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Male reproductive function is under the control of both gonadotropins and androgens
through a negative feedback loop that involves the hypothalamus, pituitary, and testis
known as hypothalamus–pituitary–gonadal axis (HPG). Indeed, estrogens also play an
important role in regulating HPG axis but the study on relative contribution to the inhi-
bition of gonadotropins secretion exerted by the amount of estrogens produced within
the hypothalamus and/or the pituitary or by the amount of circulating estrogens is still
ongoing. Moreover, it is known that the maintenance of spermatogenesis is controlled by
gonadotropins and testosterone, the effects of which are modulated by a complex net-
work of locally produced factors, including estrogens. Physiological effects of estrogens
are mediated by the classical nuclear estrogen receptor alpha and estrogen receptor beta,
which mediate both genomic and rapid signaling events. In addition, estrogens induce
rapid non-genomic responses through a membrane-associated G protein-coupled estrogen
receptor (GPER). Ours and other studies reported that, in the testis, GPER is expressed in
both normal germ cells and somatic cells and it is involved in mediating the estrogen action
in spermatogenesis controlling proliferative and/or apoptotic events. Interestingly, GPER
expression has been revealed also in the hypothalamus and pituitary. However, its role in
mediating estrogen rapid actions in this context is under investigation. Recent studies indi-
cate that GPER is involved in modulating gonadotropin-releasing hormone (GnRH) release
as well as gonadotropins secretion. In this review, we will summarize the current knowl-
edge concerning the role of estrogen/estrogen receptors molecular pathways in regulating
GnRH, follicle-stimulating hormone, and luteinizing hormone release at the hypothalamic
and pituitary levels in males as well as in controlling specific testicular functions such as
spermatogenesis, focusing our attention mainly on estrogen signaling mediated by GPER.
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INTRODUCTION
Male fertility and hence its reproductive potential is a result of
a complex and intricate as a fine neuroendocrine control. Tra-
ditionally the adult male reproductive function was considered
to be controlled by both gonadotropins and androgens through
a negative feedback loop that involves the hypothalamus, pitu-
itary, and testis known as the hypothalamus–pituitary–gonadal
axis (HPG). As such, spermatogenesis is regulated by the pul-
satile release of gonadotropin-releasing hormone (GnRH) from
the arcuate nucleus of the hypothalamus, which stimulates the
anterior pituitary to release follicle-stimulating hormone (FSH)
and luteinizing hormone (LH) (1). Accordingly, at the testicular
level, LH stimulates the Leydig cells to produce testosterone, which
has a local effect on the interstitium and seminiferous tubules and
results in sperm production and maturation while FSH exerts its
effect directly on the Sertoli cells that in turn promote and sus-
tain spermatogenesis (1). Both GnRH and gonadotropin secretion
could be modulated by testosterone and more surprisingly, estra-
diol (E2) acting on the hypothalamus or on the pituitary via a
feedback regulating mechanisms (2). However, the specific role

of each sex steroid in the regulation of gonadotropin negative
feedback is still not completely clarified.

In males, the major source of circulating estrogens is the aroma-
tization of androgens as a consequence of the action of the enzyme
complex known as aromatase that is widely expressed in a number
of male tissues including the testis and brain (3, 4).

Cellular effects of estrogens occur via classical estrogen recep-
tor alpha (ESR1) and estrogen receptor beta (ESR2) located in the
nucleus and cytoplasm of the target cells and belong to the nuclear
receptor superfamily members that act as nuclear transcription
factors, binding to estrogen response elements (EREs) within spe-
cific genes to alter their rate of transcription (5). However, it
has become clear that estrogens also exert rapid, non-genomic
effects by altering different signaling pathways both in central and
nervous system peripheral tissues (6).

These“non-genomic effects”could be mediated by extranuclear
estrogen receptors (ERs) or by non-classical membrane bound
receptors such as G protein-coupled estrogen receptor also named
GPR30/GPER that has been identified as a novel ER (7). Estradiol
through GPER rapidly activates different pathways including the
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stimulation of adenylyl cyclase, mobilization of intracellular cal-
cium (Ca2+) stores, and activation of mitogen-activated protein
kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling
pathways (8, 9).

In this review, we will summarize the current knowledge con-
cerning the role of estrogen/ERs signaling in regulating GnRH,
FSH, and LH release at the hypothalamic and pituitary levels in
males as well as in controlling specific testicular functions such
as spermatogenesis, focusing our attention mainly on estrogen
signaling mediated by GPER.

ROLE OF ESTROGEN AND ESTROGENS RECEPTORS IN GnRH,
LH, AND FSH SECRETION IN MALES
ESTROGEN FUNCTIONS AT THE HYPOTHALAMIC LEVEL
Gonadotropins and gonadal steroids, being involved in the reg-
ulation of secondary sex characteristics, gametogenesis, cellular
functions, and also behavior, are the main driving force for repro-
ductive function. The hypothalamic GnRH neurons that control
LH and FSH release from the pituitary represent the final common
pathway for neuronally derived endogenous as well as exogenous
stimuli (10). In both males and females, gonadal steroid hormones
exert negative feedback regulation on HPG axis activity at both the
hypothalamus and pituitary levels. In females, the feedback mech-
anism is more complex since estrogen and progesterone induce
both negative and positive feedback responsible for generating
the pre-ovulatory GnRH and LH surge (10). Thus, the neuroen-
docrine mechanism underlying the ovulatory LH and FSH surge,
characteristic of the mature female reproductive system, is usually
extinguished in males by neonatal androgen imprinting (10).

Several evidences indicate that testicular steroids, androgens,
and estrogens could mediate the feedback actions on gonadotropin
secretion interacting with their receptors, ERs or androgen recep-
tors (ARs) that were found in the male hypothalamus (11). How-
ever, there is no clear consensus on the role of ER versus AR
signaling in males (12, 13). Aromatization of testosterone to estra-
diol and reduction to 5α-dihydrotestosterone (DHT) is mandatory
for normal male reproduction and occurs in peripheral (14) and
central tissues (15, 16). Sharma and co-workers have demon-
strated that aromatase inhibitor administration into the third
cerebral ventricle of intact rams resulted in an increased frequency
of LH pulses without affecting estradiol plasma concentrations
(17). In addition, existence of these feedback actions is further
clearly illustrated in a range of species by an increased secretion of
the gonadotropins following castration (18–20). Accordingly, an
increased LH secretion was found also in intact or castrated rams
passively or actively immunized against estradiol (18). However,
how testosterone and/or its primary metabolites act within the
brain to suppress the synthesis and/or secretion of GnRH need
more investigation.

In humans, androgen aromatization for normal gonadotropins
feedback function (21) has been discovered by the use of testos-
terone or estradiol infusion in men affected by idiopathic hypo-
thalamic hypogonadism (IHH). On the other hand, the authors
did not record any change in LH and FSH secretion when pure
androgen DHT was administered. These data indirectly suggest
that the peripheral 5α-reduction of testosterone to DHT plays
a minor role in the control of the secretion of gonadotropins

(21). Thus, the inhibitory effect on gonadotropin secretion is
mediated mainly by estradiol from endogenous conversion of
testosterone rather than direct androgen action, at least in the
pituitary gland (21). Indeed, other studies suggested that in situ
aromatization of testosterone is required both at the hypothala-
mic and pituitary levels to insure a complete feedback mechanism
of gonadotropins (22, 23). Moreover, the results coming from
basal, GnRH-stimulated, and pulsatile evaluation of LH and FSH
secretion in two aromatase-deficient men have provided direct
evidence that circulating estrogens exert an inhibitory control in
LH feedback at both the hypothalamic and pituitary levels (24).

It is universally accepted that estradiol actions were mediated
by its interaction with ERs ESR1 and ESR2 that act as hormone-
inducible transcription factors determining estrogen-dependent
gene transactivation (1). Several studies, involving a range of
species and both sexes, have demonstrated that GnRH neurons
do not express ESR1 (25–27), even though a small number of
GnRH neurons containing ESR1 were found in female rats (28).
Indeed, accumulating evidence suggests that estrogen could act
in GnRH neurons through ESR2. In fact, ESR2 immunoreactivity
was detected first in rodents (29, 30) and later in humans (31).
However, studies performed in Esr1 knock-out mice suggest that
in males, ESR1 is the predominant receptor involved in mediat-
ing estradiol suppression of GnRH content (12). Moreover, it was
also demonstrated that in mouse LHRH neurons (29) ESR2 may
mediate the rapid estradiol effects because mouse LHRH neurons
expressed only ESR2, and the nuclear ER antagonist, ICI 182,780,
suppressed the effect of estradiol on Ca2+ oscillations. However,
in primate LHRH neurons, estradiol appears to cause its action
through a different mechanism, because ICI 182,780 failed to block
the estradiol-induced changes in Ca2+ oscillations and synchro-
nization (32). This finding could be explained by the study of Noel
and co-workers (33) suggesting a GPER involvement in the rapid
action of estradiol in hypothalamic neurons. In fact these authors
demonstrated that GPER is expressed in olfactory placode cultured
cells and in a subset of LHRH neurons and that GPER gene knock-
down in LHRH neurons completely abrogate both estradiol- and
estrogen-dendrimer conjugate-induced changes in Ca2+ oscilla-
tions. Furthermore, using a selective specific GPER-agonist, they
obtained changes in Ca2+ oscillations similar to those observed
upon estradiol treatment confirming that estradiol rapid action
appears to be mediated, at least partially, through GPER (33).
However, further investigation is needed to better clarify what the
specific target cells for estrogens action at the hypothalamic level
are and what receptors are involved.

ESTROGEN FUNCTIONS AT THE PITUITARY LEVEL
In male vertebrates, LH and FSH plasma levels are largely regulated
by GnRH and activins as stimulators and steroids and inhibins
as inhibitors (34, 35). The negative feedback action of testicular
androgens on serum LH and FSH was first demonstrated utilizing
castrated animal models evidencing a substantial increase in LH
and FSH levels that were prevented by the administration of phys-
iological levels of testosterone (36). Later studies have pointed
out the hypothalamus and pituitary as targets for such feed-
back. Although there are conflicting data concerning the effects
of testosterone on GnRH synthesis and secretion, studies have
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demonstrated that castration and steroid replacement alter levels
of GnRH messenger RNA (mRNA) (37), processing of GnRH pro-
hormone (38), hypothalamic GnRH contents (39), and patterns
of pulsatile GnRH release (39, 40). Besides examining hypothala-
mic sites of action, a number of investigators have also examined
feedback directly on the pituitary. Testosterone, DHT, or estradiol
is able to suppress GnRH-stimulated LH secretion from pituitary
cultures (41), whereas T treatments increase basal FSH secretion
and intrapituitary FSH levels (42). Furthermore, molecular analy-
ses of the promoter regions of the gonadotropin genes such as
α-gonadotropin subunit (αGSU), FSHβ, and LHβ subunits (43)
have revealed the presence of responsive elements through which
AR or ER mediated the feedback effects exerted by testosterone or
estradiol, respectively.

It is worth noting that estrogen responsiveness of the pitu-
itary gland requires the presence of ERs, including the classical
ESR1 and ESR2 (44). The ER expression and distribution pat-
terns in pituitary glands have been studied in rats (45), sheep
(46), and humans (47). The localization of ARs in the pituitary
is also well-established since AR expression has been reported in
the anterior pituitary gland of humans (48), rhesus monkeys, rats
(49), Brazilian opossums (50), and mice (51).

Although these data support pituitary sites of steroid action,
mainly in feedback regulation, it is unclear whether the effects of
T are primarily mediated directly through the AR or indirectly
via aromatization and activation of ERs. Experiments performed
with a non-aromatizable androgen DHT has been demonstrated
to suppress serum LH and basal levels of αGSU and LHβ mRNA in
rats (52), confirming AR-mediated feedback. As such, antiandro-
gen flutamide induced up-regulates of LH serum concentrations
(53). At the molecular levels it was also demonstrated that the
enhancer elements of the αGSU gene is a target of AR-mediated
suppression (43).

In addition, other studies have demonstrated that exogenous
estradiol treatment (34) reduced LH and FSH concentrations and
gonadotropin mRNAs content, while treatment with aromatase
inhibitors determines an increase of LH serum levels (54). The
roles of estrogens/ESR1 signaling are further supported clinically
by the elevated serum FSH levels in an estrogen-resistant patient
(55) as well as in aromatase-deficient humans (24). The unsolved
debate focusing on what steroid receptor, AR and/or ESR1, is
able to mediate negative feedback on serum gonadotropins is fur-
ther complicated by the presence of ESR2 (56). Although ESR2
mRNA levels are very low in adult mouse pituitaries (57), there
are studies, as already above mentioned, reporting that the hypo-
thalamic nuclei of both rats and mice express ESR2 at both
transcriptional and post-transcriptional levels (57, 58). Thus, it is
reasonable to hypothesize that testicular steroids could modulate
hypothalamic-pituitary activity directly through AR or indirectly
through aromatization and activation of either ESR1 or ESR2
signaling pathways.

Estradiol effects in the pituitary gland occur mainly through
genomic mechanisms (59) as evidenced in a mouse gonadotroph
cell line (LβT2) where estradiol administration increased LHβ

mRNA levels (60) due to the presence of EREs within the promoter
region of LHβ gene (61). It is noteworthy that there is also experi-
mental evidence for estrogen-independent ESR1 transcriptional

activation in gonadotrope cells most probably through GnRH
receptor and signaling via protein kinase C (PKC) and MAPK
pathways (62). Recent studies indicate that GPER is involved in
suppressing GnRH-stimulated LH release in primary pituitary cell
culture derived from ovariectomized ewes (63). However, to date
there are no studies showing GPER-mediated non-genomic signal-
ing events in the male pituitary. Since GPER has been identified
in the plasma membrane of a variety of target tissues, including
anterior pituitary (64, 65), we can speculate that GPER could have
a role in mediating the non-genomic effects of estradiol in the
male pituitary.

ESTROGEN AND HPG AXIS IN MALES: LESSONS FROM
ANIMAL MODELS
The development of knock-out or transgenic mice with tar-
geted disruptions of ERs and/or aromatase has increased our
understanding of estrogen function in reproduction (66).

Controversy aspect regarding the male hypothalamic and pitu-
itary feedback regulation by steroids has been partially resolved by
the observation of data coming from the castration and steroids
replacement experiments in Esr1 knock-out (ERKO) mouse (67)
model. Lindzey and co-workers demonstrated that in males,
ESR1 is the predominant receptor involved in mediating estradiol
suppression of gonadotropin release and gonadotropin subunit
mRNA expression (12). The role of an activated AR by testos-
terone is, of course, not secondary, as demonstrated by the ability
of testosterone administration to suppress serum LH in ERKO
male mice but its aromatization seems to produce a more func-
tional inhibitory effect on the hypothalamic-pituitary feedback
and this is also true for FSH production (12).

Other in vivo studies confirmed that estrogens have impor-
tant roles in the regulation of spermatogenesis. The hypogonadal
(hpg ) mouse (68) that does not produce mature GnRH decapep-
tide due to a truncation in the GnRH gene is widely used as an
animal model to investigate the endocrine regulation of spermato-
genesis (69). Hpg mice are infertile because they do not produce
gonadotropins and hence the testis failed to develop (70). By the
hpg mice model it was demonstrated that treatment with LH stim-
ulate steroidogenesis (71) and a combined treatment with FSH and
androgens induce normal spermatogenesis (72, 73). More interest-
ingly, later research demonstrated that chronic estradiol treatment
of this animal model was able to restore spermatogenesis (69, 74,
75), via a mechanism involving a weak neuroendocrine activation
of FSH secretion. These latter results raised the question about
the site specific action of estrogen in hpg mouse model. Further
studies based on traditional pharmacological approaches using
selective ER agonists in engineered hpg animals knocked-out for
ERs (hpg /ESR1 and hpg /ESR2) revealed that estradiol-mediated
spermatogenesis takes place in hpg animals through the involve-
ment of ESR1, but not ESR2, dependent mechanism responsible
for the increase of FSH and testis (mainly Sertoli cells) function.

Spermatogenesis as a target for estrogen/ER signaling has been
documented by the use of knock-out mice model for all three
ERs (ESR1, ESR2, and GPER) as well as for the aromatase gene.
Esr1 KO animals have reduced fertility because of abnormal fluid
reabsorption in the efferent ductules (76), whereas initially sper-
matogenesis, steroidogenesis, and fertility were found unaffected

www.frontiersin.org January 2014 | Volume 5 | Article 1 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Experimental_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chimento et al. ERs, HPG axis and spermatogenesis

in Esr2 KO animals (66). However, all these Esr2 mutants displayed
alternative splicing transcripts that could compensate for the lack
of full-length receptor isoform. An interesting study showed that
a new Esr2−/− mutant mouse, in which exon 3 of Esr2 was deleted
by Cre/LoxP-mediated excision, completely avoiding any down-
stream transcripts, produced sterile males (77). The cause for the
sterility of these male mice is still unknown, because their gonads
and internal genital organs appear histologically normal and the
mobility of their spermatozoa appears normal too (77). In aro-
matase knock-out (ArKO) mice the lack of estrogen production
results in an alteration of a complex hormonal balance controlling
meiosis progression, leading to a significant decrease in spermato-
cytes and round and elongated spermatids number associated with
apoptotic features (78, 79). The more severe testicular phenotype
observed in ArKO mice compared to ERKO mice (66) supports the
hypothesis that an alternative receptor (i.e., GPER) and alternative
pathways could be involved in mediating the effects of estrogen on
spermatogenesis.

A study with Gper deficient mice (80) claimed that Gper was not
involved in estrogenic responses of reproductive organs. However,
even though male and female Gper KO mice were found fertile, it
is noteworthy that the study did not show data on the spermatoge-
netic process, while a careful examination of estrogenic response
was carried out only on the uterus and mammary glands.

A mouse model harboring a two amino-acid mutation of
the DNA-binding domain (E207A, G208A) that precludes direct
binding of ESR1 to an ERE has allowed discrimination between
estrogen action through ERE versus non-ERE pathways (81). The
loss of non-classical ESR1 signaling pathways is responsible for
most of the reproductive tract defects observed in male ERKO
mice (81). These data do not, however, distinguish between the
various non-classical pathways (e.g., tethering versus membrane
signaling) but support strongly the hypothesis that rapid estrogen
signaling could play a crucial role in spermatogenesis.

An original study using estrogen non-responsive Esr1 knock-
in (ENERK1) mice, which have a point mutation in the LBD of
Esr1 that significantly reduces interaction with and response to
endogenous estrogens, but does not affect activation of Esr1 by
growth factors, showed that estrogen-dependent Esr1 signaling is
required for germ cell viability (82).

New information on the role of ESR1 signaling in the regulation
of chromatin remodeling during spermiogenesis were obtained
from recent works on Type 1 Cannabinoid Receptor Knock-out
Mice (Cnr1−/−) model by Cacciola et al. (83, 84). The characteri-
zation of the reproductive Cnr1−/− Mice phenotype [reviewed in
Ref. (85)] revealed that estrogen through its receptor is able to pre-
serve chromatin condensation and DNA integrity of spermatozoa
by promoting histone displacement in spermatids.

In summary, the studies in vivo support the findings that
estrogen and its major receptor, ESR1, have important roles in
the regulation of spermatogenesis, particularly with aging (86)
and that this activity occurs through both rapid non-classical
membrane-associated/growth factor receptors as well as classical
transcriptional mediated pathways. Future studies are required
to better understand the separation of these pathways and their
potential interactions with other steroid receptors that coexist in
the same cell types.

ESTROGEN AND ESTROGEN RECEPTORS IN
SPERMATOGENESIS
Spermatogenesis, which takes place in the seminiferous epithe-
lium, can be divided into three major steps: spermatogonia pro-
liferation by mitosis, formation of preleptotene spermatocytes
which then gives birth to round spermatids (RSs) via meiosis,
and spermiogenesis that allows the maturation of spermatids into
mature spermatozoa. This complex and coordinated process is
regulated by numerous endocrine, paracrine, or autocrine factors
(87, 88) including gonadotropins LH and FSH, androgens, and
estrogens (86, 89, 90).

It is known that estrogen action mediated by its specific recep-
tors, such as ESR1, ESR2, and GPER, has different localization
and expression through the entire mammalian male reproductive
tract (86, 91) with major differences between species, as well as
between individuals belonging to the same species (86). In mouse
testis, ESR1 was found in Leydig cells, in some peritubular myoid
cells (92, 93), and in Sertoli cells (94), whereas ESR2 was found in
Leydig cells, Sertoli cells, and some germ cells, particularly sperma-
tocytes (92, 93). In the rat, ESR1 immunodetection was restricted
to the Leydig cells (95), in immature rat Sertoli cells (94, 96), in
the seminiferous compartment (97), and in purified germ cells
(98, 99). Regarding ESR2, there is a general consensus concern-
ing its localization in seminiferous tubules but conflicting data
regarding its presence in germ cells (86, 100) although Bois and
co-workers detected the presence of ESR2 in pachytene sperma-
tocytes (PS) and RSs (101). The presence of ERs in testicular cells
of humans is well documented (90, 102). The two types of ERs,
1 and 2, have been identified in isolated immature germ cells in
men, the full-length protein ESR1 (66 kDa) and one isoform lack-
ing the exon 1 (46 kDa). In mature spermatozoa, only the 46-kDa
band was observed. For ESR2, two proteins that correspond to
the long (60 kDa) and short (50 kDa) forms have been detected in
germ cells (102). However, the presence of ESR1 and ESR2 in the
human ejaculated spermatozoa has been demonstrated (90, 103).

Recently, ours and other studies have demonstrated the pres-
ence of a functional GPER in both normal (98, 99, 104, 105) and
malignant testicular cell lines (106).

The important role of estrogens in spermatogonial cell pro-
liferation has been evidenced by works of Chieffi et al. where
the authors demonstrated at the molecular level the involvement
of ERK/c-fos signaling (107, 108). Accordingly, studies with the
mouse spermatogonial GC-1 cell line showed that estradiol rapidly
activates EGFR/ERK/fos/cyclin D1 pathway through a functional
cross-talk between GPER and ESR1 responsible for cell prolif-
eration (104). Conversely, estradiol-mediated rapid ESR1 and/or
GPER/EGFR/ERK/c-jun pathway activation in primary cultures
of rat PS (98) and in GC-2 cells (105), an immortalized mouse
pachytene spermatocyte-derived cell line, induces an apoptotic
mechanism. In particular, in PS cells GPER activation is related
to a reduction of cyclin A1 and B1 expression concomitantly
with an increase of bax protein expression (98), while in GC-2
cells GPER signaling is associated with the phosphorylation of all
MAPK family members initiating the intrinsic apoptotic pathway
(105). Similarly, a functional cross-talk between ESR1 and GPER in
mediating apoptotic effects was observed also in primary cultures
of adult rat RSs (99). It is noteworthy that in this cellular context,
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the contribution of ESR2 seems to be related to anti-apoptotic
events (99).

G protein-coupled estrogen receptor expression and signal-
ing was also investigated in cultured immature rat Sertoli cells
(109, 110) where it has been observed that ERs are able to reg-
ulate gene expression involved in both cell proliferation and
apoptosis. Indeed, ESR1 activated by its ligand rapidly induces
EGFR/ERK1/2 and PI3K pathways that in turn increase cyclin D1
expression responsible for Sertoli cell proliferation (111). Inter-
estingly, through the same molecular pathways the activation of
GPER determines anti-apoptotic events by upregulating BCL2 and
BCL2L2 proteins. Alternatively, the anti-apoptotic effects could
be mediated by estradiol or G-1-GPER/EGFR/ERK1/2/pCREB
dependent pathway driving a decrease of bax expression (111).

All these data evidenced that ERs and GPER through differ-
ent molecular signaling may mediate estradiol action important
for the function and maintenance of testicular cells where the
complex balance between cellular maturation and cell death drive
spermatogenesis and male (in)fertility.

Regarding GPER role in malignant testicular cell lines it has
been shown that it is highly expressed in testicular germ cell can-
cer (TGCC) (112) as well as in Leydig and Sertoli cell tumors
(113–115). However, also in this context, GPER activity appears
to be cell type specific. In fact, in human testicular seminoma cell
line, GPER activation is associated with increased cell proliferation
(116), while in rat tumor, Leydig cell line is related to cell growth
inhibition and apoptosis (106).

CONCLUDING REMARKS
The reproductive hormonal axis in males normally functions in
a tightly regulated manner to produce concentrations of circulat-
ing steroids required for normal male sexual development, sexual
function, and fertility. The testis has the ability to also produce
significant amounts of estrogenic hormones and a regulated bal-
ance between androgens and estrogens seems to be essential for
normal testicular physiology and reproduction acting both within
the testis as well as in regulating HPG axis.

Studies discussed in this review have suggested that estradiol is
the main hormone that provides negative feedback at the hypo-
thalamic level, whereas the pituitary requires both estradiol and
DHT for a complete negative feedback effect. However, further
investigation is necessary to better understand how testosterone
and/or its primary metabolites act within the brain to suppress
the synthesis and/or secretion of GnRH. Accumulating evidence
suggests that estrogen could act in the hypothalamus through rapid
action mediated by ESR2,and at least partially, through GPER (33).
However, it remains to establish: (i) the specific target cells (GnRH
neurons, glia cells, etc.) for estrogen action at the hypothalamic
level; (ii) the ER isoforms involved; (iii) the signal transduction
activated by estrogen in the different cell types. An unsolved debate
is focused on clarifying what steroid (DHT and/or E2) and conse-
quently what steroid receptors (AR and/or ESR1, ESR2) are able
to induce and mediate negative feedback at the pituitary level.
Interesting studies using engineered hpg animals knocked-out for
ERs (hpg /ESR1 and hpg /ESR2), revealed that estradiol-mediated
spermatogenesis takes place in hpg animals through the involve-
ment of ESR1, but not ESR2, which increases FSH release and testis
(mainly Sertoli cells) functions. However, the debate on negative

feedback at the pituitary level is further complicated by recent
observations that GPER could be involved in suppressing GnRH-
stimulated LH release in primary pituitary cell culture derived
from ovariectomized ewes (63). However, to date, there are no
studies showing GPER-mediated non-genomic signaling events in
the male pituitary.

Another important finding is that estrogen plays a direct role in
modulating spermatogenesis influencing, in a cell specific manner,
germ cells proliferation, differentiation, as well as germ cell sur-
vival and apoptosis. The widespread presence of ESR1 and ESR2
in all testicular cells supports this finding and the discovery of
GPER in the testis has opened new perspectives to better under-
stand the rapid membrane pathways induced by estrogens. In fact,
estrogenic activity in the testis as well as at the hypothalamic level
appears to involve not only the classical genomic pathway, but also
rapid membrane receptor initiated pathways. Studies discussed
in this review indicate the ability of ERs to trigger rapid and
converging pathways controlling proliferation (i.e., proliferation
through ESR1 and GPER in spermatogonia or apoptosis through
the same receptors in spermatids); or trigger, independently from
each other, pathways controlling the same cell function (i.e., apop-
tosis through ESR1 and/or GPER in spermatocytes). Moreover,
these studies support the hypothesis that in the testis, as in other
tissues, estrogen effects are a result of the combination of differ-
ent ER mediated activities, including the classic genomic as well as
rapid actions at the membrane receptors via a functional cross-talk
with growth factor receptors.

Another interesting aspect is that genomic and rapid pathways
can work independently from each other but at same time coop-
erate to reach a common goal (i.e., in Sertoli cells E2-genomic
action on cyclin D1 induces proliferation and estradiol rapid
action through GPER activates anti-apoptotic signals).

Further studies are necessary to clarify the role of estrogen/ERs
signaling in regulating GnRH, FSH, and LH release at the male
hypothalamic and pituitary levels as well as in controlling sper-
matogenesis. Such studies could be helpful to better understand
the impact of environmental endocrine disruptors’ exposure, such
as xenoestrogens, on male reproduction. In addition, more inves-
tigation is required to clarify the molecular mechanisms related
to estrogen-dependent testicular tumorigenesis as well as to also
provide a potential target for the development of a non-androgen
male contraceptive.
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