associated both with the use of
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