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Although much has been learned concerning the mechanisms of secretory vesicle forma-
tion and fusion at donor and acceptor membrane compartments, relatively little attention
has been paid toward understanding how cells maintain a homeostatic membrane balance
through vesicular trafficking. In neurons and neuroendocrine cells, release of neurotrans-
mitters, neuropeptides, and hormones occurs through calcium-regulated exocytosis at the
plasma membrane. To allow recycling of secretory vesicle components and to preserve
organelles integrity, cells must initiate and regulate compensatory membrane uptake.This
review relates the fate of secretory granule membranes after full fusion exocytosis in
neuroendocrine cells. In particular, we focus on the potential role of lipids in preserving
and sorting secretory granule membranes after exocytosis and we discuss the potential
mechanisms of membrane retrieval.
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INTRODUCTION
Mammalian cells exhibit complex and dynamic patterns of intra-
cellular membrane traffic between various organelles. Although
much has been learned concerning the mechanisms of vesicle
transport and vesicle fusion at donor and acceptor compart-
ments, relatively little attention has been paid to understanding
how organelle homeostasis is maintained. This aspect is particu-
larly important in neurosecretory cells in which intense membrane
trafficking and mixing occurs between secretory vesicles and the
plasma membrane during secretion of various transmitters, pep-
tides, and hormones. Calcium-regulated exocytosis, i.e., fusion of
secretory vesicles with the plasma membrane results in the merg-
ing of these two membrane compartments, hence triggering an
increase in plasma membrane surface and loss of identity. As a con-
sequence, exocytosis must be coupled to a compensatory endocy-
totic process allowing the plasma membrane to recover its integrity
and the granule membrane to be recycled. In neurons, molecular
mechanisms of synaptic vesicle recycling and coupling with exocy-
tosis have been intensively studied, but is still debated [for reviews
see (1–3)]. However, the equivalent process for large dense core
granules in neuroendocrine cells remains largely unexplored.

In neuroendocrine cells, secretion can occur through differ-
ent modes of exocytosis depending on the physiological demand
(see Figure 1 for details). The “kiss-and-run” mode allows only
the release of catecholamines and other small molecules through
a narrow fusion pore (4, 5). During “cavicapture” (granule cavity
capture) mode, expansion of the fusion pore triggers partial release
of the small proteins (6–9). During kiss-and-run and cavicap-
ture processes, the granule shape remains almost intact, whereas
during “full collapse” or “full fusion” exocytosis, granules lose

their round shape, flatten out in the plane of the plasma mem-
brane leading to the merging of these two compartments and the
complete release of the granular content (10–12). Whereas the
molecular mechanisms of the various exocytotic modes (secre-
tory vesicle recruitment, docking, priming, and fusion processes)
have been largely explored, how granule and plasma membranes
maintain their composition and recover their integrity after full
fusion exocytosis is poorly known. Two types of retrieval have been
described after full fusion exocytosis: clathrin-mediated endocyto-
sis and bulk endocytosis. Bulk endocytosis occurs during elevated
secretory activity when clathrin-mediated endocytosis is unable
to fully compensate the large increase in membrane surface. To
rapidly reverse this excess of plasma membrane, bulk endocyto-
sis internalizes large invaginations of plasma membrane, which
then form endosomal-like compartments. Bulk endocytosis has
been described in several reviews (13, 14). Here, we focus on
potential mechanisms that allow neuroendocrine cells to com-
pensate full fusion exocytosis of large dense core vesicles through
clathrin-mediated endocytosis.

THE FATE OF THE SECRETORY GRANULE MEMBRANE AFTER
FUSION
For a long time, it was believed that after full fusion exocy-
tosis vesicular components diffuse into the plasma membrane
and are subsequently randomly internalized. This model implies
that both the secretory vesicle and plasma membranes lose their
identities and that exocytosis is not directly coupled to endo-
cytosis. In contradiction with this model, synaptic activity in
neurons results neither in the overall dispersion of vesicle com-
ponents in the plasma membrane nor in the enrichment of
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FIGURE 1 | Different models of exo-endocytosis coupling in
neuroendocrine cells. Hormone sorting and large dense core granule
biogenesis occurs at the trans-Golgi network. Mature granules either
constitute the reserve pool or are recruited to the plasma membrane as a
readily releasable pool. Large proteins (blue dots), small neuropeptides (black
dots), and small molecules like catecholamines (red dots) can be released
differentially according to the exo-endocytosis mode. During “kiss-and-run”
mode, only small molecules are released through a narrow fusion pore,
whereas cavicapture (granule cavity capture) allow the partial release of small
neuropeptides (7). Note that for these two modes, retrieval of intact granules

is easily conceived as the granule shape remains almost intact. During full
fusion exocytosis, the intra-granular contents are all released and the granule
membrane collapses into the plasma membrane. This membrane incorporation
is compensated by clathrin-mediated endocytosis that specifically retrieves
granule membrane piece by piece [see Figure 2 and (19)]. After uncoating, the
endocytic granule membrane reaches early endosome where granule
components remain clustered (12), before being re-maturated at the Golgi
network. During intense exocytotic activity, bulk endocytosis supports
clathrin-mediated endocytosis by internalizing large plasma membrane
invaginations that most likely follow the lysosomal degradation pathway.

plasma membrane components in synaptic vesicles (2). Similarly,
despite full fusion exocytosis in neuroendocrine cells, granules,
and plasma membranes seem to maintain their specific protein
composition.

Early evidence for exo-endocytosis coupling came from mor-
phological studies in the 80s suggesting that large dense core
granule membrane-bound components could be retrieved after
exocytosis (10, 15). At the same time, Geisow and co-workers
observed an important increase in the number of coated pits con-
taining secretory granule components in secretagogue-stimulated
chromaffin cells (16). Later on patch-clamp and imaging stud-
ies suggested a fast temporal coupling between exocytosis and
endocytosis processes (17, 18).

Using electron microscopy of cultured chromaffin cells, our
group has recently described clustering of secretory granule pro-
teins on the plasma membrane after full fusion exocytosis, arguing
against the idea that granule components are dispersed in the
plasma membrane (12). The group of Holz recently confirmed
that chromaffin granule markers remain associated after fusion

(19). Additionally, we have shown that these granule-bound pro-
teins are subsequently internalized through vesicles devoid of
plasma membrane makers (12). In other words, granule mem-
branes are maintained together as“microdomains”after exocytosis
and are subsequently recaptured without intermixing with the
plasma membrane. How do neuroendocrine cells preserve granule
membrane integrity after full collapse and precisely sort granule
membrane lipids and associated proteins?

LIPIDS AS CENTRAL ORGANIZERS OF EXO-ENDOCYTOSIS
COUPLING?
CREATING MEMBRANE DOMAINS TO PRESERVE GRANULE IDENTITY
The preservation of secretory granule identity after fusion with the
plasma membrane implies that both proteins and lipids do not dif-
fuse in the plasma membrane. Lateral segregation of membrane
lipids would in this case represent an obvious sorting mecha-
nism. Interestingly, we and others have shown that exocytosis
requires several types of lipid remodeling processes (described
in the present “Research Topic” by Amar et al. (28)). Some of
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these processes might contribute to prevent granular compo-
nent from diffusing. For instance, secretagogue-evoked stimu-
lation of chromaffin cells triggers the formation of lipid raft
microdomains at the plasma membrane enriched in ganglio-
side GM1, cholesterol, and phosphatidylinositol 4,5 bisphosphate
[PI(4,5)P2]. Such lipid rafts correspond to membrane areas sta-
bilized by the presence of cholesterol within a liquid-ordered
phase in which lateral diffusion of proteins and lipids is lim-
ited, resulting in the clustering of specific components (20). In
neuroendocrine and various other secretory cells, lipid raft for-
mation is necessary for the spatial organization of the exocy-
totic machinery including SNARE proteins (21–23). As a con-
sequence, it is tempting to imagine that this lipid confinement
at the exocytotic sites would help to prevent granular lipids and
proteins from diffusing after secretory granules fusion with the
plasma membrane.

Of particular interest, the formation of membrane domains
corresponding to exocytotic sites is regulated by annexin-A2 (21,
24), a calcium- and phospholipid-binding protein involved in both
exo- and endocytosis (25). Annexin-A2 has been described on
clathrin-coated vesicles in the adrenal gland (26). The protein dis-
plays two typical YXX∅ endocytic motifs allowing its interaction
with the µ2-subunit of the AP-2 complex that triggers clathrin
recruitment (27). Therefore, annexin-A2 constitutes a strong can-
didate to participate in the coupling of secretory granule exocytosis
with the subsequent compensatory endocytosis.

PI(4,5)P2: ORCHESTRATING EXO-ENDOCYTOSIS COUPLING
Phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] has been largely
described as an important regulator in exocytosis (28, 29)
but it is also known to recruit and regulate multiple compo-
nents involved in clathrin-mediated endocytosis. Therefore, the
PI(4,5)P2-enriched membrane microdomains where exocytosis
occurs is likely to constitute preferential spots for endocytosis,
a perfect way to couple these two processes. For example, inter-
action of the adaptor protein AP-2 with YXX∅ endocytic motifs
is driven by its interaction with PI(4,5)P2 (30). Local PI(4,5)P2

concentration regulates the membrane binding and deforma-
tion capacity of proteins containing Bin/amphiphysin/Rvs (BAR)
domains including endophilin, syndapin, and amphiphysin, three
membrane-deforming scaffold proteins that have been implicated
in endocytotic processes (31, 32). Interestingly, it has been pro-
posed that BAR domains participate in the fission of budding
vesicles by synergistically cooperating with dynamin, a GTPase
also sensitive to PI(4,5)P2 (33). Moreover, in collaboration with
the group of Dr. Cardenas, we have recently demonstrated that
dynamin-2 controls both exocytosis, by regulating fusion pore
expansion, and the subsequent endocytosis of secretory gran-
ules in chromaffin cells (34). Finally, PI(4,5)P2 also regulates the
dynamics of actin filaments, which are believed to limit plasma
membrane protein diffusion and/or to directly participate in endo-
cytosis (35, 36). Accordingly, we have previously demonstrated
that actin filaments are formed at a post-docking step of exocy-
tosis (37) and disruption of actin filament organization inhibits
compensatory endocytosis after full fusion. These data suggest that
actin remodeling is also implicated in the process of internalization
per se (12).

PHOSPHOLIPID SCRAMBLING: A SIGNAL TO TRIGGER COMPENSATORY
ENDOCYTOSIS?
One key feature of cell membranes is the asymmetric distribu-
tion of phospholipids between the leaflets. In the plasma mem-
brane, phosphatidylserine (PS) and phosphatidylethanolamine
(PE) reside in the inner cytoplasmic leaflet while phosphatidyl-
choline and sphingomyelin are located in the outer leaflet (38).
In non-apoptotic cells, several biological functions are accompa-
nied by a disruption of this phospholipid asymmetry resulting
in the externalization of PS in the outer leaflet of the plasma
membrane (39). This phenomenon has been observed during
regulated exocytosis in mast cells (40), nerve terminals (41), and
the neuroendocrine PC12 and chromaffin cells (12, 42, 43). More
recently, we have shown that PS externalization occurs in specific
domains at the frontier between the fused granule membrane and
the plasma membrane and is triggered by the calcium-sensitive
phospholipid scramblase-1 (PLSCR1). Interestingly, in chromaf-
fin cells cultured from PLSCR1 knock-out mice, surface exposure
of PS is not involved in exocytosis, but is required for granule
membrane compensatory endocytosis (44).

To date no current evidence is available to explain the mech-
anism by which PS externalization is linked to compensatory
endocytosis. However, two scenarios are possible. Firstly, as loss
of phospholipid asymmetry can modify the mechanical stabil-
ity of membranes (45), this might facilitates local reorganization
of lipids surrounding the granule membrane transiently inserted
within the plasma membrane and preserve the integrity of the
granule membrane. Secondly, as an anionic phospholipid, PS con-
fers negative charges and directly binds various proteins involved
in exocytosis like annexin-A2, rabphilin, DOC 2, or synaptotagmin
(46). PLSCR1-induced local decrease in PS concentration in the
inner leaflet of the plasma membrane could therefore represent a
signal to switch from exocytosis to endocytosis, thereby permit-
ting the release of exocytotic components and/or the recruitment
of the endocytic machinery.

However, whether externalization of PS simply reflects the loss
of PS asymmetry or reveals more profound lipid reorganization is
basically unknown and requires further investigation.

HOW TO RECAPTURE A LARGE DENSE CORE VESICLE?
In chromaffin cells, we have found that clathrin is rapidly recruited
to the granule membrane right after merging with the plasma
membrane and that knocking-down clathrin expression drasti-
cally blocks compensatory endocytosis (12). The clathrin depen-
dency of large dense core granule endocytosis raises the question
of the mechanism by which a granule displaying a mean diameter
of about 250 nm may be recaptured by a clathrin coat? Energetic
constraints indicate that in vitro clathrin baskets assemble with
a mean diameter of 100 nm or even less (80 nm) in the presence
of adaptor proteins (47). In INS-1 insulinoma cells for exam-
ple, the mean diameter of secretory granule ranges from 110 to
170 nm but the endocytotic events detected by capacitance mea-
surements correspond to vesicles of 70 nm diameter (48). In mouse
chromaffin cells, the average size of endocytic vesicles calculated
from endocytic capacitance step sizes is 122 nm (49). Accordingly,
recent electron microscopy experiments performed on chromaf-
fin cells demonstrated that clathrin-coated vesicles size increases
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FIGURE 2 | Ultrastructural observation of budding vesicle from
exocytotic spots in stimulated chromaffin cells. To stain specifically the
granule membrane fused with plasma membrane, stimulated cells are
incubated in the presence of antibodies raised against the luminal region
of dopamine-beta hydroxylase (DBH), a transmembrane marker of

secretory granules (asterisks). Note that small vesicles budding can be
observed from the DBH antibodies clusters (black arrowhead in enlarged
view) suggesting a partial recapture of the granule membrane. The white
arrowhead shows a granule fusing with the plasma membrane.
Bar = 100 nm.

upon potassium stimulation (mean diameter of 87 nm) compared
to resting cells (19). Altogether, these observations tend to demon-
strate that large granule membranes may be recaptured as small
pieces rather than a whole. Indeed, direct observations of the
internalization of fused granule membranes allowed us to reveal
early endocytotic events corresponding to 50–80 nm coated vesi-
cles budding from granular membrane-bound proteins clusters
(Figure 2).

ENDOCYTIC PATHWAY
The intracellular route followed by the post-exocytotic internal-
ized granules has not been fully characterized. The main differ-
ence with synaptic vesicle recycling is that, to be reused, large
dense core granules need to be reloaded with matrix proteins,
which most likely implies a re-maturation process involving the
Golgi apparatus. The transient accessibility of granule-bound pro-
teins at the cell surface during full fusion exocytosis has been
exploited to label and follow post-fusion granules with specific
antibodies or biotinylation. This approach was widely used in
the 80s in order to demonstrate that granule-bound proteins
transit through the Golgi region before being recycled in newly
mature granules (10, 15, 50, 51). Alternatively, granule markers
have been proposed to be degraded through a lysosomal path-
way (52, 53). Both recycling and degradation pathways coexist
and their proportion may depend on cell secretory activity. The
recycling pathway leading to releasable granules is more predom-
inant upon mild stimulation whereas above a certain threshold
of membrane incorporation during intense exocytotic activity,
the occurrence of bulk endocytosis will lead to the degrada-
tion of the internalized membrane (54, 55). Altogether, these
data do not provide any information concerning the immediate
fate of internalized granule membrane. Our group has observed
that internalized granule-bound markers rapidly co-localize with
the early endosomal marker EEA1, suggesting that chromaffin
granule components might be retrieved through early endo-
somes after regulated exocytosis (12). Since clathrin is likely to
retrieve the collapsed granule membrane as pieces and not as a
whole, the early endosomes might constitute a transient sorting

station that would sort the retrieved pieces to reconstitute a
functional granule prior to entering the retrograde transport
pathway to the TGN. Accordingly, we have observed budding
of the immunogold-labeled DBH clusters present on endosomes
(unpublished data).

CONCLUSION
New evidence is now emerging to support the idea that, in
neuroendocrine cells but also in neurons, vesicle/granule mem-
branes do not intermix with the plasma membrane following full
fusion exocytosis (56, 57). Compensation of membrane incorpo-
ration by endocytosis is a critical process and selective recapture
of secretory organelles is required to maintain cellular home-
ostasis. Resolving the mechanisms that specifically preserve the
granule membrane platform and retain granular components
together after its incorporation in the plasma membrane to is
the next challenging question to answer. Highly resolutive bio-
photonic approaches are now required to precisely investigate the
dynamic behavior of secretory granules merged with the plasma
membrane during and after exocytosis. Lipids clearly play a cen-
tral role in this process, but attention should also be given to
bi-functional proteins regulating both exo- and endocytosis, in
particular annexin, synaptotagmin, and BAR domain-containing
proteins.
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