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Through significant developments and progresses in the last two decades, in vivo localized
nuclear magnetic resonance spectroscopy (MRS) became a method of choice to probe
brain metabolic pathways in a non-invasive way. Beside the measurement of the total
concentration of more than 20 metabolites, 1H MRS can be used to quantify the dynam-
ics of substrate transport across the blood-brain barrier by varying the plasma substrate
level. On the other hand, 13C MRS with the infusion of 13C-enriched substrates enables
the characterization of brain oxidative metabolism and neurotransmission by incorporation
of 13C in the different carbon positions of amino acid neurotransmitters. The quantitative
determination of the biochemical reactions involved in these processes requires the use
of appropriate metabolic models, whose level of details is strongly related to the amount
of data accessible with in vivo MRS. In the present work, we present the different steps
involved in the elaboration of a mathematical model of a given brain metabolic process
and its application to the experimental data in order to extract quantitative brain metabolic
rates. We review the recent advances in the localized measurement of brain glucose trans-
port and compartmentalized brain energy metabolism, and how these reveal mechanistic
details on glial support to glutamatergic and GABAergic neurons.

Keywords: brain energy metabolism, neurotransmitter metabolism, neurotransmission, mathematical modeling,
MRS

INTRODUCTION
Localized magnetic resonance spectroscopy (MRS) is a powerful
tool to investigate brain metabolism in vivo. MRS detection of 1H
nuclei is widely employed because it takes advantage of this being
the most sensitive nucleus in nuclear magnetic resonance (NMR).
At high magnetic field it allows detection of a neurochemical pro-
file of about 20 metabolites, particularly glucose, lactate, alanine,
glutamate, glutamine, and aspartate, which are involved in energy
metabolism and neurotransmission (1). Similarly, MRS of 31P pro-
vides a way of detecting non-invasively the phosphorus-containing
metabolites, including the high energy phosphate compounds ATP
and phosphocreatine, whose peaks can be used to determine the
rate of creatine kinase that composes a brain’s energy buffering
system [e.g., Ref. (2)]. NMR detects the non-radioactive, stable
isotope 13C that occurs at a natural abundance of 1.1%, while the
most abundant carbon isotope is 12C (98.9%), a NMR inactive
nucleus. Nevertheless, the low natural abundance of 13C becomes
an advantage when 13C-enriched substrates are administered and
the rates of isotopic incorporation into specific carbon positions
within different brain metabolites are dynamically detected (3–7).
Upon employment of adequate mathematical models describing
brain metabolism, this 13C incorporation rates can then be used
to estimate fluxes through important metabolic pathways.

Abbreviations: ATP, adenosine-5′-triphosphate; FE, fractional enrichment; fMRI,
functional magnetic resonance imaging; MRS, magnetic resonance spectroscopy;
NMR, nuclear magnetic resonance; TCA, tricarboxylic acid.

The application of dynamic 13C MRS to the study of brain
energy metabolism and its coupling to neurotransmission has pro-
vided important insights on mechanisms supporting brain func-
tion but it also raised controversy on modeling approaches, meta-
bolic assumptions in the models, and some extracted results. The
significant developments on NMR technology over the last decade
provided increase sensitivity and 13C MRS is now being performed
with substantial improvements in spectral, spatial, and/or tempo-
ral resolution (8–11). This high quality data allowed determination
of metabolic fluxes with better precision, but also made discrepan-
cies between fitted curves and experimental data more apparent,
suggesting that current models of brain metabolism lack a number
of metabolic features necessary to fit experimental data (10, 12).

This review covers the approaches to design mathematical
models of brain metabolism that allow quantification of metabolic
fluxes from MRS data. Progress and controversies in the realm of
brain metabolic modeling will be discussed. At last, we will discuss
how 13C MRS data acquired at high-field support: (1) the role
of glial metabolism in sustaining glutamatergic and GABAergic
neurotransmission and (2) the coupling of the malate-aspartate
shuttle with mitochondrial metabolism through the TCA cycle.

DESIGNING A METABOLIC MODEL
An essential step to link the measured labeling time courses with
biochemical quantities is the analysis with a metabolic model to
derive quantitative metabolic fluxes. The most common models
are the so-called multi-compartmental models.
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Lanz et al. Modeling cerebral metabolism in vivo

A compartment is defined as an idealized store of molecules
that exhibit the same behavior in a tracer experiment. Examples
of compartments are the neuronal and glial compartments used
in the 13C MRS modeling of brain glucose metabolism. In each
compartment, molecules are physically or kinetically separated in
metabolite pools. In the model, these are also called labeling pools
and represent the major chemical intermediates involved in the
metabolism of a particular substrate (e.g., glucose, acetate).

In 13C MRS experiments, for example, all isotopomers (i.e.,
isomers of isotope atoms) of a particular chemical species can
appear in a metabolic pool, which in turn can be located in dif-
ferent compartments or physical environment (13). The number
of labeling pools is reduced by lumping the chemical pools with
similar characteristics and behaving identically into a limited set
of pools.

The objectives of a metabolic model are the following:

1. identification of the structure of the system (pools and fluxes)
2. estimation of internal metabolic parameters
3. prediction of the response of the model to external factors

Briefly, a labeling pool that represents a molecule P labeled at a
chemical position x is characterized by the total concentration P of
the considered molecule, the concentration P∗x of those molecules
labeled at the position x as well as by the set of inflows and outflows
of the pool (Figure 1). The concentrations are usually expressed
in micromoles per gram (µmol/g) of tissue, while the fluxes are
given in micromoles per gram per minute (µmol/g/min).

For a given product P, the variation of total concentration of
the product follows the mass balance equation (7, 13):

dP (t )

dt
=

n∑
i

V in
i −

m∑
j

V out
j (1)

This equation is a mathematical expression of the fact that the
variation of the quantity of molecules in the pool is the difference
between what is entering the pool at a given time and what is exit-
ing. In this general case, we consider n influxes and m effluxes.
A simplification is often made by assuming that the biochemical
system is at metabolic steady-state. In this case, the total concentra-
tion of the labeling pools as well as the metabolic fluxes between
the pools are assumed constant over the duration of the mea-
surement, which is a good approximation in many physiological

FIGURE 1 | Schematic view of the elementary unit (labeling pool) used
in compartment modeling. P is the total concentration of molecules in
the labeling pool, while P ∗x represents the concentration of labeled
molecules at the molecular position x. In the general situation, the pool can
have n influxes from n substrate pools Sn and m outfluxes.

conditions, for example for the glutamate and glutamine labeling
pools in the case of [1-13C] or [1,6-13C2]glucose infusion (7, 14).
At steady-state,

n∑
j

V in
i −

m∑
j

V out
j = 0 (2)

The labeling dynamics of a metabolic pool P is governed by the
isotope balance equation, which determines how the concentra-
tion of labeled molecules changes over time, as a function of the
influxes and effluxes:

dP∗x (t )

dt
=

n∑
i

V in
i

S∗i (t )

[Si]
−

m∑
j

V out
i

P∗x (t )

[P]
(3)

where we assumed a general elementary unit P of a metabolic
model, as presented in Figure 1. The pool P has i influxes from i
substrates Si (with total concentration [Si] and labeled concentra-
tion S∗i (t )) and j outfluxes. The terms S∗i (t )/[Si] and P*(t )/[P]
can be understood in a probabilistic way as the probability that a
molecule leaving the substrate pool Si is labeled and the probabil-
ity that a molecule leaving the product pool is labeled, respectively.
These dimensionless terms are called fractional enrichment (FE)
and vary between 0 and 1.

MODEL FOR A SINGLE METABOLIC POOL
In many 13C labeling studies, the protocol of glucose infusion
(bolus followed by a continuous infusion) is chosen so that the
pyruvate enrichment has a shape close to a step function (7). The
pyruvate enrichment is therefore approximated by:

S∗(t )
S = 0 for t < 0

S∗(t )
S = constant for t ≥ 0

(4)

The time course of the precursor is called the input function
and plays the role of a boundary condition of the system of ordi-
nary differential equations. Since metabolic modeling is governed
by linear differential equations, this will typically lead to exponen-
tial or multi-exponential solutions. If the input function is not a
step function, then the exponential solutions are convoluted with
the input function, which makes the system more complicated
to analyze. In the case of bolus injections, which are widely used
in positron emission tomography (PET) labeling experiments, a
good knowledge of the exact shape of the input function is not
always achievable, which can significantly affect the precision and
accuracy of the derived fluxes (15). The mass balance equation for
the one-product pool presented in Figure 2 is given by:

dP (t )

dt
= Vin − Vout (5)

The labeling equation for the one-product pool is given by:

dP∗ (t )

dt
= Vin

S∗ (t )

[S]
− Vout

P∗ (t )

[P]
(6)
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Lanz et al. Modeling cerebral metabolism in vivo

FIGURE 2 | One-product pool model. In this example, the substrate pool
is forced to maintain a constant fractional enrichment.

The general solution of P*(t ) is:

P∗ (t ) =

t∫
0

Vin
S∗
(
t ′
)

[S]
exp

(
Vout

[P]

(
t ′ − t

))
dt ′ (7)

The integral expression in Eq. 7 is a convolution product in
the sense of the Laplace transform. In fact, Eq. 7 is the convolu-
tion of the input function S∗(t ′)/[S] with the impulse response of
the system (in our case the metabolic system). With a steady-state
enrichment of the precursor, i.e., with a step function as input, Eq.
7 simplifies to:

P∗ (t ) =

t∫
0

VinCFE exp

(
Vout

[P]

(
t ′ − t

))
dt ′ (8)

where CFE is the constant fractional enrichment of the precursor.
Using the mass balance Eq. 5 in metabolic steady-state condi-

tions (no net change in total concentration), we have V in=V out.
The solution for the fractional enrichment of the product pool is
therefore given by:

P∗ (t )

[P]
= CFE

(
1− exp

(
−

Vout

[P]
t

))
(9)

This is a typical expression for the labeling turnover of a pool
with a step input function. In the field of linear differential sys-
tems, it is called the step response of the system. It is interesting to
mention that the slope of this exponential curve at t = 0 is equal
to CFE V out/[P] (in this simple case, we have V in=V out).

MONTE CARLO SIMULATIONS FOR TESTING THE RELIABILITY OF FLUX
ESTIMATIONS
Given the complexity of metabolic models, it is essential to ascer-
tain that the analysis is robust and that the fit is not unstable, a
situation that happens typically when a model is described with too
many degrees of freedom compared to the available experimental
data (7). Estimates of the standard deviation of the fitted parame-
ters can be obtained from the fitting algorithm, by the calculation
of the covariance matrix. The estimation of the covariance matrix
by the calculation of the information matrix (16) is related to sev-
eral assumptions on the variance of the data. However, for many
MRS experiments, noise is not vanishingly small but frequently
on the order of 10–30% of the steady-state labeling intensity.
It was shown that the distribution of the fitted parameters can
deviate strongly from the usually admitted normal distribution
that is assumed by the fitting algorithms (6), which can lead to
misinterpretation of the results and to false conclusions.

One solution to the problem of non-negligible noise is the
implementation of Monte Carlo simulations (17, 18). In principle,
Monte Carlo approaches are simpler than analytical approaches
but more computationally expensive. The objective of Monte
Carlo simulations is to obtain the probability distribution of each
estimated parameter. Briefly, the model is first fitted to the exper-
imental data to obtain the most probable estimate of the model
parameters, using non-linear regression. This set of parameters is
then used to generate a “perfect” noise-free dataset, by simulating
the enrichment curves with the metabolic model. This “perfect”
dataset can be subtracted from the experimental data to estimate
the noise level in each of the experimental labeling curves. In a
second step, noise with the same distribution as the experimental
noise is randomly added to each labeling curve of the “perfect”
dataset to create a simulated noisy dataset. Finally, the model is
fitted to this new artificial data to estimate the metabolic rates
(Figure 3).

The process of generating and fitting artificial noisy datasets is
repeated several hundred times to generate a list of simulated fitted
parameters that are used to create a histogram of the distribution
of the estimated parameter values. For each parameter, this his-
togram not only gives an estimation of its standard deviation but
also information about the dissymmetry of its probability distrib-
ution (6, 7). The more Monte Carlo iterations are performed, the
more accurate the probability distribution will be. In general, the
initial guess for the estimated parameters used in the non-linear
regression is also varied from one to the next Monte Carlo iter-
ation. This avoids the optimization process converges to a local
minimum.

In 13C MRS experiments, a set of 13C time courses is obtained
from each subject and can be analyzed to obtain individual meta-
bolic rates and their variation across the sample of the selected
population. However, since it is known that the accuracy in flux
estimation is inversely proportional to the noise level of exper-
imental data, i.e., increases with reduction in the noise of 13C
enrichment curves (19), 13C enrichment curves are often aver-
aged across all subjects rather than fitting individual time courses.
These averaged curves are then used for mathematical modeling
and determination of metabolic fluxes. In this case, the variance
across subjects can only be inferred from experimental 13C time
courses, while the uncertainty of estimated fluxes is provided by
Monte Carlo analyses.

ONE-COMPARTMENT MODEL OF BRAIN ENERGY
METABOLISM
In the past two decades, 13C MRS labeling studies raised a strong
interest for the study of brain energy metabolism. Early studies
were essentially undertaken by infusion of [1-13C]glucose (14,
20–22) and were analyzed with one-compartment models of brain
metabolism.

The one-compartment model was the first metabolic model
proposed to fit the glutamate C4 enrichment curves obtained fol-
lowing the infusion of [1-13C]glucose (20, 22). In this model, no
distinction is made between neuronal and glial cells. Since most
of glutamate is located in the neuronal compartment, the one-
compartment model has been assumed to reflect primarily the
neuronal TCA cycle rate. This model, depicted in Figure 4, enables
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Lanz et al. Modeling cerebral metabolism in vivo

FIGURE 3 | Schematic view of the Monte Carlo analysis used in
metabolic modeling to estimate the variance of the adjusted
parameters. The metabolic model is first fitted to the experimental data,
giving an optimal parameter set and the related model turnover curves
that best describe the data. From the fit residual, the noise level of the
different turnover curves is estimated. Artificial datasets (typically several
hundreds) are then generated by adding different noise realizations to the

turnover curves obtained from the best fit. For each turnover curve, the
artificial noise realizations are generated with the same noise level as in
the corresponding experimental curves. Finally, the metabolic model is
successively fitted to all the synthetic datasets, resulting in a distribution
of fitted values for every free parameter of the model. This distribution
characterizes the precision of each adjusted parameter, taking directly into
account the experimental noise level.

FIGURE 4 | Scheme of the one-compartmentTCA cycle model. The
one-compartment model is characterized by the total TCA cycle flux V TCA

and the transmitochondrial flux VX. The splitting of the arrows after
2-oxoglutarate (OG) represents the symmetry at the succinate level. Glc,
Pyr, OG, Glu, OAA, and Asp stand for glucose, pyruvate, 2-oxoglutarate,
glutamate, oxaloacetate, and aspartate, respectively. The indexes represent
the carbon positions that get labeled in each metabolite. The first, second,
and third turns of the TCA cycle are represented by solid, dashed, and
dotted lines, respectively. The model presented here corresponds to a
[1-13C]glucose or [1,6-13C2]glucose infusion experiment.

the measurement of the overall (glial and neuronal) TCA cycle
rate and the transmitochondrial flux VX, summarizing the glu-
tamate to 2-oxoglutarate conversion and its transport across the
mitochondrial membrane.

[1,6-13C2]Glucose is a widely used NMR tracer to probe mito-
chondrial metabolism. After transport across the blood-brain

barrier (BBB), two molecules of [3-13C]pyruvate are generated
from one molecule of labeled glucose through the glycolysis. When
infusing [1-13C]glucose, only one molecule of [3-13C]pyruvate is
produced, while the second pyruvate molecule generated by the
glycolysis is unlabeled. The fate of the labeling from pyruvate C3
in the one-compartment model is depicted in Figure 4. Briefly, 13C
from [1-13C] or [1,6-13C2]glucose enters both glial and neuronal
TCA cycles at the position C4 of citrate. In the first turn of the
TCA cycle, 13C reaches the position C4 of 2-oxoglutarate, which
exchanges label with cytosolic glutamate. This transmitochondrial
label exchange transfers label from the carbon position C4 of 2-
oxoglutarate to the position C4 of glutamate. Due to the symmetry
of the succinate molecule, the second turn of the TCA cycle brings
half of the labeled carbons of the position C4 of 2-oxoglutarate to
the position C3 of 2-oxoglutarate and the other half to the position
C2 of 2-oxoglutarate. Through the transmitochondrial exchange,
[3-13C]glutamate is formed from [3-13C]2-oxoglutarate and [2-
13C]glutamate from [2-13C]2-oxoglutarate. In the third turn of
the TCA cycle, half of the labeled carbons of the position C3 of 2-
oxoglutarate reach the position C2 of the same molecule, while the
other half remains at the position C3. At the same time, 13C from
the position C2 of 2-oxoglutarate is transferred to the position
C1, labeling further the position C1 of glutamate. The carboxyl
position C1 of glutamate is usually not simultaneously measur-
able with the positions C4, C3, and C2 using 13C MRS, due to the
large chemical shift of the C1 carbon position compared to the
other resonances (23).

In some cases, the neurotransmission process is modeled
in the one-compartment model in a simplified way by a glu-
tamine exchange rate V Gln (22, 24). Together with this flux,
additional dilution of 13C enrichment at the level of glutamate
from unlabeled glutamine was used to allow different fractional
enrichments in glutamate C4 and C3 at steady-state, as observed
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Lanz et al. Modeling cerebral metabolism in vivo

experimentally. Although devoid of major effects in modeling
13C data from short experiments where isotopic steady-state is
not reached, the inclusion of V Gln and dilution from gluta-
mine are crucial for reliable determination of V TCA and VX in
one-compartment modeling. This model was employed in recent
studies to estimate fluxes from 13C curves of glutamate C4 and
C3 (25–28).

Due to its intrinsic low sensitivity, 13C MRS only enables the
measurement of metabolites that occur at sufficiently high con-
centration (typically >1 mM), most often allowing detection of
the labeling positions of glutamate, glutamine, and aspartate. The
pool size of oxaloacetate and 2-oxoglutarate is typically on the
order of 0.1 µmol/g, while the pool sizes of glycolytic and TCA
cycle intermediates are assumed to be small and without effect
on the labeling dynamics of the observed amino acids (29). Thus,
since the intermediate products of glycolysis and TCA cycle are
present in too low concentrations to result in substantial delays in
the labeling of the measured amino acids (i.e., small turnover times
for these intermediates), the model can be simplified to retain
only the labeling pools representing the MRS detectable amino
acids and the intermediate pools at chemical branch points, such
as oxaloacetate and 2-oxoglutarate. It was recently shown that the
intermediate pools can be eliminated from the equations describ-
ing the one-compartment model, without affecting the dynamics
of the glutamate uptake curves (30).

THE VX/V TCA RATIO
The labeling of the carbon positions in glutamate is the result of
two processes: the TCA cycle (V TCA) and the transmitochondrial
exchange (VX). These two fluxes are therefore intrinsically cou-
pled to each other in the labeling equations describing glutamate
13C turnover. For the sake of argument, we analyze the relation
between V TCA and VX in the simple one-compartment model
with exclusion of aspartate and glutamine (Figure 4). After sim-
plification of the TCA cycle intermediates (30), the 13C labeling
curves of the C4 and C3 positions of glutamate (Glu4 and Glu3)
are given by:

dGlu4(t )

dt
=

VX · VTCA

VX + VTCA

(
FE(Pyr3)−

Glu4(t )

[Glu]

)
(10)

dGlu3(t )

dt
=

VX · VTCA

(2VX + VTCA)(VX + VTCA)

×

[
VTCA FE(Pyr3)+ VX

Glu4(t )

[Glu]
− (VX + VTCA)

Glu3(t )

[Glu]

]
(11)

where FE(Pyr3) is the enrichment of the C3 position of pyruvate,
the direct precursor of the TCA cycle, which is assumed to reach
steady-state faster than the glutamate. [Glu] is the total glutamate
concentration in the tissue (labeled and unlabeled).

Equation 10 highlights the fact that the labeling of the C4 posi-
tion of glutamate is a combined effect of the TCA cycle activity
and transmitochondrial transport, characterized by a composite
flux V gt (20, 30).

Vgt =
VX · VTCA

VX + VTCA
(12)

The solutions of these equations for a constant precursor
enrichment FE(Pyr3) are given by:

Glu4(t ) = FE
(
Pyr3

)
[Glu]

(
1− exp

(
−t

Vgt

[Glu]

))
(13)

Glu3(t ) = FE
(
Pyr3

)
[Glu]

[
1+ exp

(
−t

Vgt

[Glu]

)
−2 exp

(
−t

Vgt

[Glu]

(VX + VTCA)

(2VX + VTCA)

)]
(14)

The labeling equation of Glu4 only carries information on the
value of V gt. Figure 5 illustrates the fact that an infinite number of
pairs (V TCA, VX), distributed on a hyperbolic curve, result in the
same value of V gt. Therefore, when fitting the Glu4 curve alone,
the values of V TCA and VX are not separately accessible.

However, the separate determination of V TCA and VX is possi-
ble when fitting the model also to Glu3. This is directly related to
the fact that the labeling equation of Glu3 does not depend only
on V gt (Eq. 14). V TCA and VX have a distinct role in the labeling
dynamics through the dilution term VX/(VX+V TCA).

The value of the VX/V TCA ratio is still a matter of controversy.
In early studies, the value of VX was reported to be much higher
than the value of V TCA (20, 22, 31, 32). In several following stud-
ies, it was therefore assumed that VX�V TCA, which results in a
simplification of the model, since in this case, V gt=V TCA (see Eq.
12). V TCA could be therefore directly extracted from the fitting of
the Glu4 curve. However, later in vivo and in vitro studies (9, 24,
29, 33–35) provided evidence that the value of VX is on the same
order of magnitude as V TCA. In this context, using the assumption
of a very large VX value leads to an underestimation of V TCA by a
factor of two, since for VX

∼=V TCA, we obtain V gt
∼=V TCA/2.

FIGURE 5 | Plot of the hyperbolic relationship between VX and VTCA for
a constant composite flux value V gt (Eq. 12). The knowledge of V gt alone
only allows the calculation of V TCA under an assumption for the value of VX.
However, the magnitude of the assumed VX flux can have a strong impact
on the estimated V TCA. When assuming VX�V TCA, we have V TCA =V gt. If VX

is almost equal to V TCA, we obtain V TCA
∼=2·V gt.
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Lanz et al. Modeling cerebral metabolism in vivo

FIGURE 6 |Turnover curves of the carbon position C4 and C3 of
glutamate as simulated using the one-compartment model (Figure 4)
with a constant V gt. For the gray turnover curves, VX was set equal to V TCA

(VX =V TCA =0.5 µmol/g/min), resulting in a non-zero slope of the glutamate C3
curve at t =0. For the dashed red turnover curves, VX was set much larger
(about 200 times) than V TCA (VX =50 µmol/g/min, V TCA =0.251 µmol/g/min),

with the same value for V gt. This results in a sigmoidal-shaped glutamate C3
turnover curve, while the glutamate C4 curve remains unchanged. This
observation illustrates the necessity to measure the C3 turnover curve to
determine both VX and V TCA. In these simulations, dilution at the level of
glutamate was not included, resulting in the same enrichment level for C4
and C3 at steady-state.

Figure 6 shows how Glu3 is affected by the value of the VX/V TCA

ratio. When VX�V TCA, the initial slope of Glu3 is zero. When
VX
∼=V TCA, the Glu3 curve loses its sigmoid shape, presents a non-

zero initial slope and, furthermore, reached higher enrichment
than for VX�V TCA.

COMPARTMENTALIZED BRAIN ENERGY METABOLISM
MEASURED FROM AMINO ACID TURNOVER
Metabolic compartmentation consists in the co-existence of sep-
arate pools of a given metabolite that are kinetically different
and do not equilibrate rapidly with each other. Compartmen-
tation of cerebral energy metabolism was initially identified by
observing that certain radiolabeled tracers could lead to higher
enrichment of glutamine than of its precursor glutamate (36,
37). In addition, different metabolic activities were observed in
microdissected (38, 39) and cultured (40, 41) neurons and glial
cells, and then glia-specific enzymes involved in intermediary
metabolism were discovered in the brain tissue, namely glut-
amine synthetase (42, 43) and pyruvate carboxylase (44). The
concept of exchange of metabolites between these compartments
was also developed (45, 46) and resulted in the proposal of
a glutamate-glutamine cycle linking glutamatergic neurons and
astrocytes (47, 48).

Many studies followed and led to a growth of knowledge on the
metabolic network underlying the interrelation between neurons
and astrocytes. Nevertheless, we are still far from fully understand-
ing the complex regulation of energy metabolism in the living
brain. In this realm, the impressive development of localized 13C
MRS in vivo since its first application to the head (49) has been
much appreciated (4). Currently, the direct detection of 13C at high
magnetic field provides a large amount of specific information
regarding pathways of intermediary metabolism. In particular, 13C
MRS is now able to quantify not only the incorporation of 13C into
all aliphatic carbons of amino acids such as glutamate, GABA, glu-
tamine, and aspartate, but also some multiplets resulting from
the homonuclear coupling between adjacent carbons of these

molecules, i.e., isotopomers (8, 50, 51). Alternatively, specific path-
ways can be addressed by providing certain labeling patterns to
other carbons of glutamate and glutamine through administration
of specifically labeled substrates (52). With this substantial increase
in the amount of information from 13C MRS experiments at high
magnetic field, higher accuracy has been achieved in the estimation
of metabolic fluxes. However it is also becoming evident that state-
of-the-art compartmental models of brain energy metabolism are
unable to fully describe obtained experimental data (10, 12). Here-
after we describe and discuss the metabolic fluxes included in
models of brain energy metabolism and suggest possible direc-
tions to improve the description of experimental data, namely
by including sub-cellular compartments for particular metabolic
pools.

13C MRS STUDIES AND MODELING OF METABOLIC
COMPARTMENTATION
When 13C glutamine was first detected in vivo in 13C glucose infu-
sion studies (21, 53), it became natural to model the neuronal
and glial TCA cycles and their interaction through the gluta-
mate/glutamine cycle using a two-compartment model (29, 54),
as shown in Figure 7.

Distribution of metabolic pools within these major compart-
ments has been assumed based on data collected in vitro. It is well
established that at least one small and one large glutamate pools
exist in the glial and neuronal compartments respectively (55, 56).
In contrast, glutamine has been mostly attributed to glia, where
it is synthesized, while glutamate resides in neurons. Since 13C
isotopes of the astrocyte-specific substrate acetate lead to labeling
of glutamine to a greater extent than glutamate [e.g., Ref. (57)]
this assumption seems to be valid. In a recent 1H-[13C] MRS
study based on the infusion of glial-specific [2-13C]acetate (35),
the glutamate pool distribution between the glial and neuronal
compartments could be determined directly in vivo and supports
the presence of a small glial glutamate pool accounting for about
5% of total glutamate.

Frontiers in Endocrinology | Cellular Endocrinology October 2013 | Volume 4 | Article 156 | 6

http://www.frontiersin.org/Cellular_Endocrinology
http://www.frontiersin.org/Cellular_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lanz et al. Modeling cerebral metabolism in vivo

FIGURE 7 |Two-compartment model of compartmentalized brain
metabolism, as proposed by Gruetter et al. (29). The model consists of
the glial and neuronal TCA cycles, linked by the glutamate/glutamine cycle.
Glc, glucose; Lac, lactate; Pyr, pyruvate; OAA, oxaloacetate; OG,
oxoglutarate; Asp, aspartate; Glu, glutamate; Gln, glutamine. The system is
characterized by the following fluxes: CMRGlc, cerebral metabolic rate of
glucose; V PC, pyruvate carboxylase; V g glial TCA cycle rate; VX,
transmitochondrial exchange; V n

TCA, neuronal TCA cycle rate; V SYN, glutamine
synthesis; V NT, apparent neurotransmission rate; V efflux, loss of glutamine
from the glial compartment; V out and V Lout, label dilution and exchange of
lactate across the blood-brain barrier. The indexes represent the labeled
carbon positions. Boldface indicates NMR-measurable metabolites.

However, 13C MRS measures the sum of all pools of a given
metabolite. The detection of multiple compartments in the brain
is only possible due to the presence of pyruvate carboxylation and
glutamine synthesis in glia but not in neurons (42, 44) that leads
to different label distribution in glutamate and glutamine. Pyru-
vate carboxylase is the main anaplerotic enzyme in the brain (58),
leads to CO2 fixation and generates oxaloacetate that can be further
used to generate new glutamate molecules. Pyruvate carboxylase
brings 13C from [3-13C]pyruvate to the position C3 of oxaloac-
etate, which further labels the position C2 of 2-oxoglutarate and
glial glutamate. On the other hand this reaction brings unla-
beled 12C to the position C3 of glial glutamate. This glial dilution
effect is one of the features that make it possible to distinguish
glial and neuronal intermediary metabolism using glutamate and
glutamine 13C time courses following infusion of [1-13C]- or [1,6-
13C2]glucose. In addition, modeling of high-field 13C MRS data
suggested that pyruvate pools may become differently labeled in
neurons and astrocytes (10, 59, 60). In line with this, previous
reports have frequently introduced glial and neuronal dilution
fluxes at the level of lactate to account for this effect (61).

The glutamate-glutamine cycle is a major biochemical pathway
in vivo, directly involved in the glutamatergic neurotransmission
process (47, 48), and results from the compartmentation of gluta-
mine metabolizing enzymes: glutamine synthetase is located exclu-
sively in astrocytes (43), while the glutamate to glutamine con-
version through phosphate activated glutaminase (PAG) occurs
mostly in neurons (62). Furthermore, most of the glutamate is in

the neurons, while glutamine is essentially located in the glial cells
(56). Both glutamine and glutamate are 5-carbon chains differing
by an amino group at the carbon position 5 of glutamine. In the
glutamate-glutamine cycle, the carbon positions are maintained,
which means that a carbon located at the position C4 of gluta-
mate will reach the position C4 of glutamine and vice versa, and
similarly for all positions of glutamate and glutamine.

The adjusted parameters of the two-compartment model
(Figure 7) are the glial and neuronal TCA cycle fluxes V g and
V n

TCA, the transmitochondrial flux VX that describes the com-
bined effect of glutamate dehydrogenase, aspartate transaminase,
and transport across the mitochondrial membranes, the appar-
ent neurotransmission flux V NT and V PC, the rate of pyruvate
carboxylation in the glia. A dilution V out at the level of pyru-
vate is generally included to take into account the metabolism
of other substrates, such as lactate or glycogen. Moreover, the
glial acetyl-CoA, at the entrance of the TCA cycle, is diluted by
alternative energetic fuels that glial cells can metabolize, such as
acetate and fatty acids (63, 64). Glucose transport across the BBB
is usually modeled using a Michaelis–Menten modeling approach
(29), although more complex models have been described (65). In
more recent in vivo studies, the two-compartment description of
brain energy metabolism was further used for 13C labeling exper-
iments using other substrates, such as [2-13C]acetate (35, 66, 67)
or even adapted to describe the uptake curves measured by 11C
positron emission when infusing [1-11C]acetate (68), bridging the
gap between two major bioimaging modalities by proposing a
common metabolic modeling approach.

Upon administration of 13C-enriched glucose, glutamine car-
bons become less enriched than those of glutamate and, to account
for this discrepancy, dilution fluxes were placed in glutamine pools
accounting for 13C loss by exchange with unlabeled pools (V ex),
which can allow different compartment enrichments (33). Alter-
natively, other modeling studies assume different dilution fluxes at
the level of pyruvate in each compartment, i.e., loss of labeling by
exchange with unenriched pools of lactate (61). This accounts for
possible 13C dilution by unlabeled brain glycogen or blood-born
lactate or alanine.

There is now consensus that the interpretation of 13C incor-
poration curves from substrates into brain metabolites is never
complete if mathematical models disregard metabolic compart-
mentation. This is particularly true when the fate of 13C is
measured at high magnetic field where high spectral resolution
allows for quantification of 13C in an increased number of amino
acid carbons. Indeed, elegant simulations by Shestov et al. (19)
demonstrated that increasing temporal resolution and decreasing
noise level in 13C incorporation curves lead to increased accu-
racy in metabolic flux estimation. In addition, higher detail can be
introduced in compartmentalized models of brain metabolism as
more experimental curves are measured and for a longer period
(19, 60).

SUB-CELLULAR COMPARTMENTATION
Increased sensitivity in measuring 13C enrichment curves pro-
vides insight into sub-cellular compartmentation, which has been
proposed in a plethora of studies in vitro (69–71). Sub-cellular
compartmentation has been disregarded in most studies in vivo.
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As explained above, carboxylation of [3-13C]pyruvate via
PC labels C2 and dilutes C3 in glutamate/glutamine, result-
ing in observed relative enrichments of C4 > C2 > C3. In 13C
MRS experiments at high magnetic field, with infusion of [1,6-
13C2]glucose, glutamine enrichment in C2 was similar to that in
C4 when approaching isotopic steady-state (9). The enrichment
of glutamine C2 approaching that of the C4 carbon is consis-
tent with high PC relative to PDH or with glial-specific dilution
of acetyl-CoA, or a combination of both effects. Because meta-
bolic modeling shows that such labeling patterns cannot be fully
explained by pyruvate carboxylation, an additional glial-specific
dilution flux V dil has been introduced (9) to represent the utiliza-
tion of glial-specific substrates that enter brain metabolism at the
level of acetyl-CoA in astrocytes but not in neurons. The rate of
V dil was in the range of the rate of utilization of acetate in vivo (67,
72). This further ensures that pyruvate carboxylase and pyruvate
dehydrogenase can carry different enrichment levels from pyru-
vate into the TCA cycle, as if distinct substrate sources would feed
each pathway. This is also consistent with the presence of at least
two distinct pyruvate pools in the glial compartment.

In cultured neurons, simultaneous incubation with [1,2-
13C2]glucose and [3-13C]lactate revealed the existence of at least
two cytosolic pools of pyruvate that do not equilibrate rapidly
(73). While one of the pools was derived from glycolysis, the other
was associated to lactate metabolism. Also in cultured astrocytes,
labeling of alanine from 13C-enriched glucose has been observed
to be lower than that of lactate, suggesting sub-cellular compart-
mentation of pyruvate (34, 74). One of the pyruvate pools could be
specifically formed from TCA cycle intermediates. Indeed, in cul-
tured astrocytes, the decarboxylation of malate by malic enzyme
can represent a small fraction of the total pyruvate synthesis. This
pyruvate formed via malic enzyme must then re-enter the TCA
cycle to be oxidized, thus completing the pyruvate recycling path-
way. This pathway has been proposed by 13C MRS of extracts from
studies in vitro (34, 75–77) and in vivo (57, 78). This pathway is
likely to be more active when cells need to dispose of glutamate
and glutamine by oxidative degradation (77), which is an alterna-
tive to glutamine efflux from the brain that is generally modeled
in 13C MRS data in vivo (V efflux, equivalent to V PC). The latter is
however a recognized mechanism for ammonia disposal (79, 80).

However, if pyruvate recycling would be the main form of los-
ing a four carbon intermediate from the TCA cycle to balance
glutamate oxidation in the astrocyte, additional peaks would be
observed in glutamate C4 in the 13C NMR spectrum. As discussed
in Duarte et al. (9), while [1,6-13C2]glucose originates pyruvate
labeled in C3, pyruvate recycling (coupled to glutamate oxidation)
would generate pyruvate labeled in C2 or simultaneously in C2 and
C3, which via pyruvate dehydrogenase originates 2-oxoglutarate
and glutamate labeled in C5 or simultaneously C4 and C5. These
were not detectable in vivo (9). Furthermore, labeling from pyru-
vate C2 is incorporated in lactate C2. In brain extracts at the end
of the experiment, FE of brain lactate C2 was at least 20 times
smaller than C3. Since this labeling patterns could also be observed
in plasma lactate, probably resulting from peripheral metabolism
rather than brain release, there is no convincing evidence that
glutamate oxidation and pyruvate recycling are measurable in vivo
upon infusion of [1,6-13C2]glucose (9, 12).

In addition, when steady-state of 13C enrichment was reached
for carbons of glutamate and aspartate that have major pools
in neurons, a significant and continuous increase in glutamine
enrichment occurred (9, 12). This could be caused by increase
of total glutamine concentration during glucose infusion, as was
observed under hyperammonemia (81). However, brain gluta-
mine concentration was not altered in similar experimental con-
ditions (82, 83). While pyruvate formation from four carbon TCA
cycle intermediates and further carboxylation could eventually
explain such effect in C3 and C2, glutamine C4 only receives label-
ing from acetyl-CoA and thus should reach the same steady-state
enrichment as carbons in the neuronal compartment (where PC
is absent) and with which it exchanges via glutamate-glutamine
cycle. This continuous increase in brain glutamine enrichment
upon 13C-enriched glucose administration was observed in stud-
ies using dynamic 13C MRS in vivo in both rodents (9, 10, 12)
and humans (84), and suggests that the existent mathematical
models of brain metabolism are incomplete and may particularly
benefit from inclusion of features like sub-cellular metabolic com-
partmentation or a multitude of astrocytes with heterogeneous
metabolic rates. Accordingly, astrocyte morphology is compatible
with the existence of different functional domains [reviewed by
Pellerin and Magistretti (85)], there is mitochondrial heterogene-
ity and glutamine synthesis from multiple glial TCA cycles (69, 71)
and, in cultured astrocytes, intracellular, and released glutamine
were found to display distinct labeling patterns from metabolism
of 13C-enriched glucose and lactate (70).

Upon this evidence supporting the existence of multiple
glial glutamine pools, in our most recent 13C MRS study (12),
two distinct pools of glutamine were modeled within the glial
compartment, in addition to the pools in glutamatergic and
GABAergic neurons. One of these glial glutamine pools was non-
metabolizable and was in direct exchange with the other that was
involved in the glutamate-glutamine cycle. Although this substan-
tially improved fitting to the experimental data, the additional
glutamine pool could as well be introduced in any other meta-
bolic compartment and provide similar approximation to the
experimental data. This was however a simple approach to tackle
sub-cellular compartmentation in astrocytes. Although a more
realistic model would rather include more than one glial compart-
ment, the increasing number of unknown variables (fluxes) in the
model would lead to increased uncertainty in flux estimation.

The inclusion of a vesicular glutamate pool in the neuronal
compartment has also been proposed and seems to improve fit-
ting of 13C multiplet data and increase accuracy in V NT estimation
(60). However, since this pool is actively involved in the glutamate-
glutamine cycle, it does not allow for different curve shapes for the
labeling of glutamate and glutamine.

METABOLIC PATHWAYS COUPLED TO BRAIN ACTIVITY
Over the last two decades, systems neuroscience was revolution-
ized by blood oxygen level dependent (BOLD) functional mag-
netic resonance imaging (fMRI). BOLD fMRI measures the global
hemodynamic response, i.e., changes in local cerebral blood flow,
volume, and oxygenation, that are related to neuronal activity in
the brain. Although the underlying mechanisms of cerebral hemo-
dynamic control remain to be firmly established, the link between
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the modifications in neuronal activity and the observed hemody-
namic response is known to require metabolic involvement of a
multitude of cells, including astrocytes. In fact, due to the par-
ticular cytoarchitectural relation to both neurons (forming the
tripartite synapse) and blood vessels (mostly arterioles and capil-
laries), astrocytes are ideally positioned to detect neuronal activity,
transmit signals to neighboring vascular cells and regulate supply
of energy substrates to neurons. Indeed, the link between cerebral
activity and metabolic fluxes for production of energy has been
suggested since early studies of brain energy metabolism (45).

NEUROTRANSMISSION AND THE RATE OF GLUCOSE OXIDATION
Above isoelectricity, glutamate-glutamine cycle increases ∼1:1
with glucose oxidation that has been proposed to occur mostly
in neurons, thus providing coupling between functional neuroen-
ergetics and glutamatergic neurotransmission (32, 86–88). Such
analyses have however disregarded glial glucose oxidation, even
though conversion of neurotransmitter glutamate to the elec-
trophysiological inactive glutamine in astrocytes involves energy
metabolism (89–91). Furthermore, this relation does not appear to
stand for GABAergic neurotransmission, which relies on astrocytic
oxidation of GABA (12, 87). Therefore, a more complete analysis
of the metabolic fluxes involved in sustaining neurotransmission
is required.

1H MRS has been used to report the time course of brain
metabolites, mostly lactate, during focal activation. Increase in
lactate concentration was reported upon sustained visual cortex
stimulation first by Prichard et al. (92), suggesting a stimulation-
induced increase in cerebral metabolic rate of glucose (CMRGlc).
This observation was further confirmed in humans and rodents
(93–97) and suggested to be associated to other metabolic mod-
ifications like a decrease in glucose concentration, as detected
by in vivo 1H MRS (93, 98, 99), and in phosphocreatine versus
inorganic phosphate in 31P MRS experiments (95, 100). In line
with this, both glucose transport and consumption were found
substantially reduced in the rat brain under isoelectricity (83,
101, 102).

With the increase in sensitivity and spectral resolution at high
magnetic field, 1H MRS in the human visual cortex allowed detec-
tion of an increase in glutamate and a putative decrease in aspartate
during stimulation, in addition to lactate and glucose modifi-
cations (97, 103), suggesting modifications in the flow through
the malate-aspartate shuttle, possibly linked to adjustments in
redox potential upon increased cerebral glucose consumption.
Similar alterations of lactate, glutamate, and aspartate concen-
trations as well as increased alanine levels have been reported in
the cortex of conscious rats upon sensory stimulation (104) and
rats under light α-chloralose anesthesia upon trigeminal nerve
stimulation (96). However, using in vivo 1H MRS in rats under
α-chloralose anesthesia, Xu et al. (105) found that sensorial stim-
ulation could lead to an increase in glutamine and a decrease in
glutamate, myo-inositol, and phosphocreatine to creatine ratio
in the focally activated primary sensory cortex, albeit the mod-
ifications in lactate and glucose concentrations upon cerebral
activation were not detected. 1H-[13C] NMR spectroscopy studies
in rodents upon infusion of 13C-enriched glucose measured an
increased tricarboxylic acid cycle flux (V TCA) in focally activated

primary sensory cortex during forepaw stimulation (106–108) that
is certainly linked to the increased CMRGlc and oxygen

(
CMRO2

)
.

Similar observations appeared in studies in humans (109). Alto-
gether, these studies indicate that the BOLD fMRI signal-change
is associated with an increase in oxidative metabolism.

GLIAL METABOLISM SUPPORTS NEUROTRANSMISSION
However, specific pathways of brain energy metabolism that sup-
port neurotransmission remain to be elucidated. Sibson et al. (86)
suggested that in 13C MRS experiments, V NT correlated with the
neuronal fraction of CMRGlc above isoelectricity, which has been
confirmed in a large number of studies across different labora-
tories (32, 86–88). Other metabolic pathways may be linked to
V NT but remain to be analyzed. Figure 8 aims at elucidating how
energy metabolism is related to both glutamatergic and GABAer-
gic synaptic transmission. In contrast to previous analyses (88),
now we exclusively selected 13C MRS studies in which metabolic
modeling was performed with fully independent flux estimation
(9, 10, 12, 29, 33, 35, 102). Interestingly this allowed identifica-
tion of a correlation not only between V NT and glucose oxidation
(86, 88) but also between V NT and V PC. Oxidative metabolism
in neurons was correlated with V NT only when GABAergic com-
partment is not included in the model. Correlation between glial
TCA cycle and V NT was noticeable in rats. Perhaps with additional
experimental data sets from the human brain, we could depict a
species-dependent relation of glial V TCA to V NT.

Since its introduction, the astrocyte-neuron lactate shuttle
model (89) has found additional confirmatory experimental data.
Nevertheless it remains matter of debate, mostly because it consid-
ers that while neuronal metabolism is mainly oxidative, astrocytes
exhibit a mainly glycolytic phenotype (85). In other words, glu-
cose and oxygen are mostly consumed in astrocytes and neurons,
respectively, and since brain hexokinase operates near it maximum
rate assayed in vivo (65), only the neuronal TCA cycle can initially
respond to the metabolic demand during increased brain activity
[even though upon reduction of glucose-6-phosphate levels, there
is loss of feedback inhibition and concomitant gain in hexokinase
activity (110)].

The analysis in Figure 8 indicates that changes in glutamatergic
neurotransmission, i.e., the glutamate-glutamine cycle, are as well
coupled to glial pyruvate carboxylation and glial TCA cycle fluxes.
This analysis agrees with simulations by Jolivet et al. (111) pre-
dicting that an important fraction of O2 utilization in astrocytes is
dedicated to neurotransmission in the living brain. Furthermore,
it is interesting to note that the four fluxes depicted in Figure 8
are significantly different from zero in the brain in vivo under iso-
electricity (V NT= 0), which would be associated to housekeeping
tasks and other non-signaling brain processes. Recent estima-
tions of energy budgets for the brain in awake state considered
a 25 or 50% of the total energy budget for non-signaling tasks
in either the cortical gray matter or the whole brain, respectively
(112). If one considers that non-signaling and signaling energy
metabolism takes place mostly in glia and neurons respectively,
these data agrees with glial oxidative metabolism much larger than
25% of total energy consumption in the case of the whole brain.
Thus, energy consumption for tasks unrelated to neurotransmis-
sion could account for up to ∼50% of total energy expenditure in
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FIGURE 8 | Relation of estimated metabolic fluxes to
glutamate/GABA-glutamine cycle, i.e., glutamatergic plus GABAergic
neurotransmission (total VNT), across several studies using similar
methodology in the rat or human brain: rat brain under
pentobarbital-induced isoelectricity [white; Ref. (102)] and under light

anesthesia [orange, blue, green, and black are data from Ref. (9, 10, 12,
35), respectively], human cortex [red; Ref. (29)], awake rat brain [yellow;
Ref. (33)]. Metabolic fluxes are shown in micromoles per gram per minute
with associated SD. P -value for the slope and R2 are shown for each linear
regression.

the whole rat brain [discussed by Howarth et al. (112)], and may
largely occur in glial cells.

Since only a fraction of V
g
TCA is associated with neurotransmis-

sion V NT, the remaining may be associated to housekeeping tasks.
In line with this, there is no clear relation between V g and V NT.
V g is a flux accounting for the difference between glial V TCA and
pyruvate carboxylase in the two-compartment model (see above).
In the models where the GABAergic compartment is included
and glial cells are oxidizing GABA, Vg = V

g
TCA − VPC − V

g
shunt

[see Ref. (12)]. Since V PC matches the efflux of glutamine and
V

g
shunt is equivalent to the shuttling of glutamine to the GABAer-

gic neurons, V g denotes the flux through glial pyruvate dehy-
drogenase corresponding to the complete oxidation of pyruvate.
Therefore, in mathematical models designed as proposed in this
manuscript, one can assume that pyruvate carboxylation and/or
GABA oxidation are the main drive for the relation between V

g
shunt

and V NT.
Most recent publications reporting multi-compartmental

models of brain energy metabolism constrained metabolic fluxes
in astrocytes to those in neurons [discussed in Ref. (113)]. In
particular,V TCA in astrocytes and/or V PC were systematically con-
strained as V PC= 0.2 V GS and V

g
TCA = 0.15 · V total

TCA (61, 114).
Other studies determined V TCA in the astrocytic compartment
from experiments upon [2-13C]acetate infusion and the obtained
flux is used as constraint to the metabolic modeling of 13C-
labeled glucose experiments for simultaneous determination of
fluxes in glutamatergic and/or GABAergic neurons (115). In con-
trast, in studies that considered all metabolic fluxes as independent
parameters, there was a fairly linear relation between pyruvate car-
boxylation rate (V PC) and the glutamate/GABA-glutamine cycle

(Figure 8). In fact, the activity-induced increase in glial anaplerosis
through V PC is consistent with increased influx of bicarbonate into
astrocytes upon neuronal release of K+ (116) that may stimulate
pyruvate carboxylation (117). Flux through pyruvate carboxyla-
tion has been evaluated using [2-13C]glucose (for comparison
with labeling from [1-13C]glucose see Ref. (54)). Interestingly,
V PC was not significantly altered in high neuronal activity upon
by bicuculline-induced seizures (118), suggesting that pyruvate
carboxylase and de novo glutamine synthesis are not required to
support dysfunctional glutamatergic activity in this pathological
condition.

Notably, in models that include GABAergic and glutamatergic
neurons rather than a single neuronal compartment (12, 61, 119),
correlation of total V TCA in neurons with V NT is not maintained
because GABA-glutamine cycle relies on glial GABA oxidation in
the TCA cycle [Figure 8, see also review by Hyder et al. (87)].
In line with this, nearly half of GABA produced in GABAergic
neurons is further oxidized in astrocytes through the glial GABA
shunt and half of GABA synthesis relies on glutamine provided by
astrocytes (12), which is in accordance to observations in cultured
cortical neurons supplied with 13C-enriched glutamine (120).

MITOCHONDRIAL MEMBRANE TRANSPORT IS COUPLED TO
METABOLIC DEMAND IN NEURONS
Labeling of brain glutamate from a 13C-enriched oxidative sub-
strate requires transfer of the label from the mitochondrial TCA
cycle intermediate 2-oxoglutarate to cytosolic glutamate, which
also sustains the transfer of reducing equivalents from cytosol
to mitochondria. In the compartments where the GABA shunt
occurs, i.e., glia and GABAergic neurons (12, 61), a substantial
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part of 2-oxoglutarate transamination to glutamate occurred with
GABA, yielding succinic-semialdehyde that is further metabo-
lized by the TCA cycles. Mitochondrial transport of 13C label
in glia, which includes GABA transamination (in models with
GABAergic compartment) and net glutamate synthesis, was much
lower than the neuronal counterpart. This is in agreement with
the finding that carriers exchanging aspartate and glutamate in
the malate-aspartate shuttle are predominantly expressed in neu-
rons rather than astrocytes (121–123). In contrast, comparable
amounts of Aralar protein, the main mitochondrial carrier for
aspartate/glutamate in the brain, were found in freshly isolated
neurons and astrocytes (124), suggesting that the transfer of reduc-
ing equivalents across the mitochondrial membrane is not a lim-
iting step for adaptation to altered metabolic or energetic demand
in astrocytes. It is plausible that VX varies with increased meta-
bolic activity as higher glycolysis requires transference of reducing
equivalents into the mitochondria. However, this may be a small
effect because of the inability to substantially increase hexokinase
activity (discussed above).

As discussed above, in the absence of measurable 13C turnover
curves for 2-oxoglutarate, the fluxes V TCA and VX are intrinsi-
cally coupled (see Figure 5) and are of difficult determination
when few 13C enrichment curves are taken for metabolic mod-
eling. Although the rate of label transfer from 2-oxoglutarate to
glutamate is frequently thought to occur at a more rapid rate than
that of TCA cycle intermediate oxidation (22, 86, 125), metabolic
modeling of 13C MRS data from humans (29) and rats (9, 10, 12,
33, 35, 102) with independent flux estimation found mitochondr-
ial exchange fluxes on the order of the TCA cycle rate. In line with
this, 13C-enriched 2-oxoglutarate but not glutamate was detected
in the rat brain in vivo by 13C MRS upon infusion of hyperpolar-
ized 13C-acetate (126). With further methodological development
of these pioneering experiments, one can envisage that dynamic
detection of labeling in both 2-oxoglutarate and glutamate will
allow to reliably measure VX.

The fact that VX and V TCA are on the same order of magnitude
suggests that higher brain metabolic activity may require increased
VX, especially in neurons. Interestingly, in mathematical models
of brain energy metabolism where VX and V TCA were determined
independently from high resolution 13C MRS data, VX was related
to V TCA within the same compartment (Figure 9). This analysis
was not performed for the glial compartment because most studies
assumed identical VX for neurons and astrocytes. Moreover, when
glial VX was independent, conversion of 2-oxoglutarate to gluta-
mate is driven by de novo glutamine production, which is generally
set to match V PC. Neuronal VX was also related to V NT for the
respective compartment, i.e., either glutamatergic or GABAergic
neurons.

This subject requires further research, especially in condi-
tions of high brain activity, since very few experimental data
sets are available for analysis and most were acquired under
anesthesia. In addition, since different models were generally
used to estimate metabolic fluxes in different studies, this sort
of analyses (Figures 8 and 9) should be considered cautiously.
Employment of the same mathematical model to experiments
under a range of brain activities and identical physiological
conditions is required (86).

FIGURE 9 | V n
X and V n

TCA are on the same order of magnitude and
related (left). Accordingly, V n

X is also linearly related to glutamatergic or
GABAergic V NT (right). Data was collected from the same experiments as in
Figure 8, which determined both fluxes in an independent manner: rat
brain under pentobarbital-induced isoelectricity [white; Ref. (102)]; rat brain
under light α-chloralose anesthesia [orange, blue, and black are from Ref. (9,
10, 35)]; rat brain under light α-chloralose anesthesia but data modeled with
three metabolic compartments [pink/green are GABAergic/glutamatergic
compartments in Ref. (12)]; human cortex [red; Ref. (29)]; awake rat brain
[yellow; Ref. (33)]. Metabolic fluxes are shown in micromoles per gram per
minute with associated SD. P -value for the slope and R2 are shown for
each linear regression.

SUBSTRATE TRANSPORT AND UTILIZATION
Proton MRS is emerging as an important tool for diagnosis and
therapy monitoring as it provides biomarkers that offer finger-
prints of neurological disorders in translational and preclinical
neuroscience research (1). In addition, in vivo 1H MRS can be
applied dynamically to evaluate cerebral cellular mechanisms that
involve modification of metabolite concentrations, such as home-
ostasis disruption by pharmacological interventions (127) and
substrate uptake and utilization (83).

Glucose transport kinetics as measured in vivo by 1H MRS has
been mostly determined under steady-state conditions [e.g., Ref.
(101, 128)]. Steady-state transport measurement from brain glu-
cose content does not allow measuring glucose transport indepen-
dently from glucose consumption but a ratio between the apparent
maximum transport rate (T max) and the CMRGlc is determined.
Other studies determined glucose transport kinetics from varia-
tions of brain glucose content measured by 1H MRS upon a rapid
change in plasma glucose concentration, which allowed quanti-
fying both T max and CMRGlc (83, 129, 130). However, in these
studies, different kinetic mechanisms have been defined for the
glucose carriers at the BBB [discussed by Duarte and Gruetter
(65)].

Initial modeling studies on glucose transport were based on
the standard Michaelis–Menten kinetics to describe unidirectional
fluxes across the membranes composing the BBB. Hexokinase,
the rate-limiting step for glycolysis in the brain, operates close
to saturation at physiological glucose levels. Thus, such standard
Michaelis–Menten model predicted a maximum level for brain
glucose, namely that brain glucose should be below 5 µmol/g for
plasma glucose concentrations up to 30 mM.

However, brain glucose concentrations detected non-invasively
by MRS are typically ∼9 µmol/g at plasma glucose concentrations
of 30 mM in both humans and rodents [compared by Duarte
et al. (128)]. At such high plasma glucose concentrations, glucose
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efflux from the brain is substantial and inhibits its own carrier-
mediated uptake. Brain glucose concentrations above the K M of
GLUT1, the main glucose carrier at the BBB, imply that prod-
uct formation is not unidirectional, i.e., the reverse reaction may
proceed at significant rate. Glucose binding to the transporter at
the abluminal membrane may partially inhibit the influx from the
blood stream. When the product formation is not unidirectional,
reversible Michaelis–Menten kinetics are applicable, which can be
interpreted as reduced affinity for glucose influx, when substantial
brain glucose is present. At steady-state, the reversible Michaelis–
Menten model results in a linear relationship between brain and
plasma glucose (102, 128, 131, 132). Dynamic 13C MRS studies
with 13C-enriched glucose also demonstrated that transport of
glucose into the brain can be predicted by the reversible model in
rodents (9) and humans (29).

In certain studies, deviation from this predicted linearity was
observed at high glycemia (82, 133). This suggests that brain
glucose can induce a certain degree of inhibition at the glucose car-
rier upon severe hyperglycemia, which is patent in experimental
models of diabetes (82, 134, 135). This has been attributed to trans-
acceleration or asymmetry that are not accounted for in Michaelis–
Menten kinetics. Conversely, conformational four-state exchange
kinetic models of solute carriers can simultaneous account for
asymmetry, product inhibition, trans-acceleration, and multiple
substrate competition (136, 137). Such kinetics was shown to
efficiently describe brain glucose levels in multi-compartmental
models of brain glucose transport (83, 128, 138). Unlike the
reversible Michaelis–Menten model, this four-site exchange mech-
anism assumes that the free carrier after glucose release to the
brain’s interstice is not conformationally the same that binds glu-
cose outside, and that equilibrium exists between the two states of
the unloaded carrier (Figure 10). The four-state conformational
model predicts reverse glucose transport (and thus impediment of
glucose uptake by the occupied carrier, like the reversible model)
and that the presence of substantial amounts of glucose in the
interstice prevents the carrier from acquiring a conformation that
binds to glucose from plasma. In this case, for nearly symmetric
carriers, the net transport can be expressed as:

νt =
Tmax

(
Gplasma − Gbrain

)
Kt + Gplasma + Gbrain +

GplasmaGbrain

Kii

(15)

where K t is the apparent affinity constant and K ii denotes the iso-
inhibition constant that reflects the ability of glucose to inhibit
the translocation of carrier isoforms between the two faces of the
membrane. As previously demonstrated (128), the conformational
model is equivalent to the standard Michaelis–Menten model for
K t close to Kii, and to the reversible Michaelis–Menten model
at physiological glucose levels when Kii largely exceeds Gplasma.
Since K ii is indeed much larger than the concentrations of glu-
cose typically observed in the brain (83, 128, 138), the transport
mechanism based on the reversible Michaelis–Menten kinetics
can fully describe glucose transport under normal physiological
conditions. However, in metabolic conditions where high glucose
concentrations are observed, namely under eventual uncontrolled
diabetes (128, 135), the inhibition constant K ii may be important
in describing glucose transport at the BBB.

FIGURE 10 |The alternating-conformation kinetics of the glucose
carrier. In the absence of glucose (Gout or G in), the carrier can exist in two
inter-converting isomers that are ready to bind glucose either outside (T out)
or inside (T in) the membrane. When loaded, the carrier can also assume
two isomeric forms favoring glucose release to the outer (T outG) or inner
(T inG) side of the membrane. The rate constants k 1 and k−3 define glucose
binding while k−1 and k 3 define its dissociation from the carrier. The rate
constants k 2 and k−2 or k 4 and k−4 reflect the isomerization of the loaded or
unloaded carrier.

Magnetic resonance spectroscopy can be further extended to
spectroscopic imaging with spatial resolution in the microliter
range in rodents (139), being comparable to the spatial resolution
of animal PET imaging with [18F]fluorodeoxyglucose but with the
advantage of detecting glucose directly and, simultaneously, other
neurochemicals involved in energy metabolism (1). Such methods
can eventually be used to map regional glucose transport (140).

Although glucose is the main substrate for the brain, other
compounds like ketone bodies, acetate, or lactate can be used as
source of energy to maintain cerebral functions when glucose sup-
ply is limiting. Because they can be easily detected by 1H MRS (1),
similar approaches could be used to determine their transport
rates across the BBB. Although the potential of 1H MRS to non-
invasively evaluate homeostasis of substrates other than glucose
remain to be investigated, the measurement of the brain trans-
port kinetics for lactate or acetate were accomplished by 13C MRS
upon infusion of 13C-enriched tracers in rodents (67, 72) and
humans (141).

GLYCOGEN METABOLISM
Brain glycogen levels exceed those of glucose and are measurable
in a non-invasive way by localized 13C MRS after administration
of 13C-enriched glucose (142–144). In the adult brain, glycogen is
primarily located in glial cells (145–148) as the glycogen synthesis
machinery is physiologically inactive and glycogen phosphorylase
nearly absent in neurons (149–151).

In the rat brain in vivo, glycogen concentration was determined
to range from 3 to 6 µmol/g (144, 152–154). Its turnover time was
found to lie between 5 and 10 h under physiological conditions
(142, 144, 154, 155). Similar glycogen turnover time was reported
in the brains of mice (156) and humans (143).

Regulation of brain glycogen levels is complex and not
completely understood. Brain glycogen content was suggested
to increase with circulating insulin and with brain glucose
concentration (152, 153, 157–159). While glycogen content
is increased under anesthesia (152, 160, 161), somatosensory
stimulation increases glycogenolysis rate (162, 163) and thus
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reduces brain glycogen levels (164, 165). Although suggesting a
direct role of glycogen metabolism in brain function, this was
not observed under visual stimulation in both rodents (165) and
humans (143). In the mouse hippocampus,glycogen was suggested
to be involved in memory processing, being essential for long-term
but not short-term memory formation (166).

Brain glycogen decreases upon insulin-induced hypoglycemia
(152, 167, 168) due to enhanced glycogenolysis rate (157, 169,
170). It has been also proposed that recurrent hypoglycemia
leads to increased substrate transport through the BBB, as well
as to glycogen “supercompensation,” in which the brain adapts
to hypoglycemia by increasing glucose storage in the form of
extra glycogen content (157, 168). Similarly, glycogen supercom-
pensation was observed after depletion upon exhaustive exercise
in several brain areas of the rat brain (171). This role for brain
glycogen in buffering neuroglycopenia suggests its involvement in
hypoglycemia unawareness, which is defined as impaired counter-
regulatory hormonal responses to glycemia challenges and loss
of the neurogenic (autonomic) warning symptoms of develop-
ing hypoglycemia. Unawareness of low blood glucose is eventually
caused by recurrent hypoglycemia induced by intensive insulin
therapy in diabetes, particularly type 1 diabetes mellitus. Glycogen
supercompensation in the brain after episodes of hypoglycemia
and its role in hypoglycemia unawareness have hitherto been mat-
ter of debate (133, 157, 167–169, 172, 173). However, a variety of
inconsistent experimental protocols have been employed to tackle
this question, and it is not excluded that regulation of glycogen
levels is also affected by the duration of hypoglycemia insults or
the glycemia levels in the immediate period after hypoglycemia.

In summary, although brain glycogen metabolism presents
itself as having roles in glucose buffering upon limited glucose
supply, in either physiological or pathological conditions, the exact
mechanisms of glycogen metabolism regulation in vivo remain to
be understood. Modeling of glycogen metabolism in the brain
in vivo generally assume that the rates of binding and releasing
glucosyl units from the glycogen molecule are equal and that all
glycogen molecules display the same behavior independently of
their size (142, 155, 169). The parameters extracted from such
models are limited to glycogen concentration and turnover. How-
ever, due to its tight and complex regulation (174), study of glyco-
gen metabolism in vivo may require an analysis with mathematical
models including a more complete representation of the regulatory
network, as has been done for other organs with metabolic control
analysis [e.g., Ref. (175)].

CONCLUSION
The recent developments in the field of in vivo dynamic MRS
of brain metabolism have provided precious information on
substrate transport and utilization as well as neurotransmission
mechanisms. A quantitative interpretation of these data requires
advanced metabolic modeling approaches based on the biochem-
ical knowledge accumulated over several decades. The level of
complexity of these mathematical models strongly depends on the
amount of information accessible in vivo and limits the number
and precision of measurable metabolic rates.

In this review, we explained and discussed the methodology
applied in mathematical modeling of brain energy metabolism
measured with dynamic MRS, the assumptions required for mod-
eling, and the ways to estimate the robustness and adequacy of
a model. Monte Carlo simulations proved to be a precious tool
for this purpose. Although some metabolic flux values are still
a matter of debate, compartmental modeling of brain metabo-
lism of 13C-labeled energy substrates shined a new light on the
understanding of neuronal and glial oxidative reactions and neu-
rotransmission processes. Recent studies showed that substantial
glial metabolism supports both glutamatergic and GABAergic
neurotransmission. Even though the results obtained with two-
and three-compartmental models in those works tend to come to
a good agreement, some evidence supports the fact that the current
models of brain energy metabolism fail to completely describe 13C
MRS data.

The recent dynamic 13C isotopomer analysis using multi-
plets from homonuclear 13C coupling (10, 51) or the use of
hyperpolarized 13C methods (59, 126) may help to solve sev-
eral remaining questions concerning brain metabolic processes.
Overall, the availability of high magnetic field NMR systems and
the continuous improvements in the detection methods in both
13C and 1H MRS enable the non-invasive acquisition of meta-
bolic data with a steadily increasing level of detail and precision,
which will require improvement of current metabolic models
but is also expected to provide new insight in the understand-
ing of brain energy processes and brain function in the near
future.
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