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Pituitary gonadotrophs are a small fraction of the anterior pituitary population, yet they
synthesize gonadotropins: luteinizing (LH) and follicle-stimulating (FSH), essential for game-
togenesis and steroidogenesis. LH is secreted via a regulated pathway while FSH release is
mostly constitutive and controlled by synthesis. Although gonadotrophs fire action poten-
tials spontaneously, the intracellular Ca2+ rises produced do not influence secretion, which
is mainly driven by Gonadotropin-Releasing Hormone (GnRH), a decapeptide synthesized
in the hypothalamus and released in a pulsatile manner into the hypophyseal portal cir-
culation. GnRH binding to G-protein-coupled receptors triggers Ca2+ mobilization from
InsP3-sensitive intracellular pools, generating the global Ca2+ elevations necessary for
secretion. Ca2+ signaling responses to increasing (GnRH) vary in stereotyped fashion
from subthreshold to baseline spiking (oscillatory), to biphasic (spike-oscillatory or spike-
plateau). This progression varies somewhat in gonadotrophs from different species and
biological preparations. Both baseline spiking and biphasic GnRH-induced Ca2+ signals
control LH/FSH synthesis and exocytosis. Estradiol and testosterone regulate gonadotropin
secretion through feedback mechanisms, while FSH synthesis and release are influenced
by activin, inhibin, and follistatin. Adaptation to physiological events like the estrous cycle,
involves changes in GnRH sensitivity and LH/FSH synthesis: in proestrus, estradiol feed-
back regulation abruptly changes from negative to positive, causing the pre-ovulatory LH
surge. Similarly, when testosterone levels drop after orquiectomy the lack of negative feed-
back on pituitary and hypothalamus boosts both GnRH and LH secretion, gonadotrophs
GnRH sensitivity increases, and Ca2+ signaling patterns change. In addition, gonadotrophs
proliferate and grow. These plastic changes denote a more vigorous functional adaptation
in response to an extraordinary functional demand.

Keywords: pituitary, gonadotrophs, calcium, gonadotropins, GnRH, secretion

GONADOTROPHS FUNCTION AND CHARACTERISTICS
The reproductive function and sexual maturation is under the
control of the hypothalamic-pituitary-gonadal axis. Pituitary
gonadotrophs, which constitute 7–15% of the anterior pitu-
itary gland secrete two dimeric glycoproteins, gonadotropins,
luteinizing (LH) and follicle-stimulating (FSH) hormones that
play an essential role in the control of steroidogenesis, game-
togenesis, and ovulation (1). The regulation of their synthesis
and secretion are under control of hypothalamic stimulation
(gonadotropin-releasing hormone; GnRH), gonadal sex steroids
(estradiol, progesterone, testosterone) and peptides (inhibins),
and paracrine factors (inhibins, activins, and follistatin). The
pituitary gland must adapt to different physiological changes
from prepubertal to mature sexual life, therefore gonadotrophs
plasticity and gonadotropins secretion are essential to produce
the changes needed in different situations, for example the
rapid daily hormonal variations along the reproductive female
cycle. Integration of the different regulatory signals by the
gonadotrophs results in the coordinated control of synthesis, pack-
aging, and differential secretion of gonadotropins to accurately

respond and control sexual maturation and normal reproductive
function.

Immunocytochemical studies have demonstrated the presence
of bihormonal (70%) and monohormonal (15%) gonadotrophs
whose percentage shifts under different physiological conditions,
such as castration or estrous cycle (2). LH and FSH have a com-
mon alpha (α) and distinct beta (β) subunit. After its synthesis
in the endoplasmic reticulum (ER) and its passage trough the
Golgi apparatus, hormones are delivered to the plasma mem-
brane trough a constitutively or regulated secretory pathway;
in the latter, fusion of secretory vesicles to the plasma mem-
brane is arrested waiting for specific signals to be secreted.
Gonadotropin synthesis and secretion diverges under a range
of physiological and experimental conditions (3), indicating that
GnRH and other regulators of gonadotropins selectively activate
this pathways.

Exocytosis in excitable cells is a process highly dependent of
intracellular calcium concentration ([Ca2+]i) rise, gonadotrophs
as other pituitary endocrine cells display spontaneous intracellular
Ca2+ transients in dependence of changes in the membrane
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electrical activity. However, this membrane potential oscillations
are small and do not produce the necessary [Ca2+]i increase to
generate hormonal secretion (4, 5), as a result, basal secretion is
low and not affected by extracellular Ca2+ (4, 6). In both cases,
the principal regulation is done by GnRH, a decapeptide that is
synthesized in the hypothalamus, stored in axon terminals in the
median eminence, and released in a pulsatile manner into the
hypophyseal portal circulation (7). Numerous studies have shown
that isolated gonadotrophs in primary culture (and more recently,
also gonadotrophs in situ) present robust and stereotyped dose-
dependent intracellular Ca2+ signals in response to suprathreshold
concentrations of GnRH (8–11), the rise produced in cytosolic
[Ca2+] triggers gonadotropins exocytosis and synthesis.

Understanding the origin and meaning of these intracellular
Ca2+ signals are essential to the knowledge of the physiology of
normal reproduction, as well as reproductive function disorders.
This review outlines different regulators of the gonadotrophs biol-
ogy with special regard in the recent progress on GnRH-induced
Ca2+ signaling and secretion in pituitary gonadotrophs, both at
the cellular and tissue level.

Ca2+ SIGNALS INDUCED BY GnRH AND OTHER
SECRETAGOGUES
In order to mediate multiple effects such as secretion, synthe-
sis, and phenotype maintenance, the GnRH variants in different

species interact with their receptor (GnRHR), which is a mem-
ber of the rhodopsin-like G-protein-coupled receptors (GPCR)
superfamily (12). Upon GnRH binding to the GnRHRs in the
gonadotroph membrane, the α subunit of the Gq/11 protein
dissociates and activates phospholipase C (PLC-β), resulting in
the rapid hydrolysis of phosphatidylinositol 4, 5-biphosphate
(PIP2) and the production of two second messengers: diacylglyc-
erol (DAG) and inositol 1,4,5-trisphosphate (InsP3); long lasting
GnRH stimulation (∼5–10 min) could also activate phospholipase
D (PLD) and phospholipase A2 (PLA2) (12). InsP3 generates Ca2+

mobilization from intracellular pools, and DAG triggers protein
kinase C (PKC) activation which in turn reduces depolarization-
mediated Ca2+ influx, while increasing gonadotropin secretion
(13) (Figure 1). PKC sensitizes the secretory machinery to Ca2+

(14), which explain why GnRH application is more effective to
induce secretion than membrane depolarization or caged Ca2+

photolysis (5). PKC activation is also involved in other exocytosis-
associated processes, like GnRH self-priming and cytoskeletal
rearrangement (3).

In the lumen of the ER, [Ca2+] is maintained higher (between
10 and 250 µM free) than in the cytosol (50–250 nM) by the
pumping activity of the sarco-ER Ca2+ATPase (SERCA) located in
the ER membrane (15). This membrane holds intracellular chan-
nel that allow Ca2+ efflux from the ER down its concentration
gradient; the InsP3 receptor (InsP3R), a ligand-gated Ca2+ channel

FIGURE 1 | Schematic representation of a gonadotroph illustrating the
main control pathways of gonadotropin synthesis and secretion.
GnRH, gonadotropin-releasing hormone; Gq, protein Gq/11; PLCβ,
phospholipase C; PIP2, phosphatidylinositol 4,5 bisphosphate; DAG,
diacylglycerol; IP3, inositol 1,4,5-trisphosphate; PKC, protein kinase C;
VGCC, voltage-gated calcium channels; CaMKII, calcium calmodulin type II

kinase; RE pump, endoplasmic reticulum Ca2+ pump; PM pump, plasma
membrane Ca2+ pump; SK, small conductance calcium-activated potassium
channels; P, progesterone; PR, progesterone receptor; E, estradiol; ERα,
estrogen receptor α; T, testosterone; AR, androgen receptor; Raf,
serine/threonine kinase; MEK, mitogen-activated protein kinase; ERK,
extracellular-signal-regulated kinases.
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that opens after InsP3 binding (16). Besides InsP3 binding, Ca2+

interaction with high-affinity (activation) sites on the cytoplas-
mic side of the InsP3R is essential for channel opening. In fact,
Ca2+ and InsP3 operate as co-agonists. Ca2+ signal amplifica-
tion and spreading phenomena, involving assemblies of InsP3Rs
originate from this synergistic role of Ca2+ (17). The large and
abrupt [Ca2+]i increase, triggered by InsP3Rs activation results
from the combination of Ca2+ released and its amplification by
Ca2+ induced Ca2+ release [CICR; (18)]. Even if cytosolic InsP3

remains high,Ca2+ efflux often ceases because Ca2+ binds to a low-
affinity (inactivating) site of the receptor, which closes the InsP3R
channel. This occurs when cytosolic Ca2+ close to the InsP3Rs
is high, i.e., after an episode of fast release. As in most pituitary
cells, agonist stimulation in gonadotrophs produce a [Ca2+]i peak
which decays to sustained Ca2+ level (plateau phase). At interme-
diate GnRH concentration the initial Ca2+ spike is often followed
by large [Ca2+]i oscillations resulting from opening and closing
cycles of the InsP3R channels as a consequence of [Ca2+]i fluctu-
ations near its cytoplasmic side (19). The frequency of these Ca2+

oscillations is determined by the dose of GnRH applied and the
intracellular (InsP3) reached (20) (Figure 1).

Gonadotropin-releasing hormone-induced [Ca2+]i oscilla-
tions can be reproduced with mathematical models that include
a Ca2+ gradient between the ER lumen and the cytosol main-
tained by a SERCA Ca2+ pump, Ca2+ influx trough voltage-gated
Ca2+ channels, and InsP3R channels co-activated by InsP3 and low
[Ca2+]i, and inactivated by high [Ca2+]i (8, 15, 21, 22). Nonethe-
less, Ca2+ oscillations in real cells requires the precise coordination
of Ca2+ mobilization/uptake/extrusion mechanisms, it is for it
that immortalized gonadotroph cell lines αT3–1 (21) and LβT2
(23) are not good cell models for studies on GnRH-induced cal-
cium signaling and modulation of voltage-gated calcium influx, as
well as goldfish (24, 25) and immature mammalian gonadotrophs,
since these cells respond to GnRH with non-oscillatory amplitude-
modulated Ca2+ signals. When SERCA pumps in gonadotrophs
are blocked by thapsigargin, the agonist-induced Ca2+ oscillations
become non-oscillatory biphasic responses (8, 26). Therefore dif-
ferent factors, i.e., the amount and speed of InsP3 production, the
total number of InsP3R channels available for activation, the rate
of Ca2+ leakage from the store and the efficiency of the SERCA
Ca2+ pump vary from cell to cell, and they ultimately determine
the characteristics of gonadotrophs Ca2+ signaling patterns. It is
important to note that the oscillatory behavior is intrinsic to the
Ca2+ handling properties of gonadotrophs (17).

Gonadotropin-releasing hormone produces Ca2+ oscillations:
i.e., large Ca2+ spikes, arising from a flat baseline as well as
smaller sinusoidal Ca2+ oscillations superimposed on an elevated
plateau. Under sustained GnRH stimulation, the amplitude of
these Ca2+ spikes gradually diminishes, probably due to intra-
cellular Ca2+ pool depletion, until a “plateau” without oscillations
is reached. Ca2+ influx through voltage-gated Ca2+ channels is
essential to maintain this plateau, and also for the replenishment
of intracellular Ca2+ pools. GnRH induces continuous AP fir-
ing periodically interrupted by hyperpolarizations, which occur
in phase with each Ca2+ elevation, and resulting from the open-
ing of Ca2+ dependent SK-type K+ channels (6, 27). Immedi-
ately after each hyperpolarization, the cell fires a burst of APs,
which open Ca2+ channels allowing Ca2+ influx, predominantly

high-voltage – activated L-type calcium channels. This Ca2+ entry
does not contribute to Ca2+ elevation or gonadotropin secre-
tion, but is crucial for refilling the intracellular Ca2+ pools (20)
(Figure 1).

Oscillatory Ca2+ signals in gonadotrophs can also be elicited
by endothelin (ET) (28, 29), pituitary adenylate cyclase-activating
polypeptide, (PACAP) (30), and substance P (SP) (31). Conversely,
neuropeptide Y (NPY) and melatonin, in neonatal gonadotrophs,
inhibit GnRH-induced Ca2+ signals and gonadotropin secretion.
Lactotrophs, gonadotrophs, and somatotrophs produce ETs, and
gonadotrophs express ET receptors (32) under the control of
ovarian steroid hormones, suggesting a paracrine function. ET
binding, leads to Gq/11 activation, intracellular Ca2+ fluctuations,
and gonadotropin secretion (29). SP, which is a weaker agonist
than GnRH, produces amplitude-modulated [Ca2+]i responses
and secretion in gonadotrophs (31), being the first phase of secre-
tion dependent of intracellular Ca2+ release, and the second
phase Ca2+ influx-dependent. The hypothalamic factor PACAP
which stimulates cAMP production and potentiates gonadotropin
release (33), also induces Ca2+ oscillations in rat gonadotrophs
through activation of PVR1, a G-protein-coupled receptor and
InsP3 production (30). The activation of coupled Gi/o mela-
tonin receptors MT1 and MT2, expressed in gonadotrophs only
at neonatal stage, inhibits both calcium influx through voltage-
gated calcium channels and calcium mobilization from intracel-
lular stores, decreasing intracellular cAMP production and pro-
tein kinase A (PKA) activity, with a consequent diminution on
gonadotropin secretion (34–36); tonic melatonin inhibition of
immature gonadotrophs prevents premature initiation of puberty.
NPY inhibits GnRH-induced Ca2+ signaling and LH release (37);
its receptors Y1 and Y5 expression on gonadotrophs is regulated
by estrogens (38).

Ca2+ SIGNALING PATTERNS AND SECRETION IN
GONADOTROPHS IS DEPENDENT ON GnRH
CONCENTRATION
Dissociated pituitary gonadotrophs respond to increasing doses
of GnRH with a stereotyped progression of intracellular Ca2+

signaling: i.e., subthreshold GnRH concentrations produce either
small monophasic Ca2+ transients or irregular, small Ca2+ spikes.
With higher GnRH concentrations (0.1–10 nM) regular, oscilla-
tory, frequency-modulated, large Ca2+ transients (baseline Ca2+

spiking) are produced. Eventually (∼50–100 nM GnRH), these
Ca2+ spikes fuse into an amplitude-modulated biphasic Ca2+

response (9, 10, 39) which comprises two variants; biphasic oscil-
latory and biphasic non-oscillatory, also known as spike-plateau
(40). It is reasonable to assume that different Ca2+ release pat-
terns observed with increasing doses of GnRH underlie the dose-
dependent increase of gonadotropin secretion. Nonetheless, it has
also been suggested that these patterns encode other cell func-
tions. For instance, spike-plateau Ca2+ responses were associated
to LH secretion and oscillatory Ca2+ responses to the synthesis of
LH β-subunits (9). Later, it was established that GnRH-induced
Ca2+ oscillations trigger exocytosis (41) and that both oscilla-
tory and spike-plateau Ca2+ signals can initiate LH release (10,
40). Furthermore, gonadotrophs do not respond in the same
way to the secretagogue: i.e., individual cells can respond with
different patterns of activity to the same GnRH concentration
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(40). Conversely, when the same dose of GnRH is applied repeti-
tively, individual cells respond with similar latency and signaling
pattern (11). It remains to be established which cellular aspects
determine the Ca2+ signals displayed by individual gonadotrophs
in response to GnRH and how these different patterns affect
gonadotropin synthesis and secretion. Moreover, LH and FSH
are secreted through parallel pathways (see below) and hormones
that alter their synthesis, release, and/or storage can dynamically
regulate their output.

GONADOTROPIN EXOCYTOSIS. CONTRIBUTION OF
VGCC-MEDIATED Ca2+ INFLUX AND INTRACELLULAR Ca2+

RELEASE
A rise in [Ca2+]i is the key signal to trigger regulated exocytosis
in neuronal and endocrine tissues. Endocrine cell models used to
study the role of Ca2+ in exocytosis include adrenal chromaffin
and PC12 cells (42–46), pancreatic β cells (47–49), and pituitary
cells (6, 50). Cytosolic Ca2+ levels regulate several maturation steps
that secretory vesicles must undergo prior to fusion, like priming
of secretory vesicles (51). An entirely different phenomena occurs
when [Ca2+]i rises abruptly, promoting the fusion of docked secre-
tory vesicles with the plasma membrane (47, 52). In contrast to
nerve synapses, where Ca2+ influx is primarily responsible for this
abrupt [Ca2+]i rise, exocytosis in endocrine cells is triggered to a
large extent by Ca2+ released from intracellular stores (17, 53).

Ca2+ controls the fusion of secretory vesicles with the plasma
membrane to release neurotransmitters and hormones when is
needed [regulated exocytosis, (51)]. The first phase of GnRH-
induced exocytosis in gonadotrophs is mediated by InsP3-sensitive
Ca2+ pools, while the second “plateau” phase of secretion involves
voltage-gated Ca2+ influx (54). GnRH-InsP3 induced Ca2+ oscil-
lations produce much greater exocytosis than the simple general
rise in [Ca2+]i induced by micropipette injection or uncaging
[Ca2+]i (5, 41). This suggests that in contrast with other pituitary
cell types, the formation of sub-plasmalemmal microdomains
of high Ca2+ in gonadotrophs is insufficient to induce vesicu-
lar fusion. Instead large Ca2+ signals that propagate across the
entire cell are needed to accomplish this task (6). Exocytosis
can be directly monitored electrically as changes in membrane
capacitance due to the addition of new plasma membrane. Using
capacitance measurements, exocytosis is detected in gonadotrophs
whenever [Ca2+] rises above 300 nM (55), but for strong exocy-
tosis high [Ca2+]i with half maximal concentration of 16 µM are
required (6). When the responses induced by GnRH are oscilla-
tory, step increases in membrane capacitance can be seen in each
Ca2+ spike (40, 41, 55). The first Ca2+ oscillations elicit the largest
exocytosis events, returning to full capacity within about 2 min
(5). GnRH-induced secretion continues in the absence of external
Ca2+, but ceases when [Ca2+] rises are blocked by the introduction
of a strong intracellular Ca2+ buffer (41).

Secretory granules must undergo a well-defined series of events:
(1) recruitment, (2) tethering at the plasma membrane, (3) prim-
ing, and (4) vesicle fusion with the plasma membrane. Regulated
hormone secretion is a Ca2+-dependent exocytosis that uses the
secretory vesicle synaptotagmin as the Ca2+ sensor and is medi-
ated by SNARE (soluble N -ethylmaleimide-sensitive factor attach-
ment protein receptors) proteins as effectors. Syntaxin, SNAP25

(synaptosome-associated protein of 25 kDa in molecular weight),
and synaptobrevin (vesicle-associated membrane protein, VAMP,
also termed vSNARE) constitute SNARE proteins. Syntaxin and
SNAP25 (also known as “target” tSNAREs) are the plasma mem-
brane proteins to whichVAMP couples (Figure 1). Then, vSNAREs
and tSNAREs form trans-SNARE complexes, which join secretory
vesicles and plasma membrane (56–58). Vesicle priming, another
Ca2+-dependent step in exocytosis probably involves early SNARE
complex formation (particularly tSNARE), before its association
to the trans-SNAREs. Finally, synaptotagmin detects the [Ca2+]
elevation and provides the extra drive needed to overcome the
energy barrier of lipid-to-lipid interaction, allowing membrane
fusion (58). The use of high-resolution microscopy techniques
have allowed to demonstrate in PC12 cells that tSNARE mole-
cules are distributed on the plasma membrane in areas of low and
high density, and in contrast to current models of SNARE-driven
membrane fusion (59), this data suggest that secretory vesicles
are targeted over areas of low tSNARE density as sites of docking,
hence a relatively low number of tSNAREs close to the secretory
vesicle (less than seven) are sufficient to drive membrane fusion.
Moreover, using atomic forces microscopy and scanning elec-
tron microscopy it has been described that gonadotrophs mainly
present “single and simple fusion pore” with diameter ranging
from 100 to 500 nm, which appear more frequently after stimu-
lation with GnRH; this pore configuration supports the idea of a
“kiss and stay” mechanism for the exocytosis process (60), in addi-
tion pores of 20–40 nm diameter have also been found, probably
representing the constitutive pathway of gonadotropins (60).

FSH AND LH DIFFERENTIAL SECRETION UNDER
PHYSIOLOGICAL CONDITIONS
Along the follicular phase of the estrus cycle, LH secretion is max-
imal while FSH secretion is reduced; even though gonadotrophs
secrete both hormones, the mechanisms underlying this differen-
tial release are unclear. FSH appears to be released mostly through
the constitutive pathway in accordance to its rate of synthesis.
Conversely, LH-containing granules are released through the reg-
ulated pathway in response to GnRH,with no effect on LHβ mRNA
production (61). Moreover, LH and FSH appear to be packaged
into different secretory granules (62). Large, moderately electron-
dense granules show antigenicity for FSH, LH, and chromogranin
A (CgA), while smaller, electron-dense storage granules released
by GnRH contain LH and secretogranin II (SgII) (3); thereby pro-
tein sorting domains in the β subunit of gonadotropins and the
association with certain proteins may be responsible for differen-
tial sorting and packaging of LH and FSH into different secretory
granules (3). The movement of these granules toward the mem-
brane defining a secretory pathway and differential exocytosis
could explain the disparity on the gonadotropins secretion (63).
Accordingly, in LβT2 mouse cells, FSH released in response to
activin/GnRH is constitutively secreted via a granin-independent
pathway; while LH is released in response to GnRH is co-released
with SgII via a regulated, granin-dependent pathway (64).

Gonadotropin subunits (α-GSU, FSHβ, and LHβ) mRNAs
levels, which reflect changes in gene transcription in pituitary
gonadotrophs, are GnRH pulse frequency modulated (65–
67). GnRH pulses (30–60 min interval), preferentially increases
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synthesis and secretion of LH by the mediation of the transcription
factor Egr-1 (68–71); whereas slower GnRH pulsing (120–240 min
interval) favors FSH secretion (65–67, 72) by the activation of
PKA (73–75). There is no a definitive explanation to how GnRH
pulses can activate in a different manner gonadotropin subunit
gene transcription; nevertheless several routes have been pro-
posed which may contribute to this regulation; one is through
the increase on Ca2+ levels and PKC activation, which as a conse-
quence activated mitogen-activated protein kinase (MAPK) cas-
cade, culminating in an activation of extracellular-signal-regulated
kinase (ERK) 1/2, cJun NH2-terminale kinase (JNK), p38 MAPK,
and ERK 5 (76–80), it is also believe that the rise in [Ca2+]i,
activates a calcium/calmodulin-dependent kinase II (CAMK2),
whose autophosphorylation could be important in transmitting
Ca2+ pulse frequency and amplitude signals, as fast and high-
amplitude Ca2+ influxes, which results in greater and/or sustained
Ca2+/CALM1 levels (79, 81) (Figure 1). GnRH pulses at lower
frequency selectively increase the expression of PACAP and its
receptor (PAC1-R) in gonadotrophs (82), where they subsequently
stimulate the synthesis of gonadotropin subunits (83).

Gonadotropin-releasing hormone-induced LH and FSH syn-
thesis and secretion are modulated by steroid hormones, such
as estrogen, progesterone, and testosterone, in addition to pep-
tide hormones, such as activin, inhibin, and follistatin (Figures 1
and 2). This modulation occurs principally through gonadal feed-
back at the pituitary and hypothalamus level (84–86). During

most part of the female reproductive cycle and in males, pulsatile
GnRH release drives tonic gonadotropin secretion (84, 87) while
steroids and inhibins provide negative feedback to limit further
gonadotropin stimulation and maintaining low circulating levels
of gonadotropins; in females, this happens until the pre-ovulatory
surge when, in response to low levels of progesterone (88) and an
increase in estrogen, feedback switches to positive (89), produc-
ing changes on GnRHergic neurons (90) and gonadotrophs (91),
which results in increased LH and FSH secretion (Figure 2). In
some female species a secondary FSH surge occurs after ovulation
when LH levels are already low, this rise produces the recruitment
of the next cohort of follicles and it is GnRH independent (92) and
more likely depends on the reduction of circulating inhibin (93).

Estradiol (E) exerts a direct action at the pituitary level through
its α-receptor (94–97), increasing gonadotroph responsiveness to
GnRH (98–100) raising synthesis and insertion of GnRH receptor
into gonadotroph membrane (86, 91, 101–104) and decreasing the
concentration of GnRH needed to produce the threshold response
and frequency of Ca2+ spiking (101, 105, 106). Nevertheless,
these actions seems to be and indirect action that depends of the
increased expression produced by GnRH on its own receptor (101,
103, 107–109). Besides these changes, during the gonadotropin
surge, the pituitary gland shows cellular modifications, imply-
ing an augmentation on the number of secreting gonadotrophs
(98, 104) and hypertrophy and re-organization of its intracellular
organelles (110–112). However, it has been documented that

FIGURE 2 | Representation of the hypothalamus-pituitary-gonadal axis, positive and negatives feedback loops and products are illustrated.
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E can act to suppress the transcriptional rate of LH subunit
genes. Controversial results have been reported for FSHβ synthe-
sis (113–117), although serum levels of both hormones increased
markedly.

Progesterone (P) exerts some of its effects at hypothalamic
level, decreasing GnRH secretion and pulse frequency (91, 103)
contributing to the abrupt decline in gonadotropin levels. P does
not inhibit LH secretion induced by GnRH (100, 118) but it can
stimulate murine FSHβ promoter activity alone or in synergy
with activins (103). In dependence with the time of exposition,
P can either inhibit or facilitate the estrogen-induced LH surge
during the rat estrous cycle (100, 103, 119). P modulates the E
effect on GnRH production of LH surge by the modulation of
Ca2+ mobilization and Ca2+ entry to gonadotrophs. In E-primed
cells P alters the intracellular Ca2+ signaling patterns produced by
GnRH. In the short-term P treatment shifts subthreshold [Ca2+]i

responses to oscillatory, and oscillatory to biphasic responses; in
contrast, long-term P exposure led to decreased GnRH sensitivity,
changing oscillatory response into subthreshold [Ca2+]i response
profiles (105, 106).

Androgens [testosterone (T) and 5α-dihydrotestosterone
(DHT)] are important component of the male gonadal feedback
and they act either at the hypothalamic level by regulating the
secretion of GnRH into the hypophyseal portal circulation (120–
122), directly at the pituitary level (99) or by the combination of
both sites (123) (Figure 2).

At hypothalamic level,T reduce GnRH synthesis (122,124–127)
and pulsatile patterns of GnRH release (128–131). At pituitary
level, it is known that testosterone and more dramatically DHT
inhibits LH synthesis and GnRH-induced LH secretion in a con-
centration and time dependent manner (132–137), but increase
basal FSH secretion and synthesis (138, 139). In castrated rats it
has been shown that LH secretion increase (140, 141) as well as
gonadotrophs size and number (140, 142, 143). These hypertro-
phied cells are called castration cells (144–146), and they present
a dilated rough ER and an extended Golgi complex (147, 148). On
these cells, the secretion granules content are progressively dimin-
ished (149) and their cisternae fused to form large vacuoles that
originated the typical “signet ring cell” (148, 150, 151).

It is widely accepted that in gonadotrophs an increase in [Ca2+]i

is essential for the transduction of GnRH signal; T but specially
DHT regulate GnRH-induced [Ca2+]i variations (152) changing
the type of calcium patterns (153), these effects are not seen in all
species (145) and it could be related with the influence of this hor-
mone on the regulation of the GnRH receptor density (154–156)
and the change in their sensitivity to the GnRH stimulus (134).

Tobin and collaborators (153) demonstrated that in cultured
gonadotrophs of gonadectomized male rats, the relationship
between GnRH concentration and the type of intracellular Ca2+

response is altered, most gonadotrophs (∼70%) show oscillatory
responses regardless of the GnRH concentration. Correlated with
this results it has been demonstrated that in T or DHT treated
cells, there is an inhibition of the GnRH increase in [Ca2+]i; at
low GnRH doses (0.1 nM) 30% of gonadotrophs were unable to
initiated threshold spiking and in the residual cells the frequency
of oscillations decreased, as in controls, androgen treated cells,
respond with a spike-plateau type of signal to 1 nM GnRH, but

the frequency of spiking was also reduced (134, 152). Finally at
high dose GnRH (100 nM) induce biphasic elevations of [Ca2+]i

with a minor reduction in the amplitude (134). Testosterone
inhibits both phases of GnRH-stimulated LH secretory responses,
the early extracellular Ca2+-independent spike phase and the
sustained Ca2+ and extracellular Ca2+-dependent plateau phase
(134). These results suggest that androgens act on the efficacy of
the agonist to release Ca2+, leading to a decrease in the secretory
output.

As it has been previously established, secretion of FSH and LH
are not co-ordinately regulated, their discordant regulation must
be related to differential intracellular responses to several stimuli,
factors as activins, inhibins, and follistatin, may play a key role
on establishing such differences. In this regard, activins which are
produced in a variety of tissues, including gonadotrophs, stimu-
lates FSHβ transcription (132, 157–159) and enhance its sensitivity
to GnRH by up-regulation of the GnRH receptor expression (92,
160). Contrary, inhibins which are produced in Sertoli and gran-
ulosa cells as well as in gonadotrophs (161), have been shown
to rapidly reduce FSHβ synthesis and secretion independently of
GnRH (162), by binding to activin receptors on gonadotrophs
preventing the assembly of active signaling complexes (92).

Follistatins, which are glycoprotein ubiquitously expressed
(including gonadotrophs and follicle stellated cells) bind to
activins with high-affinity modulating its actions (92, 132, 160,
163). Activin and follistatin function in a reciprocal feedback loop
altering their secretion, internalization, and degradation (92, 114,
160, 163), modifying the rise and fall of biosynthesis and secretion
across the reproductive cycle (160, 163).

One mechanism that contributes to differential FSH and
LH production may be related to the observation that differ-
ent patterns of GnRH pulses produce differential effects on
inhibin/activin and follistatin mRNA levels (160). Estrogen, prog-
esterone, testosterone, inhibin, activin, follistatin, and hypothala-
mic GnRH, may combine to distinct regulate LH and FSH during
the reproductive cycle (97).

GONADOTROPHS ACTIVITY AT THE TISSUE LEVEL
Endocrine cells are organized in three-dimensional networks,
which facilitate the coordination of the activity of thousands of
individual cells to respond to different regulation factors and
achieve hormone output (164, 165). The magnitude of the hor-
mone pulses into the systemic circulation is apparently not just the
simple addition of the individual endocrine activity, instead, bio-
physical and biochemical interactions in the whole tissue must be
essential for in vivo organization. However, as it has been described
in this and other works, most of the studies have been done in indi-
vidual cell activity where this networks and relations are disrupted,
due to methodological difficulties, just few recently approaches
has been done in the understanding of the endocrine activity in a
tissue context.

In this regard, the distribution of gonadotrophs in fixed
and live slices at different female reproductive stages has been
analyzed (166). Across different physiological stages, pituitary
gonadotrophs shows changes in their distribution within the gland
and in response to GnRH stimulation (166), this might represent
and adaptation to better respond at different conditions.
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The possibility of changes in gonadotrophs activity within its
tissue context and physiological conditions was recently addressed
using Ca2+ imaging in male mouse acute pituitary slices (11,
145). Cells in this preparation are amenable to functional stud-
ies in their native environment. We showed that rather than a
constant number of gonadotrophs responding to GnRH stimu-
lus, the number of responding cells grew with increasing GnRH
concentration (GnRH), and in general, gonadotrophs Ca2+ sig-
naling resembled that recorded in primary cultures (11, 145).
However, Ca2+ imaging in acute mouse pituitary slices revealed
Ca2+ signaling patterns unique to in situ conditions,gonadotrophs
(58%) under increasing doses of GnRH stimulation exhibited a
progression of Ca2+ signaling patterns termed “non-canonical”
[i.e., oscillatory responses at a given (GnRH) and transient
responses at both lower and higher concentrations as described
before in this review; Figure 3], and some of them (3.6%) even
showed atypical (non-oscillatory) responses, regardless of the
(GnRH) used (145). Furthermore, responses to a given dose of
GnRH varied considerably from one cell to another, reflecting
a range of dose-response properties in the in situ gonadotroph
population.

As it has been described in this review, following the removal of
the gonads, the population of pituitary gonadotrophs undergoes
drastic functional and morphological modifications concomi-
tantly with the large (five to sixfold) increase in gonadotropin
secretion that characterizes this condition (123, 154, 167, 168)
some changes as amplitude and frequency of GnRH-induced Ca2+

signaling has been reported in dissociated cells (10) and there
is no difference with respect of what it has been reported in
acute pituitary slices from 15 and 45 days castrated male mice
(GnX) (145). Nevertheless, other characteristics on the intra-
cellular Ca2+ signaling appear to be different; gonadotrophs
of pituitary slices from GnX responding with “non-canonical”
sequences of Ca2+ signaling (described earlier in this review) to
increasing GnRH were significantly augmented (80% of GnRH
responding gonadotrophs) and “canonical” sequences were signif-
icantly reduced (145) (Figure 3), indicating that probably this
sequences of Ca2+ signaling in response to GnRH are modu-
lated by paracrine and systemic factors as testosterone, allow-
ing gonadotrophs to adapt to different physiological require-
ments. Additionally, median effective dose (ED50) for GnRH
decreased from 0.17 nM (control) to 0.07 nM after GnX, sug-
gesting an increased GnRH responsiveness of the gonadotroph
population (145). Different sizes of gonadotrophs are present
in intact mice pituitary gland, most gonadotrophs (97%) were
smaller than 60 µm2 with a mean of 31.3± 0.6 µm2 in area and
even if large interindividual variation on the peak amplitude
of Ca2+ transients (Max DF) was seen, no matter the size of
the cell, they generated intracellular Ca2+ signals smaller than
40 fluorescence arbitrary units (a.u.) poorly correlated with the
cell size (Figure 4). By contrast it is reported that 15-day cas-
trated male mouse pituitary gonadotrophs, whose size increase
to a mean of 54.4± 1.24 µm2 and 26% of cells larger than
60 µm2 present less variation on the Ca2+ peak amplitude and
significantly higher correlation of this with the cell size (i.e.,
hypertrophied gonadotrophs tended to generate Ca2+ signals

FIGURE 3 | Percentage of gonadotrophs that display different
GnRH dose-response intracellular Ca2+ signaling patterns rises
in response to increasing GnRH: canonical ([Ca2+]i oscillations
of increasing frequency at low-medium GnRH concentration
and spike-plateau at saturating GnRH concentration),
non-canonical (disordered sequence of oscillatory and
spike-plateau [Ca2+]i signals in response to increasing GnRH
concentrations), and atypical (non-oscillatory, transient [Ca2+]i);
open bars represent data from intact mice and black bars those
of castrated mice after 15 post-GnX. After orchidectomy,
non-canonical responses increased, while the fraction of cells with
canonical responses declined. Differences between intact and
post-GnX, for both canonical and non-canonical responses are
significant. *p < 0.05 versus the control (two way ANOVA with
Bonferroni post hoc test). Parts of this figure were originally
published in Durán-Pastén et al., (145).

of greater amplitude) (145) (Figure 4), suggesting that in this
condition, Ca2+ peak amplitude correlated with cell size, and
that hypertrophied gonadotrophs tended to produce stronger
GnRH-induced Ca2+ signals.

Functional adaptation of the gonadotrophs in the pituitary
gland to different external and internal conditions may involucrate
not just alterations in cell number, size, and morphology, as
it has been considered for many years, recent methodological
techniques allowed us to understand that it is a more com-
plicated process that involucrates different aspects at the cellu-
lar physiology level but in coordination with the whole tissue
environment.
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FIGURE 4 | Graphs illustrating the relation between gonadotrophs
area size versus the peak amplitude of GnRH-induced Ca2+

transients. Fluo-4 fluorescence images of 100 nM GnRH responding
gonadotrophs (dashed lines) in intact (A) and 15 days post-GnX (B) mice
pituitary slice, arrows pointed bigger gonadotrophs. (C,D) shows the
relationship between [Ca2+]i transients peak amplitude (Max DF) and

cell area (Mean±SE). (C) Intact (n= 6) and (D) 15 days post-GnX (n= 6)
mice pituitary slices are represented; dashed line represent the
confidence interval. (C) y =−0.11*± 0.11x+31.1±5.1, R2 =0.15,
p > 0.05, Pearson r =0.38, p > 0.05 and (D) y = 0.16*±
0.02x+17.88±2.3, R2 =0.73, p < 0.05, Pearson r =0.85, p < 0.05.
Parts of this figure were originally published in Durán-Pastén et al., (145).
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