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Epidemiological studies support the notion that arterial stiffness is an independent pre-
dictor of adverse cardiovascular events contributing significantly to systolic hypertension,
impaired ventricular-arterial coupling and diastolic dysfunction, impairment in myocardial
oxygen supply and demand, and progression of kidney disease. Although arterial stiffness
is associated with aging, it is accelerated in the presence of obesity and diabetes. The
prevalence of arterial stiffness parallels the increase of obesity that is occurring in epi-
demic proportions and is partly driven by a sedentary life style and consumption of a high
fructose, high salt, and high fat western diet. Although the underlying mechanisms and
mediators of arterial stiffness are not well understood, accumulating evidence supports the
role of insulin resistance and endothelial dysfunction. The local tissue renin-angiotensin-
aldosterone system (RAAS) in the vascular tissue and immune cells and perivascular
adipose tissue is recognized as an important element involved in endothelial dysfunction
which contributes significantly to arterial stiffness. Activation of vascular RAAS is seen in
humans and animal models of obesity and diabetes, and associated with enhanced oxida-
tive stress and inflammation in the vascular tissue. The cross talk between angiotensin
and aldosterone underscores the importance of mineralocorticoid receptors in modulation
of insulin resistance, decreased bioavailability of nitric oxide, endothelial dysfunction, and
arterial stiffness. In addition, both innate and adaptive immunity are involved in this local
tissue activation of RAAS. In this review we will attempt to present a unifying mechanism
of how environmental and immunological factors are involved in this local tissue RAAS
activation, and the role of this process in the development of endothelial dysfunction and
arterial stiffness and targeting tissue RAAS activation.

Keywords: renin-angiotensin-aldosterone system, arterial stiffness, insulin resistance, endothelial dysfunction,
obesity, diabetes

INTRODUCTION
Arterial stiffness is now considered an independent risk factor
for the progression of cardiovascular and chronic kidney disease
(CKD) (1). Arterial stiffness increases with aging and is associated
with isolated systolic hypertension which occurs in most elderly
persons (2). However, the process is accelerated in the presence
of obesity and diabetes and occurs at earlier ages (1, 3). Given the
association between arterial stiffness and obesity, it is likely that the
prevalence of arterial stiffness has been increasing proportionately
to the obesity epidemic, which is driven by consumption of a high
fat, high fructose, and high salt western diet and further aggravated
by a sedentary life style in adults and children in the Unites States
and around the globe (4–7). This underscores the importance of
arterial stiffness not only as a biomarker for the evaluation of pro-
gression of cardiovascular disease (CVD) and kidney disease, but

also an important therapeutic target for improved cardiovascular
and renal outcomes in obesity and diabetes.

ARTERIAL STIFFNESS AS A RISK FACTOR FOR
CARDIOVASCULAR AND KIDNEY DISEASE
Arterial stiffness is associated with obesity, insulin resistance, and
activation of the renin-angiotensin-aldosterone system (RAAS)
in individuals with the cardiorenal syndrome (CRS) and even
in obese children (1, 2, 5, 8). Increased arterial stiffness is also
seen in normotensive subjects predisposed to develop hyperten-
sion and in pre-hypertensive subjects (9, 10). In the Atheroscle-
rosis Risk in Communities analysis, incident hypertension was
more robustly predicted when subjects were in the highest quar-
tile of arterial stiffness. For each standard deviation decrease in
elasticity, there was a 15% increase in developing hypertension
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(11). Arterial stiffness increases with age, metabolic abnormali-
ties, and increased sodium intake, all of which are associated with
CVD, including heart failure (12, 13). Furthermore, arterial stiff-
ness itself is associated with left ventricular diastolic dysfunction
(14). Increased arterial stiffness is a marker of vasculopathy in
CKD patients, suggesting significant cardiovascular damage (15).
Arterial stiffness increases with worsening renal function (16). A
significant link between aortic pulse wave velocity (PWV) and
vascular calcification burden has also been described in CKD
patients (17).

MEASUREMENT OF ARTERIAL STIFFNESS: IN VIVO, EX VIVO,
AND IN VITRO
The evaluation of arterial stiffness in vivo in the clinical setting is
accomplished by measurement of arterial compliance and disten-
sibility by ultrasound, determination of PWV by measuring the
velocity of the pressure wave traveling between two arterial seg-
ments, and augmentation index by measuring the augmentation
pressure divided by blood pressure (1, 18). PWV closely relates
to arterial wall stiffness whereas augmentation index is related to
arterial wall stiffness, as well as wave reflection that is dependent
on peripheral resistance and affected by heart rate variation (1, 18).
The measurement of tissue and cell stiffness ex vivo and in vitro
is greatly enhanced by use of atomic force microscopy (AFM)
which can be performed on vascular tissues, endothelial cells,
and vascular smooth muscle cells (VSMC) and complimented
by confocal imaging (2, 3, 19, 20). Actin can be fluorescently
labeled with Alexa 568-phalloidin and cell images, topography,
and stiffness recorded with an integrated AFM-confocal micro-
scope system. Furthermore, studies employing AFM probes that
have been bio-conjugated with extracellular matrix (ECM) pro-
teins can be used to assess the role of β1-integrin binding and cell
adhesion to the ECM. These studies provided a novel concept that
both β1-integrin and α-smooth muscle actin play significant role
in increased stiffness of VSMCs (2, 3, 20).

ENDOTHELIAL DYSFUNCTION, ARTERIAL STIFFNESS, AND
INSULIN RESISTANCE
ENDOTHELIAL DYSFUNCTION AND ARTERIAL STIFFNESS
Arterial intima consists of an endothelial cell layer and underly-
ing layer of smooth muscle cells. It is separated from media by
internal elastic lamina. In larger conduit vessels, the medial layer
consists of concentric layers of elastic lamina interspersed with
collagen and smooth muscle cells (18, 21). The adventitial layer
is rich in fibroblasts, macrophages, lymphocytes, adipocytes, den-
dritic cells, and collagen (22). Arterial stiffness is regulated by a
variety of factors including those from endothelial cells, VSMC
alterations, cytokines, and inflammatory signals from the adven-
titia, and characteristic alterations in the ECM. The role of the
ECM in modulation of vascular stiffness is well-recognized, and
the high elastin to collagen ratio contributes to the elasticity of
healthy large arteries (22). With advancing age, there is progres-
sive thickening of arterial walls – predominantly in the intimal
layer – with marked increases in the intimal to medial thickness
ratio (23). There is also increased fragmentation and depletion of
arterial elastin coupled with greater medial deposition of matrix
metalloproteins and collagen (18, 21). Collectively, this leads to

thicker and stiffer arteries, and is more predominant in the central
elastic arteries compared to the peripheral, more muscular arter-
ies. However, the relationships between stiffness in central arteries
and more muscular arteries have not been clearly elucidated. The
pre-diabetic state is associated with increased arterial stiffness but
stiffness was unrelated to vessel wall thickness suggesting mech-
anisms distinct from ECM remodeling contributing to arterial
stiffness (24). In this regard, accumulating evidence suggests a role
for the vascular endothelium and provides new insights into the
regulation of arterial stiffness (25–27). Endothelial cells regulate
several arterial properties including arterial vascular tone and per-
meability, angiogenesis, and the vascular inflammatory response
(25–28). Recently, increased intrinsic stiffness of VSMC has also
been implicated in aging (2, 3, 20) and spontaneously hyperten-
sive rats (2, 3, 20, 29). Modulation of transglutaminase 2 (TGM2)
by endothelial nitric oxide (NO) (30), identification of vascular
smooth muscle cytoskeletal proteins as substrates of TGM2 (31)
and inhibition of smooth muscle metalloproteinase expression by
NO (32) suggest the role of endothelial and smooth muscle cross
talk in modulating arterial stiffness.

INSULIN AND RAAS SIGNALING AND IMBALANCE OF METABOLIC AND
GROWTH SIGNALING IN THE DEVELOPMENT OF ENDOTHELIAL
DYSFUNCTION AND ARTERIAL STIFFNESS
The effects of insulin in the vasculature involve meta-
bolic signaling through the insulin receptor substrate-1 (IRS-
1)/phosphatidylinositol 3-kinase (PI3 kinase) AKT/endothelial
nitric oxide synthase (eNOS) pathway, as well as growth factor
signaling through the ERK1/2/endothelin-1 (ET-1) pathway (28,
33–36). Regulation of endothelial function by insulin metabolic
signaling is critical for normal endothelial function and vascular
stiffness (1, 8, 33, 34). This insulin metabolic signaling is inhib-
ited by both angiotensin II (Ang II) and aldosterone in vascular
endothelial cells and VSMCs (Figure 1). The local vascular effect
of insulin beyond systemic effects regulates endothelial activation
of eNOS and other signaling pathways (28, 33, 35). In vascular
endothelial cells, insulin stimulates production of the vasodila-
tor NO via activation of IRS-1/PI3K signaling (Figure 1) (34,
35). In contrast, growth signaling pathway leads to activation of
ERK1/2 and production of the vasoconstrictor ET-1. ET-1 as well
as Ang II and aldosterone cause vascular stiffness (1, 8, 28, 36) and
increased serum levels of ET-1 are seen in conditions associated
with arterial stiffness (36). Activation of the RAAS also leads to
impaired IRS-1/PI3K signaling and blunts downstream antioxi-
dant, anti-inflammatory effects of insulin metabolic signaling (22,
34). This, in turn, further impairs insulin-induced vasodilation,
capillary recruitment, and augments increases in arterial stiffness
(33, 34, 37).

INSULIN RESISTANCE, ENDOTHELIAL DYSFUNCTION, AND ARTERIAL
STIFFNESS AS AN EARLY EVENT IN PROGRESSION OF CVD AND CKD
Endothelial dysfunction is strongly associated with insulin resis-
tance, arterial stiffness, and progression to CVD and CKD (24, 25,
33). Arterial stiffness may also be seen in the absence of insulin
resistance in conditions such as hyperglycemia of diabetes melli-
tus and accumulation of advanced glycation end products (AGE)
(37, 38). Individuals with obesity are likely to have an increase
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FIGURE 1 | Renin-angiotensin-aldosterone system and regulation of
insulin signaling phosphorylation of docking protein insulin receptor
substrate -1 (IRS-1) is the major converging point in insulin signaling.
The phosphorylation of serine residues of IRS-1 by mammalian target of
ribosomal p70 S6 kinase (S6K1) acts as a convergence point for the regulation
of IRS-1 phosphorylation by nutrients, hormones, and cytokines. Activation of

RAAS in endothelial cells and vascular smooth muscle cells leads to inhibition
of insulin signaling though phosphorylation of serine residues of IRS-1. This
results in impaired signaling though attenuation of phosphatidylinsositol-3
kinase (PI3- kinase)/protein kinase B (Akt) signaling pathway linked to
metabolic insulin signaling. This leads to reduced production of nitric oxide
and endothelial dysfunction and altered vascular smooth muscle function.

in aortic stiffness, independent of blood pressure level. Obesity
and arterial stiffness are also independent factors for diastolic dys-
function (38, 39). The occurrence of arterial stiffness and diastolic
dysfunction in the absence of elevated blood pressure suggest that
arterial stiffness is an early event in the progression to CVD and
CKD. In this regard, arterial stiffness is also associated with insulin
resistance and an activated RAAS in obesity (38, 39), and insulin
resistance alone in the absence of hypertension and coronary heart
disease is also associated with diastolic dysfunction (obesity car-
diomyopathy) (34). Insulin resistance precedes the development of
vascular, cardiac, and renal complications associated with obesity
(35). Reduction of aortic dilation to insulin, but not acetylcholine,
prior to the onset of hypertension in the spontaneously hyperten-
sive rats (40) and in aged rats (41) provides evidence that insulin
resistance is an early event in the development of hypertension.

ROLE OF TISSUE RAAS IN VASCULAR CELLS
BEYOND CLASSICAL AND CIRCULATING RAAS
Inappropriate activation of RAAS is being increasingly recognized
as a major factor in determining endothelial dysfunction, arter-
ial stiffness, and progression to CVD and CKD (37, 38, 42–44).
The RAAS is considered as an endocrine system with kidney-
derived renin regulating the production of Ang II. In the blood,
renin acts on liver-derived angiotensinogen to form Angiotensin
I (a decapeptide). Angiotensin I is converted to biologically active
Ang II (octapeptide) by the action of endothelial (mainly pul-
monary endothelium) derived angiotensin converting enzyme
(ACE) (45–49). Ang II acts on adrenals to stimulate the production
of aldosterone and on cardiovascular and other tissues to regulate
cardiovascular remodeling and blood pressure, in part by inhibit-
ing insulin metabolic signaling in cardiovascular tissues (33, 34,
45) (Figure 1).

In addition to the conventional circulating RAAS, the pres-
ence of RAAS components have been detected in tissues such
as heart, kidney, vasculature, adipose tissue immune cells, and

brain (44–49). Recent studies have shown that VSMCs synthe-
size angiotensin II intracellularly. Intracellular Ang II regulates
the expression of angiotensinogen and renin, generating a feed-
back loop. The first reaction of intracellular Ang II synthesis is
catalyzed by renin or cathepsin D, depending on the cell type, and
chymase, not ACE, catalyzes the second step (46, 47). The increased
production of Ang II in vascular tissue in conditions of high glu-
cose suggests this component may be of significance in diabetes
(46, 47). In additional to the classical Ang II system, the role of
non-classical angiotensin peptides generated by tissue ACE2 com-
prising Ang-(1–9) and Ang-(1–7) which generally antagonize the
actions of Ang II are increasingly recognized for their bioactiv-
ity (46–49). Ang-(1–7) is also converted to Ang-(1–5) by ACE.
Ang III, Ang IV, Ang-(3–7) are other peptides formed from Ang II
(46–49). The role for these peptides in vascular tissue is not well
understood.

Although the precise role of aldosterone-induced vascular
insulin resistance has not been fully elucidated, improved endothe-
lial function in various disease models following treatment with
mineralocorticoid receptor (MR) antagonists has been reported
(34, 50–53). Blockade of MR by spironolactone decreases local
inflammation and vascular stiffness in rodent models of hyper-
tension and insulin resistance (50, 52–54). The contribution of
MR signaling to insulin resistance is also supported by insulin
resistance in patients with primary hyperaldosteronism (55) and
correlation of plasma aldosterone levels with BMI and insulin
resistance in normotensive subjects (56).

CELLULAR AND MOLECULAR MECHANISMS OF VASCULAR
RAAS-INDUCED INSULIN RESISTANCE, ENDOTHELIAL DYSFUNCTION,
AND ARTERIAL STIFFNESS
Molecular mechanisms underlying RAAS-mediated endothelial
dysfunction and arterial stiffness in aging, obesity, CRS, and dia-
betes is not well understood. The role of increased serine phos-
phorylation of IRS-1 in Ang II and aldosterone-mediated impaired
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insulin signaling has been demonstrated (33, 34, 57) but the role of
mammalian target of rapamycin (mTOR)/S6 kinase (S6K) medi-
ated IRS-1 serine phosphorylation in endothelial cells are not
well characterized. We have recently examined the signaling path-
ways mediating insulin resistance by enhanced activation of tissue
RAAS in cardiovascular tissue (57). The serine phosphorylation
of IRS-1 was increased and insulin-stimulated phosphorylation of
eNOS was decreased by Ang II treatment. Moreover, rapamycin,
an inhibitor of (mTOR) activation attenuated Ang II-stimulated
phosphorylation of p70S6K and IRS-1 and blocked the ability
of Ang II to impair insulin-stimulated phosphorylation of eNOS
and NO-dependent arteriole vasodilation. These results suggest
the role for activation of mTOR/p70S6K by Ang II in vascu-
lar endothelium in mediating impairment of insulin-stimulated
vasodilation through phosphorylation of IRS-1 (57). However,
MR-dependent effects on endothelial insulin signaling have not
been examined.

The role of cross talk between Ang II and aldosterone sig-
naling is increasingly recognized in the development of insulin
resistance, endothelial dysfunction, and arterial stiffness (35, 50,
58–60) (Figure 1) and MR blockade attenuates Ang II-induced
vascular damage (35, 50, 58, 59). Aldosterone activates NADPH
oxidase, thereby promoting oxidative stress and decreased NO
bioavailability (34, 50, 61). This is further supported by decreased
reactive oxygen species production and agonist-mediated vaso-
constriction by specific deletion of VSMC MR in aged mice (59).
Aldosterone-induced MR activation increases expression of the
intracellular cell adhesion molecule 1 (ICAM-1) (34). Moreover,
aldosterone was shown to increase epithelial Na+ channel expres-
sion on the endothelial cell surface that correlated with increased
cortical stiffness of the cytoskeleton in endothelial cells (62). Of
potential importance is that the increase in endothelial cell stiff-
ness was associated with a reduced release of NO (62), which in
turn could impact stiffness of VSMC. These observations suggest
that inhibition of MR might be a beneficial therapeutic approach
for preventing vascular stiffening.

UP REGULATION OF LOCAL INTRACRINE RAAS IN OBESITY, CRS, AND
DIABETES: ROLE OF MALADAPTIVE IMMUNE AND INFLAMMATORY
RESPONSE
Although the significance of local RAAS may not be fully under-
stood, the increased expression of RAAS components in vascular
tissues in animal models of obesity (63, 64), and direct modu-
lation of vascular RAAS in the vasculature in vivo and in vitro
by insulin (33, 63), uric acid (65), and estrogens (66), favors the
role of vascular RAAS modulating endothelial dysfunction and
arterial stiffness. Importantly, these factors also cause dysregula-
tion of immune function and a pro-inflammatory response in the
vasculature that contribute to endothelial dysfunction and arte-
rial stiffness associated with the consumption of western diet or
increased cardiovascular risk in women in the setting of obesity
and diabetes.

MALADAPTIVE IMMUNITY AND LOW GRADE SYSTEMIC
INFLAMMATORY RESPONSE
Accumulating evidence suggests the association of inappropriate
activation of RAAS and maladaptive immune and inflammatory

responses in modulating endothelial dysfunction and vascular
stiffness in obesity and diabetes (67–71). Increased levels of
cytokines in the plasma due mainly to visceral adipocyte dysfunc-
tion, may contribute significantly to the activation of RAAS in the
vascular tissue (38, 68, 69). Moreover, oxidative stress has been
shown to cause increased expression of the angiotensin II type-1
(AT1) receptor (68, 69, 71). Decreased levels of interleukin (IL)-10
and impaired function of T-regulatory cells, result in activation of
endothelial NADPH oxidase (68, 69, 71). Therefore, an inappro-
priate activation of RAAS causes cytokine imbalance in plasma and
inappropriate activation of RAAS in vascular tissues by cytokines
results in a feed forward loop of persistent activation of vascular
RAAS in obesity and diabetes (68, 69, 72).

PERIVASCULAR ADIPOCYTE DYSFUNCTION
The role of perivascular adipose tissue contributing to inflamma-
tion, insulin resistance, endothelial dysfunction, and vascular stiff-
ness is increasingly recognized (69, 72–74). In lean mice, perivas-
cular fat exerts protective vasoregulatory effects, but this protective
effect is lost in obese mice (74). Endothelial dysfunction in obesity
is associated with a significant infiltration of macrophages and T
cells in perivascular adipose tissue (72–74). Moreover, perivascular
adipose tissue is also a source of Ang II and increased production
of Ang II by perivascular fat may also account for impairment of
vascular function (75).

HIGH FRUCTOSE DIET, URIC ACID, AND VASCULAR RAAS
Elevated serum uric acid level is a frequent finding in persons
with obesity, hypertension, cardiovascular, and kidney disease.
Increased consumption of a fructose-rich western diet also results
in elevations in uric acid (6, 7). Elevated serum levels of uric acid
appear to contribute to maladaptive immune and inflammatory
responses (65, 69, 76), activation of angiotensin system in the vas-
cular cells (65), impaired NO production/endothelial dysfunction
(77), and increased vascular stiffness (78, 79).

SEX DIFFERENCES: ABROGATION OF CARDIOVASCULAR PROTECTIVE
EFFECTS OF ESTRADIOL IN OBESITY AND DIABETES IN
PREMENOPAUSAL WOMEN
Females of reproductive age have fewer cardiovascular events
however this protection is lost after menopause, suggesting cardio-
protective effects of estradiol. The cardio-protective effect of
estradiol is also lost in the setting of obesity and diabetes in
premenopausal women (69, 80–83). In this regard, arterial stiff-
ness is substantially higher in women than in age-matched men,
and is associated with cardiac diastolic dysfunction (82). In a
community-based cohort study, increased arterial stiffness was
associated with reduced left ventricular diastolic function in both
men and women. However, the greater arterial stiffness observed
in women was associated with higher incidence of diastolic dys-
function (83–85). Estrogen modulates both Ang II signaling and
immune and inflammatory responses. Estradiol normally sup-
presses actions of Ang II by inhibiting the expression of AT1 (86,
87). However, under the conditions of inhibition of NO synthase
and high salt, estradiol increases the expression of AT1 receptor
(66, 87). Moreover, GPR-30 which also mediates estradiol effects,
increases the expression of ACE2 and decreases the expression of
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AT1 receptor (88, 89). Estrogen receptor alpha and GPR-30 have
been shown to exert an anti-inflammatory effect via modulation
of T-cell immune response (90, 91). In addition, estrogen receptor
alpha-mediated signaling in macrophages contributes to enhanced
insulin sensitivity (92). These findings suggest that a crosstalk
between estrogen and Ang II signaling may be one of the factors
contributing to sex differences in altered immune and inflamma-
tory responses, endothelial dysfunction, and arterial stiffness, in
obesity and diabetes. Furthermore, a recent study demonstrating
arterial stiffness in obese pre-menopausal women underscores the
role of obesity in abrogating cardiovascular protection in those
women (93).

CONCLUSION
Arterial stiffness is an independent factor promoting the progres-
sion of CVD and renal disease in obesity and diabetes. Inappro-
priate activation of vascular RAAS in humans and animal models
of obesity and diabetes is associated with endothelial dysfunction
and arterial stiffness. However, accumulating evidence suggests
the role of local tissue RAAS in the vascular tissue, immune
cells, and perivascular adipose tissue in endothelial dysfunction

contributes significantly to arterial stiffness. The cross talk between
angiotensin and aldosterone underscores the importance of the
MR in modulation of oxidative stress, insulin resistance, decreased
bioavailability of NO, endothelial dysfunction, and arterial stiff-
ness. In addition, both innate and adaptive immunity are involved
in local tissue activation of RAAS and in turn are modulated
by environmental factors such as high fat/sucrose western diet.
Moreover, arterial stiffness is reported in pre-menopausal obese
women and estrogen mediated cardiovascular protection is lost
in obese or diabetic pre-menopausal women. Taken together, tar-
geting endothelial function and arterial stiffness by modulating
tissue RAAS system appears to be an attractive therapeutic strat-
egy to reduce the CVD and CKD complications associated with
obesity and diabetes.
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