
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 02 September 2013
doi: 10.3389/fendo.2013.00111

The interplay between circadian system, cholesterol
synthesis, and steroidogenesis affects various aspects of
female reproduction
Ziga Urlep and Damjana Rozman*

Center for Functional Genomics and Bio-Chips, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

Edited by:
James Olcese, Florida State
University College of Medicine, USA

Reviewed by:
Urs Albrecht, University of Fribourg,
Switzerland
Erik Maronde, University of Frankfurt,
Germany
Shin Yamazaki, UT Southwestern
Medical Center, USA
Tamara Castañeda, German Diabetes
Center, Germany

*Correspondence:
Damjana Rozman, Center for
Functional Genomics and Bio-Chips,
Institute of Biochemistry, Faculty of
Medicine, University of Ljubljana,
Zaloska 4, SI-1000 Ljubljana, Slovenia
e-mail: damjana.rozman@mf.uni-lj.si

Circadian aspect of reproduction has gained much attention in recent years. In mammals,
it is very important that the timing of greatest sexual motivation is in line with the highest
fertility. Peripheral clocks have been found to reside also in reproductive organs, such as
the uterus and ovary. The timing signal from the suprachiasmatic nucleus is suggested to
be transmitted via hormonal and neural mechanisms, and could thus mediate circadian
expression of target genes in these organs. In turn, estrogens from the ovary have been
found to signal back to the hypothalamus, completing the feedback loop. In this review we
will focus on the interplay between clock and estrogens. Estradiol has been directly linked
with expression of Per1 and Per2 in the uterus. CLOCK, on the other hand, has been shown
to alter estradiol signaling.We also present the idea that cholesterol could play a vital role in
the regulation of reproduction. Cholesterol synthesis itself is circadially regulated and has
been found to interfere with steroidogenesis in the ovary on the molecular level.This review
presents a systems view on how the interplay between circadian clock, steroidogenesis,
and cholesterol synthesis affect various aspects of mammalian reproduction.
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INTRODUCTION
Like other organisms, mammals are adapted to the 24 h environ-
mental day/night cycle via an internal clock. These evolutionary
conserved rhythms are related to daily and yearly changes due to
Earth’s rotation and translation as well as to food availability, social
interactions, and increased chances of reproduction and survival.
Virtually every mammalian cell contains an autonomous circadian
clock. In peripheral tissues they are proposed to drive rhythms of
gene transcription and in turn govern daily oscillation of many
physiological processes. The mammalian timing system is orga-
nized in a hierarchical manner. The central pacemaker resides in
the suprachiasmatic nucleus (SCN) in the hypothalamus. SCN
neurons receive direct photic input from the retina entraining
them to the environmental light and dark cycle (1). In turn, the
SCN synchronizes other oscillators in the brain and peripheral
tissues through endocrine or neural mechanisms, modulation of
body temperature and feeding behavior (2). In mammals, it is
very important that the timing of greatest sexual motivation is in
line with the highest fertility. Therefore hormonal stimuli govern-
ing these aspects of reproduction must be under strict control.
The circadian control of these mechanisms has been known for
a long time as well as the dependency of the reproductive cycle
on estradiol levels (3, 4). The SCN mediates its effects on repro-
duction through direct and indirect neural projections to the
hypothalamic-pituitary-gonadal (HPG) axis (5). In females it is
responsible for providing a stimulatory signal for the onset of the
preovulatory luteinizing hormone (LH) surge (6). Aside from the
SCN, sufficiently high concentrations of estradiol are necessary for
the LH surge to begin (7, 8). Estradiol is synthesized mainly by the

ovary in response to the stimulation by gonadotropins from the
HPG axis. Two proteins have been the center of research regarding
its production. The steroidogenic acute regulatory (StAR) protein
is responsible for cholesterol transportation to the mitochondrial
inner membrane. Aromatase is the final enzyme in estrogen syn-
thesis, converting testosterone to estradiol and androstendione to
estrone. The expression of both is induced by gonadotropin stim-
ulation via cAMP responsive transcription factors, such as the
cAMP response element binding protein (CREB) (9). Estradiol
was found to influence the expression of clock genes in peripheral
tissues, including the uterus, while clock proteins were found to
interfere with estradiol signaling, providing an interplay between
both systems (10–13).

In this review we will approach the complex relationships
between estrogens and circadian rhythmicity and how this influ-
ences the female reproductive cycle. Since most research was done
on model organisms, mainly rodents, the nomenclature of genes
will be written accordingly, unless otherwise specified.

MOLECULAR BASIS OF THE CIRCADIAN RHYTHM
The basic mechanism of the mammalian circadian rhythm is
a transcriptional-translational-post-translational autoregulatory
feedback loop. The core of the loop consists of Clock and Bmal1.
CLOCK and BMAL1 proteins form a dimer which binds to the
E-box region in promoters of period (Per1, Per2, Per3) and cryp-
tochrome (Cry1, Cry2) genes (14–17). Following transcription
and translation, PER, and CRY proteins form a complex with
casein kinase 1ε and translocate into the nucleus. Here they bind
to BMAL1/CLOCK complex and inhibit their own transcription,
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which completes the basic autoregulatory loop (18). PER and CRY
proteins are then tagged for proteasomal degradation via phos-
phorylation by casein kinase 1ε and 1δ and subsequently by ubiq-
uitination. This cycle lasts approximately 24 h. BMAL1/CLOCK
heterodimer also upregulates the transcription of Rev-erbα and
Rora. Their protein products interact with ROR elements (RORE)
in the promoter of Bmal1 gene, up (RORα) or downregulating
(REV-ERBα) its transcription (19, 20).

PATHWAYS TOWARD AND FROM THE SCN
As a master pacemaker and synchronizer the SCN maintains a
near 24 h daily rhythm in all cells, hence the name circadian
(“circa” meaning approximately and “diem” meaning day) (21).
It is responsible for sensing the time of the day via outside cues
and transmitting that information to oscillators throughout the
body, in order to synchronize and entrain their cycles. Neurons
within the SCN are organized in a coupling manner to provide
a more robust and precise rhythm than individual cells (22).
Light information is detected by cells within the retina. Intrinsi-
cally photosensitive retinal ganglion cells (ipRGCs), which contain
the photopigment melanopsin, gather data through their intrin-
sic phototransduction mechanism as well as by extrinsic signals
from rods and cones (23–26). This signal is then transmitted via
the retinohypothalamic tract (RHT) to the core region of the
SCN (1, 27). Upon stimulation, RHT neurons release glutamate
and pituitary adenylate cyclase-activating polypeptide (PACAP) at
synaptic contacts with the SCN (28). This in turn leads to calcium
influx into the SCN cells and activation of various kinase pathways
[MAPK, CaMK, protein kinase A (PKA)] (29). Kinases phospho-
rylate and activate CREB, which upon phosphorylation binds to
CREB binding protein. This complex then binds to cAMP response
elements (CRE) in the promoter regions of target genes, altering
their transcription (30). Per1 and Per2 are two target genes that are
influenced by light. They are activated by light signals only during
the night and are involved in phase shifts and clock resetting (31–
33). Additionally, it has been shown that the human PER1 gene
can also be activated by extracellular stimulators acting through
PKA and PKC pathways, and that this activation is distinct from
BMAL1/CLOCK regulation (34, 35).

The SCN needs to transmit its timing signals to all other
oscillators throughout the body. This is accomplished by utiliz-
ing humoral and neural signaling mechanisms (36). Locomotor
activity is supposed to be maintained by peptides, such as vaso-
pressin, transforming growth factor α (TGF-α), prokineticin 2,
and cardiotrophin-like cytokine (37–40). There are also several
proposed pathways used by the SCN to synchronize and entrain
peripheral oscillators, such as signaling by hormones and auto-
nomic neural connections, as well as more indirect ways, as is
modulation of body temperature and feeding behavior (41–44).

FROM SCN THROUGH HPG AXIS TO SEX HORMONES
The circadian system is important for successful reproduction, as
it ensures that the period of maximal fertility is in line with highest
sexual motivation (4). It influences the maturation of the follicle
and ovulation as well as timely and successful mating behavior.
These complex events and behavior are coordinated in part by the

HPG axis and its hormones. Gonadotropin-releasing hormone
(GnRH) is the first hormone in the HPG axis. It is released in a
pulsatile fashion from the hypothalamus to the anterior pituitary,
where it regulates the release of gonadotropins – LH and follicle-
stimulating hormone (FSH). Gonadotropins than travel to the
reproductive organs, where they trigger the release of sex steroids.
On the day of proestrus there is a high release of GnRH with a
subsequent LH surge that triggers ovulation.

But where does the SCN come into the picture? A signal from
the SCN is crucial for the initiation of the LH surge and for
subsequent ovulation (6, 8). When animals are kept under dif-
ferent light/dark cycles, the LH surge still occurs around the time
of activity onset (45). In rats a high release of GnRH from the
hypothalamus and a subsequent LH surge occur once every 4–
5 days. The administration of barbiturates that prevent signaling
within the SCN to rats prior to this event blocks the LH surge and
ovulation and delays them for 24 h (3). Additionally, studies on
SCN lesions in rats resulted in the absence of ovulation (46, 47).
Combined, these studies provide evidence that a signal from the
circadian system is crucial for successful ovulation.

The LH surge presents a strong signal by the SCN to the
periphery. As previously mentioned, circadian clocks are present
in peripheral organs, such as the ovary (48). Both FSH and LH
have been shown to induce Per1 and Per2 expression in rat gran-
ulosa cells (49). The effect is most likely mediated by CREB since
the promoters of both genes contain CRE elements (50, 51). The
importance of the LH surge on the day of proestrus is that it
might provide a resetting signal for clocks in the ovary and is thus
involved in their synchronization (49, 52).

As for the mechanism by which the SCN coordinates these
events, the SCN signals both directly and indirectly to the GnRH
neurons in the medial preoptic area (MPOA) (53). Direct signals
are believed to be transmitted via vasoactive intestinal peptide
(VIP) synthesizing neurons (54). These neurons project from the
SCN core to the GnRH neurons that contain the VIP recep-
tor (VIPR2/VPAC2) (55). The indirect signals are transmitted
by vasopressinergic (AVPergic) cells from the SCN shell to the
anteroventral paraventricular nucleus (AVPV) (56, 57). The AVPV
contains Kiss1 neurons that form an additional link between the
SCN and the GnRH neurons. The Kiss1/Kiss1r system has recently
been shown to have a big impact on mammalian reproduction. It
has been implicated in the onset of puberty (58), preovulatory LH
surge (59), GnRH release, including a positive (60) and a negative
feedback (61) by sex steroids.

Prior to the discovery of the Kiss1 system, the gonadotropin
inhibitory hormone (GnIH) had been identified in the quail brain
(62). Since then it has been found in the brains of many other
species, including mammals (63). GnIH acts as a negative regu-
lator of the HPG axis suppressing gonadotropin secretion at the
pituitary level (64, 65) as well as inhibiting their synthesis (66). In
rodents, the GnIH neuron bodies are present in the dorsomedial
hypothalamus (DMH) and project monosynaptically to the GnRH
neurons (63, 65). The SCN was found to project to the GnIH cells
in hamsters, providing a mechanism for the clock to inhibit the
negative effect of GnIH on the HPG axis. The SCN could thus have
a dual role in ovulatory control, on one hand stimulating GnRH
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release and on the other preventing the inhibition by the GnIH
(67). The GnIH-immunoreactive cells express estrogen receptor-α
(ERα), suggesting a feedback by gonadal estrogens (68). GnIH was
also found to affect mice ovary, where it inhibits steroidogenesis
probably via the inhibition of LH receptor (LHR) as well as StAR
and 3β-hydroxysteroid dehydrogenase (3β-HSD) proteins (69).

Sex steroids present the final part of the HPG axis. They
are synthesized from cholesterol in the gonads in response to
gonadotropin stimulation. In females, the ovary is the primary
organ for the synthesis of estrogens and progestins apart from the
placenta during pregnancy. Estradiol is an important mediator of
the positive and negative feedback of GnRH release. During most
of the female estrous cycle, low levels of estradiol reduce the ampli-
tude of GnRH pulses (70). Levels of LH are thus kept low while
the follicle develops. As the levels of estradiol rise toward the end
of the proestrus, the feedback turns to positive with an induction
of a high amplitude GnRH surge, followed by the LH surge and
ovulation (71). The action of estradiol is mediated through Kiss1
neurons. They are present in the AVPV and the arcuate nucleus
(ARC) (72). In contrast to GnRH neurons that express estrogen
receptor-β (ERβ), the Kiss1 neurons express mainly ERα, through
which estradiol can transmit its signals. The expression of ERβ

was also discovered, though its role seems to be less significant
since the ovariectomized (OVX) ERβ knockout mice still respond
to estradiol stimulation with the upregulation of the Kiss1 expres-
sion, but not the OVX ERα knockout mice. The negative feedback
during most of the estrous cycle is a result of estradiol acting
on Kiss1 neurons in the ARC, with a following decrease in Kiss1
mRNA (73). On the other hand, positive feedback on the day of
proestrus is a result of the action of estradiol on Kiss1 neurons in
the AVPV, where it increases Kiss1 expression (74). GnIH neurons
also express ERα, through which estradiol can exert its influence,
though the exact mechanism of this interaction remains to be elu-
cidated. Together these studies show that apart from the signal by
the circadian system, estradiol plays a vital part in the induction
of the LH surge and triggering of ovulation (Figure 1).

DISRUPTION OF CLOCK GENES AND IMPACT ON ESTROUS
CYCLE AND FERTILITY
The SCN itself also contains estrogen receptors, mainly ERβ (75,
76). This enables it to detect plasma estrogen concentrations and
react to them accordingly. An increase in estradiol levels dur-
ing follicular development promotes the formation of synapses
between the SCN and GnRH neurons (77) and increases the SCN
sensitivity to light (78). To further study the role of circadian tim-
ing in reproduction and pregnancy, several mouse mutant models
were developed (for summary, see Table 1). Female Clock∆19

mutant mice (79) produce a dysfunctional CLOCK protein that
can form a complex with BMAL1, but the dimer fails to initiate
transcription through E-box elements in the promoters of target
genes (14, 80). These mice lose central and peripheral rhythmic-
ity in constant DD conditions (79). In view of reproduction, they
are fertile with some reports of parturition difficulties, irregular
estrous cycles, lack of a coordinated LH surge, and have a higher
rate of pregnancy failure (81, 82). These effects are somewhat
less in Clock∆19

+MEL mice, which are able to synthesize mela-
tonin due to a different genetic background (82). Mice lacking a
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FIGURE 1 |The proposed model of circadian influence on the HPG axis
and feedback by estrogens. Blue lines depict positive interaction, red lines
negative interaction, and purple (solid and dashed) lines depict a complex or
not yet known interaction. The SCN signals to various neurons within the
hypothalamus, including GnIH, GnRH, and Kiss1 neurons in the AVPV. GnIH
neurons negatively regulate GnRH release, whereas the effect of Kiss1
neurons is stimulatory. Estradiol (E2) from the ovary transmits its signals via
estrogen receptors (ER). It sends negative feedback to Kiss1 neurons in the
ARC and positive to Kiss1 neurons in the AVPV. ER are also present on
GnRH neurons, GnIH neurons, and the SCN, suggesting a feedback
mechanism to these structures as well, although the exact mechanism for
these interactions remains yet to be elucidated.

functional Bmal1 gene show a complete loss of rhythmicity in total
darkness (83). Despite this, ovulation does still occur even though
there is no apparent LH surge. These mice also have a prolonged
estrous cycle, but are infertile due to impaired steroidogenesis
and low progesterone levels. There is no evident implantation of
the embryo, but it can be reinstituted by progesterone supple-
mentation (84, 85). Two other mouse models were developed,
lacking either Per1 or Per2 gene (17, 86). Young adult female
mutant mice (aged 2–6 months) have regular estrous cycles and
the same reproductive success as wild-type females. On the other
hand, middle-aged female mutant mice (aged 9–12 months) show
lower incidence of estrous cyclicity and have a significantly lower
reproductive rate as compared to wild-types. Together these results
indicate an accelerated reproductive aging as a consequence of Per
gene disruption (87). Outside the core clock genes, Vipr2 null mice
were also generated. VIP signaling is important for maintaining
rhythmicity and synchrony of neurons within the SCN (88). It is
also involved in signaling by VIP and PACAP to the GnRH neurons
(89). Mice lacking a functional VPAC2 receptor showed elongated
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Table 1 | A comparison between different mouse knockout models in view of reproduction.

Mouse model Hormone levels Estrous cyclicity Reproduction status Reference

Per1 KO No data Prolonged and irregular cycles Decreased litter size (87)

Per2 KO Higher loss of implanted embryos

Clock∆19
↓ estradiol Prolonged and irregular cycles Higher rate of fetal reabsorption (81)

↓ progesterone Lack of an LH surge Increased pregnancy failure

Bmal1 KO ↓ progesterone Reduced number of cycles Low ovulation rate (85)

Prolonged and irregular cycles Infertile due to poor embryo development

Vipr2−/− No data Prolonged cycle, exacerbated by constant darkness No difference in litter size or pregnancy rates (90)

Prolonged delivery

Cyp19a1/

Aromatase KO

↓ estradiol No LH surge Disrupted folliculogenesis (91)
↑ LH and FSH Disrupted cyclicity due to estradiol deprivation No ovulation

Infertile

StAR KO ↓ progesterone No data Impaired folliculogenesis and ovulation (92)

Phenotypes of the various knockout models show different effects on reproduction of mice. Disruption of core clock genes causes a marked reduction in reproductive

success and loss of regular estrous cyclicity. On the other hand, the lack of functional VPAC2 receptors results in milder defects. Disruption of sex hormone synthesis

shows a marked effect on reproduction.

estrous cycles exacerbated by constant darkness, however preg-
nancy rates were not affected (90). Taken together, these studies
show that the disruption of core clock genes or SCN signaling
pathways has an impact on estrous cyclicity and reproduction. The
mechanism underlying these changes remains a matter of debate.
Many of the studied mouse models retain rhythmicity under LD
conditions, yet still exhibit disrupted reproduction. One possi-
ble explanation could be that, while being part of the core clock
machinery, many of the disrupted or knocked out genes are tran-
scription factors and could alter the expression of genes involved
in reproduction. An example of this would be BMAL1, which may
directly regulate StAR expression (84).

CHOLESTEROL AND ESTROGEN SYNTHESIS AND LINK TO
THE CLOCK
Estrogens are female sex hormones important for the development
of secondary female sexual characteristics and enabling success-
ful reproduction. They are produced from cholesterol mainly by
the ovary following stimulation by FSH. An enzyme from cho-
lesterol synthesis, lanosterol 14α-demethylase (CYP51) (93, 94)
was detected in the rat oocytes on the mRNA and protein lev-
els, suggesting the potential of oocytes to synthesize cholesterol
de novo (95). This has been confirmed in mice where the CYP51
protein was detected in primary mouse oocytes in a stage- and
cell type-specific manner, suggesting distinct regulatory pathways
for its expression in the oocyte and the surrounding cumulus cells
(96). While it has not yet been proven that the oocyte can indeed
synthesize cholesterol, sperm cells retain this ability, which was a
surprising discovery (97). In sperm, the major role of the choles-
terol synthesis pathway might not be to synthesize cholesterol, but
to produce meiosis activating sterols (MAS) (98), whose roles have
been reviewed recently (99).

The plasma concentrations of cholesterol vary according to
the time of the day, which is of great clinical importance for the

hyperlipidemia therapy by statins (100, 101). There have been
several studies performed on mouse models with disrupted genes
from cholesterol synthesis pathway (102) as well as on models
with defects in clock components. It has been shown that muta-
tions in the Clock gene abolish circadian expression of Hmgcr,
the regulatory gene in cholesterol synthesis (103). Signaling by
cAMP presents an important mechanism for transmitting circa-
dian information. The proximal promoter of Hmgcr reveals one
CRE element, but the effect on expression of this gene was mild
to none when coupled with overexpression of immediate cAMP
early repressor (ICER) or CRE modulator (CREMτ). This suggests
an indirect signaling mechanism that controls Hmgcr expression
(104). The promoter analysis of Cyp51 from the latter part of cho-
lesterol synthesis identified three CRE elements, and both CREMτ

and ICER had a significant effect on Cyp51 expression. These
results are in concordance with findings from Crem knockout
mice, where in the absence of Crem, the circadian regulation of
Cyp51 was abolished, while the expression of Hmgcr remained
circadian (104). ICER is transcribed from the Crem gene and is
part of the negative loop of cAMP signaling. It is expressed in
a circadian manner and is able to repress its own transcription.
ICER contributes to attenuation of cAMP signaling. The canoni-
cal signaling pathway (Gαs/cAMP/PKA) has been discovered over
20 years ago (105, 106). After the binding of FSH to its receptor
(FSHR), Gαs functionally couples with FSHR and in turn activates
adenylate cyclase (AC). This leads to cAMP production by AC
and subsequent activation of PKA. Activated PKA’s catalytic sub-
units then phosphorylate various targets within the cytosol or the
nucleus (107). Gene transcription regulated by FSH is controlled
by translocation of the PKA catalytic subunit to the nucleus, where
it phosphorylates and activates CREB. CREB binds to genes that
contain CRE regions in their promoters and activates their tran-
scription (108). ICER has also been found to bind to CRE elements
in the promoter of the Per1 gene and to attenuate its transcription
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in the adrenal gland. It is proposed to act as a noise filter and might
be a mechanism for the central clock to mediate the fine tuning of
peripheral clocks (51). Together this presents an interesting aspect,
whereby ICER could be involved in circadian regulation of cho-
lesterol and sex steroid synthesis as well as in mediating the effect
of the central pacemaker to the periphery. Whether this is true for
the ovary still needs to be proven.

Similar to cholesterol synthesis, cAMP signaling is also impor-
tant for the production of sex steroids (109). The first step in
estrogen synthesis is cleavage of cholesterol by the CYP11A1
forming a C21 product pregnenolone. Pregnenolone presents a
branching point in the biosynthetic pathway, as it can be con-
verted to either glucocorticoids and mineralocorticoids or to sex
steroids. The CYP17A1 and 3β-HSD then transform pregnenolone
to androstenedione. In the next step, androstenedione can be con-
verted by 17β-HSD into testosterone. The final enzyme in the
pathway is CYP19A1 (aromatase) that catalyzes the conversion of
androstenedione or testosterone by aromatization of the first ring
to estrone or estradiol, respectively (Figure 2).

Aromatase encoded by the Cyp19a1 gene catalyzes the final
reaction in estradiol biosynthesis. Cyp19a1 contains two promoter
regions that mediate the effects of FSH through cAMP/PKA path-
way: a steroidogenic factor-1 (SF-1) binding site and a CRE like
element (9, 110, 111). Apart from the canonical signaling path-
way, FSH utilizes various other signaling mechanisms, such as
phosphatidylinositol-3 kinase (PI3K) which activates Akt (112).
Akt was shown to alleviate the repressive effect of forkhead box
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FIGURE 2 |The biosynthesis of sex steroids. The sinusoid curve next to
an enzyme depicts its known circadian expression. The synthesis starts
with cholesterol and consists of several steps catalyzed by either enzymes
from the cytochrome P450 or hydroxysteroid dehydrogenase families.

O1 (FOXO1) on aromatase expression (113). Additionally, the
LH surge induces the expression of the transcription factors
CCAAT/enhancer-binding protein β (CEBPB) and ICER (114,
115), both of which are involved in the silencing of Cyp19a1
(116, 117). In the aromatase knockout mice (ArKO) (118), the
females lack endogenous estrogens but have increased levels of
testosterone, FSH, and LH. These mice are infertile due to the dis-
ruption of folliculogenesis and the lack of corpora lutea (119). The
high basal levels of LH and the lack of an LH surge were found
responsible for the lack of ovulation (120). An interesting aspect
of disrupted estrogen synthesis is the altered sleep-wake rhythms
of ArKO mice. They are less nocturnal and are generally less active
when compared to WT mice (121, 122).

If we move away from the synthesis itself, we find another
crucial protein for the production of sex steroids. The StAR pro-
tein is a rate limiting step in steroidogenesis. It is involved in the
transport of cholesterol from the outer to the inner mitochondrial
membrane. StAR knockout mice on steroid replacement therapy
show premature ovarian failure with progressive lipid deposi-
tion and without detectable corpora lutea (92). The phenotype
can in part be explained by insufficient production of proges-
terone, as progesterone receptor knockout mice exhibit similar
defects (123). StAR expression and activity in the ovary is regu-
lated by LH via cAMP/PKA pathway (124). While the promoter
of the human STAR gene lacks a consensus CRE sequence (125),
CREB, CREM, and activating transcription factor-1 (ATF-1) are
still able to bind to it. This is possible by binding to three CRE half-
sites identified in the promoter region (126). Several other cAMP
responsive transcription factors are involved in StAR transcrip-
tion, such as SF-1, CCAAT/enhancer-binding proteins (CEBPs),
sterol regulatory element binding protein (SREBP), and DAX-
1 (127–130). Interestingly, the core clock gene Rev-erbα induces
StAR expression in mouse granulosa cells (131). It has been shown
that mouse StAR promoter region contains putative RORE, which
can bind Rev-erbα (132). This indicates that the StAR gene might
be under the direct control of one of the core clock genes, although
there are mixed findings, whether this results in the induction or
repression of StAR transcription (131, 132). Further research is
needed to confirm this hypothesis and to describe the mechanistic
background.

THE INFLUENCE OF ESTROGENS ON THE CIRCADIAN
RHYTHM
The effect of steroids on the phase, amplitude, and period of cir-
cadian rhythms has been known for a long time (133). This might
result from their direct action on the SCN or from one of the previ-
ously discussed pathways from the SCN to the periphery. Estradiol
shortens the period of Per2 expression in the uterus of OVX mice,
but not in the SCN (11). Estradiol also alters the rhythms of Per1
and Per2 in the liver, kidney, and uterus of OVX rats (10). From
this we can see that estradiol differentially regulates the expression
of clock genes in central and peripheral tissues. The reason for
this might in part be due to the differential expression of ERs. As
mentioned, the SCN expresses mainly ERβ while liver, kidney, and
uterus express predominantly ERα (134, 135). An interesting study
by Li et al. directly links the CLOCK protein with ERα activity. Two
sumoylation sites were located on the human CLOCK protein and
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treatment with estradiol promotes this post-translational modifi-
cation. Sumoylated but not native CLOCK protein was found to
modify the transcriptional activity of ERα. This was most likely the
result of the direct interaction between sumoylated CLOCK and
ERα as concentrations of ERα remained unchanged (13). ERβ was
also shown to be directly linked to the core clock genes. The pro-
moter of ERβ contains an evolutionary conserved E-box, which
binds core clock proteins to drive rhythmic expression of this
receptor. This is in line with the fact that CLOCK/BMAL1 het-
erodimer has been found to bind to E-box elements in a rhythmic
manner (136, 137). These studies provide evidence that there is a
complex relationship between estradiol signaling and clock pro-
teins. On one hand, estradiol influences the core clock machinery,
and on the other, the core clock proteins may influence ERα tran-
scriptional activity and the expression of ERβ. If and how this
affects fertility and reproduction remains to be determined.

MEVALONATE KINASE FROM CHOLESTEROL SYNTHESIS
INTERACTS WITH LH SIGNALING
Cholesterol synthesis is one of the circadially regulated processes
(104). In humans cholesterol levels peak toward the morning and
are lowest in the afternoon (100). Also, SCN signaling via the
HPG axis influences in part the production of sex steroids. Both
are therefore linked to the central pacemaker, yet little is known
whether there is a link connecting them directly. There is one
example of the interplay between the two pathways through the
regulation of LHR. LHR is expressed in ovarian cells and shows
a marked downregulation following the LH surge (138, 139).
When LH binds to its receptor, it activates the cAMP/PKA sig-
naling pathway (140). This results in an increase in sex steroid
hormone biosynthesis. The increased steroidogenesis leads to cho-
lesterol depletion in the cell, triggering upregulation of genes
involved in cholesterol biosynthesis, such as mevalonate kinase
(MVK), via SREBP (141, 142). MVK catalyzes the conversion of
mevalonate to 5-phosphomevalonate in the cholesterol synthesis
pathway. Interestingly, MVK also acts as an RNA binding protein.
It was found to form a complex with LHR mRNA and prevent its

translation, which results in LHR mRNA degradation (143, 144).
In the meantime, steroidogenesis is temporarily interrupted until
MVK is able to restore its catalytic function.

CONCLUSION
With every new publication the importance of biological rhythms
in various aspects of our lives becomes more evident. In recent
years research has extensively focused on the implications of cir-
cadian rhythmicity in reproduction. Mouse knockout models have
proven to be invaluable in determining how defects of the clock
or impaired steroidogenesis influence reproduction. Interesting to
note is that even the defects in functionally related genes, such
as Clock and Bmal1, have different outcomes, with former show-
ing decreased reproduction rates, while the latter proving infertile.
In females estrogens present a link between circadian rhythmicity
and reproduction. Signals by estradiol and the SCN together are
crucial for the start of an LH surge with the resulting ovulation.
The neural network within the hypothalamus presents a complex
system that integrates both environmental and hormonal signals
to ensure successful reproduction. But the relationship between
the two doesn’t stop there. It seems that estradiol and circadian
signaling pathways are more intimately connected with evidence
for their interplay on the molecular level. The core clock genes
were found to interfere with estradiol signaling, while estradiol
was shown to alter the rhythms of Per1 and Per2 gene expression
in various tissues. To add another piece to the puzzle, cholesterol
synthesis itself is rhythmic, and interferes with steroidogenesis in
the ovary via the downregulation of LHR.

Despite the complexity of this network of interactions, there
is growing evidence that the disruption of one of these systems
has an influence on reproduction. But the questions regarding the
mechanistic background and the potential application in medicine
both require additional research.
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