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Dynamin-2 is a ubiquitously expressed mechano-GTPase involved in different stages of the
secretory pathway. Its most well-known function relates to the scission of nascent vesi-
cles from the plasma membrane during endocytosis; however, it also participates in the
formation of new vesicles from the Golgi network, vesicle trafficking, fusion processes and
in the regulation of microtubule, and actin cytoskeleton dynamics. Over the last 8 years,
more than 20 mutations in the dynamin-2 gene have been associated to two hereditary
neuromuscular disorders: Charcot–Marie–Tooth neuropathy and centronuclear myopathy.
Most of these mutations are grouped in the pleckstrin homology domain; however, there
are no common mutations associated with both disorders, suggesting that they differently
impact on dynamin-2 function in diverse tissues. In this review, we discuss the impact
of these disease-related mutations on dynamin-2 function during vesicle trafficking and
endocytotic processes.

Keywords: dynamin-2, endocytosis, exocytosis, actin, microtubules, mutations, Charcot–Marie–Tooth neuropathy,
centronuclear myopathy

INTRODUCTION
Dynamin was identified for the first time almost 25 years ago as
a 100 kDa microtubule-associated protein that induced micro-
tubule bundles and promoted microtubule sliding in vivo (1). As
described by the same authors, the motor activity of dynamin
required ATP and other co-purified polypeptides (1). A year later,
the same group cloned and sequenced dynamin, and found that
it contained a consensus GTP-binding site (2), and subsequently
characterized its GTPase activity (3). At present, three dynamin
isoforms encoded by three distinct genes (DNM1, DNM2, and
DNM3) have been described in mammals (4). These exhibit
approximately 80% homology in their sequences, yet they differ
in their tissue expression pattern; dynamin-1 is mainly expressed
in neuronal tissue, dynamin-2 is ubiquitously expressed, and
dynamin-3 is expressed in brain, testis, and lungs (5). Of these
three dynamin isoforms, only dynamin-2 appears to play a
pleiotropic role during embryonic development (6). In fact, studies
in knock-out animals show that deletion of dynamin-1 or -3 can
be compensated by the other dynamin isoforms (7), while the dele-
tion of dynamin-2 causes early embryonic lethality (8). Moreover,
as discussed below, mutations in DMN2 result in severe heredi-
tary neuropathies and myopathies in humans, strongly suggesting
that dynamin-2 has more susceptible functions in the nervous and
skeletal muscle tissues.

All dynamin isoforms exhibit at least four alternatively spliced
variants, resulting in different dynamin proteins (5) that share
a primary structure comprising: a large amino-terminal GTPase
domain (G-domain) that binds and hydrolyzes GTP; a middle
and a GTPase effector domains (GED) that form a “stalk”

structurally essential region; a pleckstrin homology domain (PH)
that binds inositol phospholipids and a carboxy-terminal pro-
line and arginine rich-domain (PRD) that allows interaction with
SH3-domain-containing-proteins (5) (Figure 1).

Dynamin function relies on its ability to form high order
oligomers, and its self-assembly is necessary to promote its cat-
alytic activity. Purified dynamin has been shown to sponta-
neously polymerize in the presence of negatively charged tubular
templates such as lipid membranes (11), microtubules (3, 12),
or actin bundles (13, 14) as well as after incubation in low
ionic strength solutions (15). Over the last years several cryo-
electron microscopy (16–18) and X-ray crystallographic stud-
ies (19, 20) of dynamin and its domains (21–24) have allowed
a better understanding of the mechanisms mediating dynamin
oligomerization. It appears that the stable dimers formed by the
crossed interaction between the “stalk” regions of monomeric
dynamins (20, 25) are the basic unit that allows dynamin poly-
merization (18), thus promoting the GTPase activation required
for membrane remodeling and scission in different cellular
processes.

In the present review, we discuss the different roles of dynamin
during endocytosis, vesicle trafficking, and exocytosis, specially
focusing in dynamin-2, and how disease-linked mutations in
dynamin-2 gene alter such cellular processes.

DYNAMIN AS A KEY COMPONENT OF ENDOCYTOSIS AND
VESICLE RECYCLING
Dynamin is a GTPase that plays a crucial role in the recycling of
secretory vesicle in neuroendocrine cells (26).
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FIGURE 1 | Diagram of dynamin structure and localization of
dynamin-2 mutations linked to CNM and CMT. Dynamins are
multimodular proteins comprising five highly conserved structural domains:
a large N-terminal GTPase domain (G-domain), a middle domain, a PH
domain that bind phosphoinositides, a GTPase effector domain (GED), and
a C-terminal proline rich domain (PRD) that interacts with SH3-domain
containing proteins. Most common disease-related dynamin-2 mutations
are represented. Note that almost all dynamin-2 mutations identified in

CNM and CMT patients are clustered into the PH domains; only one
CNM-linked mutation has been found in GED, and one related to CMT has
been identified in the PRD. The D555del3 mutation is one of the products
of a 9-bp deletion in the exon 14 (1652_1659 + 1delATGAGGAGg) of the
dynamin-2 gene (9). This gene deletion also results in a 65-kDa truncated
protein (9). For that reason here is described as D555del3, K554fs. An
updated database of DNM2 mutations is at the website
www.umd.be/DNM2/ (10).

The first evidence suggesting a role for dynamin in endocytosis
came from the mapping and characterization of the Drosophila
shibire gene, which was identified to be the Drosophila homolog
of mammal dynamin (27, 28). Drosophila bearing mutations in
the shibire gene exhibited a rapid and reversible paralysis at tem-
peratures exceeding 29°C (29). The first ultrastructural analyses of
synaptic terminals of shibire mutants showed a decreased number
of synaptic vesicles and accumulation of “collared pits” suggesting
a blocked step in the endocytotic process (30, 31). These ultra-
structural changes were also observed in garland cells, a type of
cell considered to be very active in endocytosis, where horseradish
peroxidase uptake activity was also reduced, thus confirming an
alteration in endocytosis in the shibire mutants (32). The role of
dynamin in endocytosis in mammalian cells was later demon-
strated using dynamin mutants with reduced GTPase activity
(33, 34). The use of the non-hydrolyzable GTP analog GTP-γ-
S allowed the visualization of endocytotic pits with elongated
necks, decorated by electron-dense rings positive for dynamin
immunoreactivity, showing that dynamin oligomerizes around the
neck of endocytotic pits (35). Moreover, the fact that the dynamin
mutant K44A, defective in GTP binding and hydrolysis, specifi-
cally blocked the coated vesicle formation without affecting the
coat assembly and invagination revealed that dynamin is required
for the constriction and subsequent budding of the coated vesicles
(36). However, later studies suggested that dynamin also plays a
role during a pre-collar stage, when the clathrin lattice is growing
(37, 38). In this stage, dynamin may function as a scaffolding mol-
ecule that interacts with SH3 domain-containing proteins that
control coated pit assembly and maturation (37). The recruit-
ment of dynamin at endocytosis sites (39) also depends on its
interaction with SH3-domain-containing proteins and phospho-
inositides present at the plasma membrane via its PRD (40) and
PH domain, respectively (41).

Regarding the mechanism by which dynamin catalyzes mem-
brane fission, it has been proposed that the assembly of dynamin
into helical oligomers around the neck of clathrin-coated pit pro-
motes the dimerization of G domains of adjacent helical rungs,
leading to the hydrolysis of GTP (18). The GTP hydrolysis triggers

a conformational change in the dynamin polymer, allowing the
constriction of the dynamin ring (18, 42, 43). The ring con-
striction strength then drives the constriction of the membrane
neck, increasing membrane curvature (44). Such change in mem-
brane curvature raises the local elastic energy, reducing the energy
barrier to fission, and subsequently triggering the spontaneous
fission at the boundary between the dynamin ring and the bare
membranes (44).

The ability of dynamin to catalyze membrane fission is not only
required in CME, but is also needed in other types of endocytotic
pathways that are independent of clathrin. For instance, dynamin
is required for caveolae-mediated endocytosis (45), which is essen-
tial for the uptake of molecules such as the complement C5b-9
complex (46). Dynamin also participates in the internalization of
the β-chain of the interleukin-2 receptor through a clathrin inde-
pendent, but RhoA dependent process, which is inhibited by the
overexpression of a dominant negative mutant of dynamin GTPase
activity (47). The entry in host cells of many pathogens and toxins
such as anthrax toxin (48), Ebola virus (49), HIV (50), or Hepatitis
C virus (51) also require the participation of dynamin.

Finally, the role of dynamin in vesicle formation is not only
restricted to the plasma membrane and, as discussed below; its
function is also needed in intracellular compartments.

ROLE OF DYNAMIN IN VESICLE TRAFFICKING AND GOLGI
FUNCTION
Dynamin-mediated vesicle budding and membrane fission has
also been reported in intracellular compartments such as endo-
somes (52, 53) and Golgi complex (54). Regarding dynamin-2
participation in vesicle trafficking from endosomes, this protein
appears to play a role in two different steps: (1) the vesicle trans-
port from late endosomes to the Golgi compartment (52) and
(2) the recycling pathways from early endosomes (53). However,
the establishment of dynamin-2 participation in the post-Golgi
vesicle trafficking has been more controversial. Pioneer reports
showed that the transport of vesicles from the Golgi to the cell
surface or to lysosomes was independent of dynamin (36), and
according to these results, no evidence of endogenous dynamin-2
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localization in the Trans-Golgi network (TGN) nor of its partici-
pation in vesicle formation from this compartment were observed
using different cell lines (55). Nevertheless, contemporary studies
showed that ectopically expressed dynamin-2 localizes in the TGN
in hepatocytes (54) and that the formation of clathrin-coated pits
from Golgi membranes, in a cell-free assay, was inhibited in the
presence of anti-dynamin antibodies, thus indicating the impor-
tance of dynamin at this level (54). Furthermore, canine kidney
cells expressing a GTPase defective dynamin-2 mutant showed a
restricted traffic of the protein p75 from the Golgi to the apical
membrane (56). Also, the overexpression of a dominant negative
mutant of dynamin-2 was shown to lead to the retention of pro-
teins and accumulation of cisternae at the Golgi compartment,
suggesting a role of dynamin-2 in keeping both the structure and
function of the TGN (57).

In agreement with a role of dynamin-2 in Golgi vesicle forma-
tion, it was demonstrated that endogenous dynamin-2 localizes
in the TGN in neuroendocrine mouse pituitary corticotrope cells
(58), where it interacts with the βγ subunit of G-proteins via its
PH domain. Interestingly, the overexpression of the purified PH
domain induced the translocation of dynamin-2 from the Golgi
complex to the plasma membrane, increasing receptor-mediated
endocytosis but inhibiting basal and CRH-induced secretion of
β-endorphins, suggesting a key role of dynamin-2 in the secretory
pathway (58). Several studies have highlighted the importance of
dynamin-2 to the proper traffic of nascent proteins from the TGN
to the plasma membrane, a process that seems to be dependent
on the actin cytoskeleton. In this regard, a subset of actin fila-
ments anchored to the Golgi membrane via the small GTPase
Arf-1 appears to form complexes with dynamin-2 and the actin-
binding-protein cortactin, allowing the emergence and post-Golgi
trafficking of secretory vesicles (59). Other proteins such as LimK1
and its substrate cofilin (60), syndapin, and the Wiskott–Aldrich-
Syndrome-protein (WASP) (61) have been also involved in the reg-
ulation of the peri-Golgi actin cytoskeleton and in the dynamin-
mediated transport of secretory vesicles from Golgi to the plasma
membrane. Additionally, dynamin-2 function is necessary for the
Golgi fragmentation and vesicle segregation induced by choles-
terol in HeLa cells (62) and for the Golgi vesiculation induced by
the c-SRC kinase activation (63) further supporting a pivotal role
of dynamin in the Golgi dynamics along the secretory pathway.

DYNAMIN AS A FACILITATOR OF MEMBRANE FUSION
Dynamins have been involved in different types of fusion
processes. Among them regulated exocytosis in neuroendocrine
cells (64–69), acrosomal reaction (70), cell-to-cell fusion (71, 72),
and fusion of virus with host cells (73, 74).

The first evidences showing the involvement of dynamin in
exocytosis came from experiments performed at the beginning of
2000, which suggested that dynamin was involved in kiss-and-run,
a transient mode of exocytosis, in neuroendocrine cells (64–66).
In this type of exocytosis, the vesicle partially releases its content,
and then it is recovered intact (75, 76). It was then hypothesized
that dynamin would allow the reclosure of the vesicle mouth,
acting through a mechanism similar to that described for vesi-
cle formation during endocytosis (77). However, the mechanism
by which dynamin controls the quantal release of hormones still

remains unclear. More intriguing is the mechanism by which
dynamin facilitates the fusion process during exocytosis. For
instance, dynamin-2 reportedly favors granule secretion in both
natural killer (78) and insulin-secreting cells (79). More recently,
it was reported that, in chromaffin cells, dynamin-1 speeds up the
expansion of the fusion pore, an intermediate structure formed
during exocytosis, in a GTPase activity-dependent fashion (68).
Therefore, both dynamin-1 and -2 appear to be involved in fusion
processes. A possible explanation for this function is that dynamin
interacts with SNARE proteins or SNARE-interacting proteins. In
this regard, dynamin-2 has been shown to associate to secretory
granules in chromaffin cells (80) via its interaction with syntaxin
(80) and synaptophysin (67). In mammalian sperm, dynamin-2
associates with the SNARE regulatory protein complexin I (81),
where it favors membrane fusion events during acrosomal exocy-
tosis (70). In yeast, the dynamin homolog Vps1p interacts with
the t-SNARE Vamp3; the disruption of this association with an
antibody against Vps1p inhibits the fusion reaction (82). More
recently, Peters’ lab has demonstrated that Vps1 binds to the Qa
SNARE Vamp3 and controls trans-SNARE formation, which is
essential for membrane fusion in yeasts (83).

An alternative explanation is that dynamin controls fusion
events via actin cytoskeleton dynamics. In this regard, cortical
actin is dynamically rearranged during regulated exocytosis in
neuroendocrine cells acting as a barrier as well as a carrier for
the access of the secretory granules to the plasma membrane (84–
86). Actin filaments also control the fusion pore expansion (87),
as dynamin does (68). As we discuss below, given that dynamin
regulates actin organization (13, 14, 88), it is plausible to assume
that its actions on fusion processes relay on its ability to modulate
actin dynamics. According to this idea, we have recently demon-
strated that endogenous dynamin-2 directs a Ca2+-dependent
polymerization of cortical actin in adrenal chromaffin cells. Inter-
estingly, both cortical actin and dynamin-2 regulate the initial
fusion pore expansion and quantal release of transmitters, suggest-
ing a synergistic action during exocytosis (89). Corey Smith and
Collaborators found that the fusion pore expansion in chromaffin
cells is controlled by the association of dynamin-1 with syn-
dapin (69), a protein that modulates actin polymerization through
neural-Wiskott–Aldrich-syndrome-protein (N-WASP) (90).

The role of dynamin-2 in fusion processes has also been
extended to the fusion of myoblasts to form multinucleated
myotubes (71). Interestingly, the GTPase activity of dynamin-2
is required at a stage that follows hemifusion but precedes the
expansion of the fusion pores (71). The underlying mechanism
is still unclear, but it could explain the muscular dysfunction
in centronuclear myopathies caused by dynamin-2 mutations.
Dynamin-2 has also been involved in the cell-to-cell fusion trig-
gered by HIV-1 virus infection (72) and in fusion between HIV-1
virus and endosomes (73, 74). The latter authors proposed that
dynamin promotes the expansion of the fusion pore that con-
nects the HIV-1 envelope and the endosomal membrane, but the
possible mechanism remains to be clarified.

Taken together, these findings indicate a pleiotropic role of
dynamin in membrane fusion. Although dynamin does not
promote membrane fusion by itself, it seems to act after a hemifu-
sion state, facilitating the expansion of the fusion pore (71). The
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underlying mechanism probably relies on dynamin ability to sense
membrane curvature and remodel membranes (91).

DYNAMIN AS A REGULATOR OF MICROTUBULE INSTABILITY
Although dynamin was first identified as a microtubules-
associated protein (1) its specific role in microtubule integrity
and dynamics is still unclear. Using papain-digestion experi-
ments in vitro, Herskovits and Co-workers observed that the
entire PRD constituted a microtubule-binding site (34). Later,
it was demonstrated that only the PRD amino-terminal region
was necessary for the association of dynamin to microtubules,
whereas its C-terminus appeared to negatively regulate this inter-
action (92). Pioneering studies also described that dynamin poly-
merized around microtubules, interconnecting them and allow-
ing bundle formation (1), and in turn, microtubules seemed to
stimulate dynamin GTPase activity (12). Other findings showed
that the middle domain of dynamin-2 binds to γ-tubulin (93)
locating dynamin-2 to the centrosome, therefore suggesting its
participation during centrosome cohesion (93). More recently,
dynamin-2 was found to be enriched in microtubule bundles
at the mitotic spindle of mitotic cells, playing a key role dur-
ing the cell cycle progression (94). In 2009, Tanabe and Takei
observed that depletion of dynamin-2 in COS-7 cells, led to
an abnormal accumulation of stable microtubules, consequently
inducing disturbance of the microtubules-dependent membrane
trafficking. These authors did not find alterations in microtubule
assembly in cells that expressed a specific interfering RNA against
dynamin-2, but they did report increased stability of pre-existing
microtubules, suggesting a role of dynamin-2 in microtubule
dynamics instability (95). This dynamin role appears to be inde-
pendent of its GTPase activity. On the other hand, a deletion of
three amino acid residues located at the β3/β4 loops of the PH
domain induced decoration of microtubules and accumulation
of acetylated tubulin, indicating that this region is required for
the correct bundling of microtubules (95). The authors also pro-
posed that this action of dynamin-2 on microtubule instability
is necessary for a proper formation of Golgi network and vesicle
trafficking.

DYNAMIN AS A DIRECTOR OF ACTIN CYTOSKELETON
DYNAMICS
Dynamin-2 is recruited to different actin-rich structures such
as phagocytic cups (96), podosomes (97), Listeria actin (98),
lamellipodia (99), and filopodia (88), supporting a connection
between dynamin-2 function and actin cytoskeleton polymer-
ization. Moreover, both actin and dynamin-2 have regulatory
functions during T cells activation (100), phagocytosis (101),
and clathrin-dependent endocytosis (102). In the latter, actin and
dynamin-2 have been shown to exhibit a synergistic action, where
one modulates the recruitment of the other, and both participate
in membrane remodeling and scission (103, 104).

In all these processes, dynamin appears to promote actin assem-
bly in a manner dependent on its GTPase activity (14). The
mechanism is still unclear, yet it is probably a consequence of its
association with several nucleation promoting factors (NPF) via
a PRD-SH3 interaction; among them Abp1 (105), the N-WASP
(106), and cortactin (13, 88), all of which have been described as
dynamin-partners during actin polymerization.

In 2010, Gu and Co-workers reported a direct interaction
between dynamin and short actin filaments (F-actin). The lat-
ter promoted dynamin oligomerization, and in turn dynamin
induced F-actin elongation (14). These authors suggested a model
wherein dynamin would favor actin polymerization by remov-
ing the “caping”-protein gelsolin of the “barbed” ends (14). More
recently, Yamada et al. (88) demonstrated that dynamin induces
actin bundle stabilization in a way dependent on its association
with cortactin in growth cone filopodia, where they seem to form
ring-structures along actin filaments that stabilize F-actin bundles
(88). Since dynamin oligomerization enhances its catalytic activity
(14), its association with cortactin during actin polymerization fits
better with its role as a GTPase than that of a mere “uncapping”
protein.

IMPACT OF DISEASE-RELATED DYNAMIN-2 MUTATIONS IN
VESICLE TRAFFICKING AND ENDOCYTOSIS
Specific missense mutations and short deletions into the structural
domains of dynamin-2 have been associated with two congenital
autosomic neuromuscular disorders: Charcot–Marie–Tooth neu-
ropathy (CMT) (9) and centronuclear myopathy (CNM) (107).
While CMT is a demyelinating disease affecting peripheral nerves
(108), CNM is characterized by a progressive weakness and atro-
phy of distal muscles, usually involving facial and extraocular
musculature (109–111). Although most dynamin-2 mutations
linked to CMT and CNM are located in the middle and PH
domains, there are no common mutations to both disorders
(112) and the molecular mechanisms that lead to the neuropa-
thy or myopathy remain obscure. Figure 1 shows the localization
of the CMT and CNM dynamin-2 mutations described until
now, and Table 1 summarizes their impacts on different cellular
processes.

Regarding how these disease-related mutations affect dynamin-
2 oligomerization and catalytic properties, in vitro studies have
revealed that the CNM-linked mutations E368K/Q, R369Q/W, and
R465W located into the middle domain of dynamin-2 (107) as well
as the mutations A618T, S619L/W, and V625del clustered into the
PH domain (118) exhibit an increased stability of the oligomers
and an enhanced GTPase activity (119, 120). However, how these
and other dynamin-2 mutations impact on dynamin-dependent
cellular processes is still under discussion.

Given that the best-known role of dynamin-2 is to catalyze
membrane scission during endocytosis, most of the studies regard-
ing the mechanism underlying CNM associated to mutations in
dynamin-2 have been focused in this cellular process. However, the
findings are contradictory. The overexpression of the CNM-linked
mutants R465W, R522H, S619L, P627H V625del, and E650K
impaired CME in COS-1 and COS-7 cells (112, 115). The fact
that the CNM mutant D614N causes intracellular mislocalization
of both dynamin-2 and clathrin (121) suggests that an impairment
in CME could be a consequence of the anomalous distribution of
dynamin-2 and other endocytotic proteins. In opposition to the
aforementioned findings, fibroblasts from patients harboring the
mutations R465W or S619L reportedly display normal CME (112).
In a similar manner, embryonic fibroblasts from heterozygous
knock-in (KI) mice carrying the mutation R465W exhibited no
defects in CME (113). Unlike the heterozygous R465W KI mice,
the homozygous animals displayed impaired receptor-mediated
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Table 1 | Cellular function alterations induced by CNM and CMT mutants.

Cellular process impaired CNM mutations CMT mutations

Intracellular calcium concentration in KI mice myofibers (113) R465W

Protein export from Golgi to plasma membrane in dynamin-2 (114) E368K, R465W D555del3, L570H

Clathrin-mediated endocytosis in:

COS-1 and/or COS-7 cells (95, 112, 115) R465W, R522H, E560K,

S619L/W, V625del, P627H

K558E, K562E

RT4 Schwann cells and NSC-34 motor neurons (116) G358R, G537C, K562E, K559del, L570H

Embryonic fibroblasts from homozygous KI mice (117) R465W

Clathrin-independent endocytosis (114) E368K, R465W D555del3, L570H

Raft-dependent endocytosis (114) E368K, R465W D555del3, L570H

Myelination in dorsal root ganglia (116) G358R, G537C, K559del K562E, K562del, L570H

Demyelination in dorsal root ganglia (116) G358R, K562E

Autophagy and autophagosome maturation (117) R465W

endocytosis, indicating that this mutation differentially impacts
on CME according to the heterozygous or homozygous car-
rier state. In this regard, fibroblasts from patients harboring the
homozygous mutation F379V, the first one linked to a lethal
congenital syndrome, also exhibited dysfunctional endocytosis
(6). In order to compare the effects of dynamin-2 mutations
associated to CNM in a context that mimics the homozygous
and heterozygous states, Schmid and Collaborators (114) estab-
lished stable cell lines from dynamin-2 conditional null mouse
fibroblasts and expressed two CNM-linked dynamin-2 mutants
(E368K and R465W). Cells expressing comparable levels of wild-
type dynamin-2 and the given mutant were selected to evaluate
clathrin-dependent and independent endocytosis, and also vesi-
cle trafficking. The authors showed that none of these mutations
affected CME in the condition that mimics the heterozygous
state; and they were able to fully rescue transferrin uptake in
dynamin-2 KO cells. Nevertheless, all these mutants impaired
clathrin-independent endocytosis of epidermal grow factor recep-
tors and raft-dependent endocytosis of cholera toxin. Further-
more, also in the condition that mimics the heterozygous state,
all the mutants disrupted trafficking of p75/neurotrophin recep-
tor from Golgi to plasma membrane. It seems therefore plausible
that the physiological dysfunctions in CNM patients harboring
heterozygous mutations in dynamin-2 are not a consequence of
defective CME, but other dynamin-2-dependent processes, such
as clathrin-independent endocytosis or vesicle trafficking could
be affected in these conditions.

Regarding the mechanism underlying CMT associated to
dynamin-2 mutations, Sidiropoulos and Co-workers (116) sug-
gested that an impairment of CME in Schwanm cells plays an
important role in the pathogenesis of CMT neuropathy. They
showed that the CMT mutants K562E, G358R, G537C, and L570H,
but not the CNM mutants R465W and E560K, strongly reduced
myelination in dorsal root ganglia explant cultures derived from
heterozygous embryos carrying a dynamin-2 null allele, thus

mimicking the heterozygous state. These CMT mutants also
reduced transferrin internalization in Schwann cells and motor
neurons. Conversely, none of the 11 CNM mutations evaluated
in that work had any effect on transferrin internalization, neither
in Schwann cells nor in motor neurons, suggesting that CMT and
CNM mutations affect different cellular processes.

The aforementioned cellular impairments induced by CNM-
and CMT-mutations, as well as others not previously mentioned,
are summarized in the Table 1.

CONCLUDING REMARKS
The secretory pathway plays a pivotal role in mammalian cell func-
tion. Its disruption underlies many known diseases, such as those
described herein. Dynamin-2 is critical in such mechanisms, as
it regulates Golgi structure and function, cytoskeletal integrity,
vesicle trafficking, and most interestingly, membrane fusion.

In the last 10 years, more than 20 disease-linked mutations
have been reported in the dynamin-2 gene, affecting different
dynamin-mediated cellular processes. Nevertheless, their impact
on neuroendocrine tissues remains obscure. Also elusive are the
mechanisms by which the said mutations affect actin cytoskeleton
dynamics and exocytosis, processes which are dynamin-dependent
and critical in the course of the secretory pathway. The latter opens
an interesting research field that could prove useful to under-
stand the mechanisms involved in the pathogenesis of dynamin-2
disease-related mutations.

Several diseases caused by genetic modifications remain as the
final frontier in medicine, and although pivotal hallmarks such
as the sequencing of the human genome have been attained, we
still have much to learn about the cellular and molecular conse-
quences of diverse gene mutations, specially, those that are com-
mon in many tissues. In this regard, dynamin-2 is a ubiquitous
protein with diverse pleiotropic roles, whose mutations cause
tissue-specific phenotypes. The existence of pertinent cell and
animal models will be extremely useful for better understanding
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how dynamin-2 mutations impact on its properties and related
functions, and consequently in the identification of potential
therapeutic targets.
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